Merge branch 'acpica' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[sfrench/cifs-2.6.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30
31 #include "mm.h"
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         unsigned int    pmd;
65         unsigned int    pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static void __init early_cachepolicy(char **p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         *p += len;
115                         break;
116                 }
117         }
118         if (i == ARRAY_SIZE(cache_policies))
119                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120         /*
121          * This restriction is partly to do with the way we boot; it is
122          * unpredictable to have memory mapped using two different sets of
123          * memory attributes (shared, type, and cache attribs).  We can not
124          * change these attributes once the initial assembly has setup the
125          * page tables.
126          */
127         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129                 cachepolicy = CPOLICY_WRITEBACK;
130         }
131         flush_cache_all();
132         set_cr(cr_alignment);
133 }
134 __early_param("cachepolicy=", early_cachepolicy);
135
136 static void __init early_nocache(char **__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(&p);
141 }
142 __early_param("nocache", early_nocache);
143
144 static void __init early_nowrite(char **__unused)
145 {
146         char *p = "uncached";
147         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148         early_cachepolicy(&p);
149 }
150 __early_param("nowb", early_nowrite);
151
152 static void __init early_ecc(char **p)
153 {
154         if (memcmp(*p, "on", 2) == 0) {
155                 ecc_mask = PMD_PROTECTION;
156                 *p += 2;
157         } else if (memcmp(*p, "off", 3) == 0) {
158                 ecc_mask = 0;
159                 *p += 3;
160         }
161 }
162 __early_param("ecc=", early_ecc);
163
164 static int __init noalign_setup(char *__unused)
165 {
166         cr_alignment &= ~CR_A;
167         cr_no_alignment &= ~CR_A;
168         set_cr(cr_alignment);
169         return 1;
170 }
171 __setup("noalign", noalign_setup);
172
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176         unsigned long flags;
177
178         mask &= ~CR_A;
179
180         set &= mask;
181
182         local_irq_save(flags);
183
184         cr_no_alignment = (cr_no_alignment & ~mask) | set;
185         cr_alignment = (cr_alignment & ~mask) | set;
186
187         set_cr((get_cr() & ~mask) | set);
188
189         local_irq_restore(flags);
190 }
191 #endif
192
193 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195
196 static struct mem_type mem_types[] = {
197         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
198                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199                                   L_PTE_SHARED,
200                 .prot_l1        = PMD_TYPE_TABLE,
201                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
202                 .domain         = DOMAIN_IO,
203         },
204         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206                 .prot_l1        = PMD_TYPE_TABLE,
207                 .prot_sect      = PROT_SECT_DEVICE,
208                 .domain         = DOMAIN_IO,
209         },
210         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
211                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212                 .prot_l1        = PMD_TYPE_TABLE,
213                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
214                 .domain         = DOMAIN_IO,
215         },      
216         [MT_DEVICE_WC] = {      /* ioremap_wc */
217                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218                 .prot_l1        = PMD_TYPE_TABLE,
219                 .prot_sect      = PROT_SECT_DEVICE,
220                 .domain         = DOMAIN_IO,
221         },
222         [MT_UNCACHED] = {
223                 .prot_pte       = PROT_PTE_DEVICE,
224                 .prot_l1        = PMD_TYPE_TABLE,
225                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
226                 .domain         = DOMAIN_IO,
227         },
228         [MT_CACHECLEAN] = {
229                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain    = DOMAIN_KERNEL,
231         },
232         [MT_MINICLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234                 .domain    = DOMAIN_KERNEL,
235         },
236         [MT_LOW_VECTORS] = {
237                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238                                 L_PTE_EXEC,
239                 .prot_l1   = PMD_TYPE_TABLE,
240                 .domain    = DOMAIN_USER,
241         },
242         [MT_HIGH_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_USER | L_PTE_EXEC,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_MEMORY] = {
249                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250                 .domain    = DOMAIN_KERNEL,
251         },
252         [MT_ROM] = {
253                 .prot_sect = PMD_TYPE_SECT,
254                 .domain    = DOMAIN_KERNEL,
255         },
256         [MT_MEMORY_NONCACHED] = {
257                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258                 .domain    = DOMAIN_KERNEL,
259         },
260 };
261
262 const struct mem_type *get_mem_type(unsigned int type)
263 {
264         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
265 }
266 EXPORT_SYMBOL(get_mem_type);
267
268 /*
269  * Adjust the PMD section entries according to the CPU in use.
270  */
271 static void __init build_mem_type_table(void)
272 {
273         struct cachepolicy *cp;
274         unsigned int cr = get_cr();
275         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
276         int cpu_arch = cpu_architecture();
277         int i;
278
279         if (cpu_arch < CPU_ARCH_ARMv6) {
280 #if defined(CONFIG_CPU_DCACHE_DISABLE)
281                 if (cachepolicy > CPOLICY_BUFFERED)
282                         cachepolicy = CPOLICY_BUFFERED;
283 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
284                 if (cachepolicy > CPOLICY_WRITETHROUGH)
285                         cachepolicy = CPOLICY_WRITETHROUGH;
286 #endif
287         }
288         if (cpu_arch < CPU_ARCH_ARMv5) {
289                 if (cachepolicy >= CPOLICY_WRITEALLOC)
290                         cachepolicy = CPOLICY_WRITEBACK;
291                 ecc_mask = 0;
292         }
293 #ifdef CONFIG_SMP
294         cachepolicy = CPOLICY_WRITEALLOC;
295 #endif
296
297         /*
298          * Strip out features not present on earlier architectures.
299          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
300          * without extended page tables don't have the 'Shared' bit.
301          */
302         if (cpu_arch < CPU_ARCH_ARMv5)
303                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307                         mem_types[i].prot_sect &= ~PMD_SECT_S;
308
309         /*
310          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311          * "update-able on write" bit on ARM610).  However, Xscale and
312          * Xscale3 require this bit to be cleared.
313          */
314         if (cpu_is_xscale() || cpu_is_xsc3()) {
315                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
316                         mem_types[i].prot_sect &= ~PMD_BIT4;
317                         mem_types[i].prot_l1 &= ~PMD_BIT4;
318                 }
319         } else if (cpu_arch < CPU_ARCH_ARMv6) {
320                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
321                         if (mem_types[i].prot_l1)
322                                 mem_types[i].prot_l1 |= PMD_BIT4;
323                         if (mem_types[i].prot_sect)
324                                 mem_types[i].prot_sect |= PMD_BIT4;
325                 }
326         }
327
328         /*
329          * Mark the device areas according to the CPU/architecture.
330          */
331         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332                 if (!cpu_is_xsc3()) {
333                         /*
334                          * Mark device regions on ARMv6+ as execute-never
335                          * to prevent speculative instruction fetches.
336                          */
337                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
341                 }
342                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
343                         /*
344                          * For ARMv7 with TEX remapping,
345                          * - shared device is SXCB=1100
346                          * - nonshared device is SXCB=0100
347                          * - write combine device mem is SXCB=0001
348                          * (Uncached Normal memory)
349                          */
350                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353                 } else if (cpu_is_xsc3()) {
354                         /*
355                          * For Xscale3,
356                          * - shared device is TEXCB=00101
357                          * - nonshared device is TEXCB=01000
358                          * - write combine device mem is TEXCB=00100
359                          * (Inner/Outer Uncacheable in xsc3 parlance)
360                          */
361                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364                 } else {
365                         /*
366                          * For ARMv6 and ARMv7 without TEX remapping,
367                          * - shared device is TEXCB=00001
368                          * - nonshared device is TEXCB=01000
369                          * - write combine device mem is TEXCB=00100
370                          * (Uncached Normal in ARMv6 parlance).
371                          */
372                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
375                 }
376         } else {
377                 /*
378                  * On others, write combining is "Uncached/Buffered"
379                  */
380                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381         }
382
383         /*
384          * Now deal with the memory-type mappings
385          */
386         cp = &cache_policies[cachepolicy];
387         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
388
389 #ifndef CONFIG_SMP
390         /*
391          * Only use write-through for non-SMP systems
392          */
393         if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395 #endif
396
397         /*
398          * Enable CPU-specific coherency if supported.
399          * (Only available on XSC3 at the moment.)
400          */
401         if (arch_is_coherent() && cpu_is_xsc3())
402                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
403
404         /*
405          * ARMv6 and above have extended page tables.
406          */
407         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
408                 /*
409                  * Mark cache clean areas and XIP ROM read only
410                  * from SVC mode and no access from userspace.
411                  */
412                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415
416 #ifdef CONFIG_SMP
417                 /*
418                  * Mark memory with the "shared" attribute for SMP systems
419                  */
420                 user_pgprot |= L_PTE_SHARED;
421                 kern_pgprot |= L_PTE_SHARED;
422                 vecs_pgprot |= L_PTE_SHARED;
423                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
424                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
425 #endif
426         }
427
428         /*
429          * Non-cacheable Normal - intended for memory areas that must
430          * not cause dirty cache line writebacks when used
431          */
432         if (cpu_arch >= CPU_ARCH_ARMv6) {
433                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
434                         /* Non-cacheable Normal is XCB = 001 */
435                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
436                                 PMD_SECT_BUFFERED;
437                 } else {
438                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
439                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440                                 PMD_SECT_TEX(1);
441                 }
442         } else {
443                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
444         }
445
446         for (i = 0; i < 16; i++) {
447                 unsigned long v = pgprot_val(protection_map[i]);
448                 protection_map[i] = __pgprot(v | user_pgprot);
449         }
450
451         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
452         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
453
454         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
455         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
456                                  L_PTE_DIRTY | L_PTE_WRITE |
457                                  L_PTE_EXEC | kern_pgprot);
458
459         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
460         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
461         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
462         mem_types[MT_ROM].prot_sect |= cp->pmd;
463
464         switch (cp->pmd) {
465         case PMD_SECT_WT:
466                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
467                 break;
468         case PMD_SECT_WB:
469         case PMD_SECT_WBWA:
470                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
471                 break;
472         }
473         printk("Memory policy: ECC %sabled, Data cache %s\n",
474                 ecc_mask ? "en" : "dis", cp->policy);
475
476         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
477                 struct mem_type *t = &mem_types[i];
478                 if (t->prot_l1)
479                         t->prot_l1 |= PMD_DOMAIN(t->domain);
480                 if (t->prot_sect)
481                         t->prot_sect |= PMD_DOMAIN(t->domain);
482         }
483 }
484
485 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
486
487 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
488                                   unsigned long end, unsigned long pfn,
489                                   const struct mem_type *type)
490 {
491         pte_t *pte;
492
493         if (pmd_none(*pmd)) {
494                 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
495                 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
496         }
497
498         pte = pte_offset_kernel(pmd, addr);
499         do {
500                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
501                 pfn++;
502         } while (pte++, addr += PAGE_SIZE, addr != end);
503 }
504
505 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
506                                       unsigned long end, unsigned long phys,
507                                       const struct mem_type *type)
508 {
509         pmd_t *pmd = pmd_offset(pgd, addr);
510
511         /*
512          * Try a section mapping - end, addr and phys must all be aligned
513          * to a section boundary.  Note that PMDs refer to the individual
514          * L1 entries, whereas PGDs refer to a group of L1 entries making
515          * up one logical pointer to an L2 table.
516          */
517         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
518                 pmd_t *p = pmd;
519
520                 if (addr & SECTION_SIZE)
521                         pmd++;
522
523                 do {
524                         *pmd = __pmd(phys | type->prot_sect);
525                         phys += SECTION_SIZE;
526                 } while (pmd++, addr += SECTION_SIZE, addr != end);
527
528                 flush_pmd_entry(p);
529         } else {
530                 /*
531                  * No need to loop; pte's aren't interested in the
532                  * individual L1 entries.
533                  */
534                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
535         }
536 }
537
538 static void __init create_36bit_mapping(struct map_desc *md,
539                                         const struct mem_type *type)
540 {
541         unsigned long phys, addr, length, end;
542         pgd_t *pgd;
543
544         addr = md->virtual;
545         phys = (unsigned long)__pfn_to_phys(md->pfn);
546         length = PAGE_ALIGN(md->length);
547
548         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
549                 printk(KERN_ERR "MM: CPU does not support supersection "
550                        "mapping for 0x%08llx at 0x%08lx\n",
551                        __pfn_to_phys((u64)md->pfn), addr);
552                 return;
553         }
554
555         /* N.B. ARMv6 supersections are only defined to work with domain 0.
556          *      Since domain assignments can in fact be arbitrary, the
557          *      'domain == 0' check below is required to insure that ARMv6
558          *      supersections are only allocated for domain 0 regardless
559          *      of the actual domain assignments in use.
560          */
561         if (type->domain) {
562                 printk(KERN_ERR "MM: invalid domain in supersection "
563                        "mapping for 0x%08llx at 0x%08lx\n",
564                        __pfn_to_phys((u64)md->pfn), addr);
565                 return;
566         }
567
568         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
569                 printk(KERN_ERR "MM: cannot create mapping for "
570                        "0x%08llx at 0x%08lx invalid alignment\n",
571                        __pfn_to_phys((u64)md->pfn), addr);
572                 return;
573         }
574
575         /*
576          * Shift bits [35:32] of address into bits [23:20] of PMD
577          * (See ARMv6 spec).
578          */
579         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
580
581         pgd = pgd_offset_k(addr);
582         end = addr + length;
583         do {
584                 pmd_t *pmd = pmd_offset(pgd, addr);
585                 int i;
586
587                 for (i = 0; i < 16; i++)
588                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
589
590                 addr += SUPERSECTION_SIZE;
591                 phys += SUPERSECTION_SIZE;
592                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
593         } while (addr != end);
594 }
595
596 /*
597  * Create the page directory entries and any necessary
598  * page tables for the mapping specified by `md'.  We
599  * are able to cope here with varying sizes and address
600  * offsets, and we take full advantage of sections and
601  * supersections.
602  */
603 void __init create_mapping(struct map_desc *md)
604 {
605         unsigned long phys, addr, length, end;
606         const struct mem_type *type;
607         pgd_t *pgd;
608
609         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
610                 printk(KERN_WARNING "BUG: not creating mapping for "
611                        "0x%08llx at 0x%08lx in user region\n",
612                        __pfn_to_phys((u64)md->pfn), md->virtual);
613                 return;
614         }
615
616         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
617             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
618                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
619                        "overlaps vmalloc space\n",
620                        __pfn_to_phys((u64)md->pfn), md->virtual);
621         }
622
623         type = &mem_types[md->type];
624
625         /*
626          * Catch 36-bit addresses
627          */
628         if (md->pfn >= 0x100000) {
629                 create_36bit_mapping(md, type);
630                 return;
631         }
632
633         addr = md->virtual & PAGE_MASK;
634         phys = (unsigned long)__pfn_to_phys(md->pfn);
635         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
636
637         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
638                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
639                        "be mapped using pages, ignoring.\n",
640                        __pfn_to_phys(md->pfn), addr);
641                 return;
642         }
643
644         pgd = pgd_offset_k(addr);
645         end = addr + length;
646         do {
647                 unsigned long next = pgd_addr_end(addr, end);
648
649                 alloc_init_section(pgd, addr, next, phys, type);
650
651                 phys += next - addr;
652                 addr = next;
653         } while (pgd++, addr != end);
654 }
655
656 /*
657  * Create the architecture specific mappings
658  */
659 void __init iotable_init(struct map_desc *io_desc, int nr)
660 {
661         int i;
662
663         for (i = 0; i < nr; i++)
664                 create_mapping(io_desc + i);
665 }
666
667 static unsigned long __initdata vmalloc_reserve = SZ_128M;
668
669 /*
670  * vmalloc=size forces the vmalloc area to be exactly 'size'
671  * bytes. This can be used to increase (or decrease) the vmalloc
672  * area - the default is 128m.
673  */
674 static void __init early_vmalloc(char **arg)
675 {
676         vmalloc_reserve = memparse(*arg, arg);
677
678         if (vmalloc_reserve < SZ_16M) {
679                 vmalloc_reserve = SZ_16M;
680                 printk(KERN_WARNING
681                         "vmalloc area too small, limiting to %luMB\n",
682                         vmalloc_reserve >> 20);
683         }
684
685         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
686                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
687                 printk(KERN_WARNING
688                         "vmalloc area is too big, limiting to %luMB\n",
689                         vmalloc_reserve >> 20);
690         }
691 }
692 __early_param("vmalloc=", early_vmalloc);
693
694 #define VMALLOC_MIN     (void *)(VMALLOC_END - vmalloc_reserve)
695
696 static void __init sanity_check_meminfo(void)
697 {
698         int i, j, highmem = 0;
699
700         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
701                 struct membank *bank = &meminfo.bank[j];
702                 *bank = meminfo.bank[i];
703
704 #ifdef CONFIG_HIGHMEM
705                 if (__va(bank->start) > VMALLOC_MIN ||
706                     __va(bank->start) < (void *)PAGE_OFFSET)
707                         highmem = 1;
708
709                 bank->highmem = highmem;
710
711                 /*
712                  * Split those memory banks which are partially overlapping
713                  * the vmalloc area greatly simplifying things later.
714                  */
715                 if (__va(bank->start) < VMALLOC_MIN &&
716                     bank->size > VMALLOC_MIN - __va(bank->start)) {
717                         if (meminfo.nr_banks >= NR_BANKS) {
718                                 printk(KERN_CRIT "NR_BANKS too low, "
719                                                  "ignoring high memory\n");
720                         } else {
721                                 memmove(bank + 1, bank,
722                                         (meminfo.nr_banks - i) * sizeof(*bank));
723                                 meminfo.nr_banks++;
724                                 i++;
725                                 bank[1].size -= VMALLOC_MIN - __va(bank->start);
726                                 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
727                                 bank[1].highmem = highmem = 1;
728                                 j++;
729                         }
730                         bank->size = VMALLOC_MIN - __va(bank->start);
731                 }
732 #else
733                 bank->highmem = highmem;
734
735                 /*
736                  * Check whether this memory bank would entirely overlap
737                  * the vmalloc area.
738                  */
739                 if (__va(bank->start) >= VMALLOC_MIN ||
740                     __va(bank->start) < (void *)PAGE_OFFSET) {
741                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
742                                "(vmalloc region overlap).\n",
743                                bank->start, bank->start + bank->size - 1);
744                         continue;
745                 }
746
747                 /*
748                  * Check whether this memory bank would partially overlap
749                  * the vmalloc area.
750                  */
751                 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
752                     __va(bank->start + bank->size) < __va(bank->start)) {
753                         unsigned long newsize = VMALLOC_MIN - __va(bank->start);
754                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
755                                "to -%.8lx (vmalloc region overlap).\n",
756                                bank->start, bank->start + bank->size - 1,
757                                bank->start + newsize - 1);
758                         bank->size = newsize;
759                 }
760 #endif
761                 j++;
762         }
763 #ifdef CONFIG_HIGHMEM
764         if (highmem) {
765                 const char *reason = NULL;
766
767                 if (cache_is_vipt_aliasing()) {
768                         /*
769                          * Interactions between kmap and other mappings
770                          * make highmem support with aliasing VIPT caches
771                          * rather difficult.
772                          */
773                         reason = "with VIPT aliasing cache";
774 #ifdef CONFIG_SMP
775                 } else if (tlb_ops_need_broadcast()) {
776                         /*
777                          * kmap_high needs to occasionally flush TLB entries,
778                          * however, if the TLB entries need to be broadcast
779                          * we may deadlock:
780                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
781                          *  flush_tlb_kernel_range->smp_call_function_many
782                          *   (must not be called with irqs off)
783                          */
784                         reason = "without hardware TLB ops broadcasting";
785 #endif
786                 }
787                 if (reason) {
788                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
789                                 reason);
790                         while (j > 0 && meminfo.bank[j - 1].highmem)
791                                 j--;
792                 }
793         }
794 #endif
795         meminfo.nr_banks = j;
796 }
797
798 static inline void prepare_page_table(void)
799 {
800         unsigned long addr;
801
802         /*
803          * Clear out all the mappings below the kernel image.
804          */
805         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
806                 pmd_clear(pmd_off_k(addr));
807
808 #ifdef CONFIG_XIP_KERNEL
809         /* The XIP kernel is mapped in the module area -- skip over it */
810         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
811 #endif
812         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
813                 pmd_clear(pmd_off_k(addr));
814
815         /*
816          * Clear out all the kernel space mappings, except for the first
817          * memory bank, up to the end of the vmalloc region.
818          */
819         for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
820              addr < VMALLOC_END; addr += PGDIR_SIZE)
821                 pmd_clear(pmd_off_k(addr));
822 }
823
824 /*
825  * Reserve the various regions of node 0
826  */
827 void __init reserve_node_zero(pg_data_t *pgdat)
828 {
829         unsigned long res_size = 0;
830
831         /*
832          * Register the kernel text and data with bootmem.
833          * Note that this can only be in node 0.
834          */
835 #ifdef CONFIG_XIP_KERNEL
836         reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
837                         BOOTMEM_DEFAULT);
838 #else
839         reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
840                         BOOTMEM_DEFAULT);
841 #endif
842
843         /*
844          * Reserve the page tables.  These are already in use,
845          * and can only be in node 0.
846          */
847         reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
848                              PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
849
850         /*
851          * Hmm... This should go elsewhere, but we really really need to
852          * stop things allocating the low memory; ideally we need a better
853          * implementation of GFP_DMA which does not assume that DMA-able
854          * memory starts at zero.
855          */
856         if (machine_is_integrator() || machine_is_cintegrator())
857                 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
858
859         /*
860          * These should likewise go elsewhere.  They pre-reserve the
861          * screen memory region at the start of main system memory.
862          */
863         if (machine_is_edb7211())
864                 res_size = 0x00020000;
865         if (machine_is_p720t())
866                 res_size = 0x00014000;
867
868         /* H1940 and RX3715 need to reserve this for suspend */
869
870         if (machine_is_h1940() || machine_is_rx3715()) {
871                 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
872                                 BOOTMEM_DEFAULT);
873                 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
874                                 BOOTMEM_DEFAULT);
875         }
876
877         if (machine_is_palmld() || machine_is_palmtx()) {
878                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
879                                 BOOTMEM_EXCLUSIVE);
880                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
881                                 BOOTMEM_EXCLUSIVE);
882         }
883
884         if (machine_is_treo680() || machine_is_centro()) {
885                 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
886                                 BOOTMEM_EXCLUSIVE);
887                 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
888                                 BOOTMEM_EXCLUSIVE);
889         }
890
891         if (machine_is_palmt5())
892                 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
893                                 BOOTMEM_EXCLUSIVE);
894
895         /*
896          * U300 - This platform family can share physical memory
897          * between two ARM cpus, one running Linux and the other
898          * running another OS.
899          */
900         if (machine_is_u300()) {
901 #ifdef CONFIG_MACH_U300_SINGLE_RAM
902 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) &&    \
903         CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
904                 res_size = 0x00100000;
905 #endif
906 #endif
907         }
908
909 #ifdef CONFIG_SA1111
910         /*
911          * Because of the SA1111 DMA bug, we want to preserve our
912          * precious DMA-able memory...
913          */
914         res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
915 #endif
916         if (res_size)
917                 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
918                                 BOOTMEM_DEFAULT);
919 }
920
921 /*
922  * Set up device the mappings.  Since we clear out the page tables for all
923  * mappings above VMALLOC_END, we will remove any debug device mappings.
924  * This means you have to be careful how you debug this function, or any
925  * called function.  This means you can't use any function or debugging
926  * method which may touch any device, otherwise the kernel _will_ crash.
927  */
928 static void __init devicemaps_init(struct machine_desc *mdesc)
929 {
930         struct map_desc map;
931         unsigned long addr;
932         void *vectors;
933
934         /*
935          * Allocate the vector page early.
936          */
937         vectors = alloc_bootmem_low_pages(PAGE_SIZE);
938
939         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
940                 pmd_clear(pmd_off_k(addr));
941
942         /*
943          * Map the kernel if it is XIP.
944          * It is always first in the modulearea.
945          */
946 #ifdef CONFIG_XIP_KERNEL
947         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
948         map.virtual = MODULES_VADDR;
949         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
950         map.type = MT_ROM;
951         create_mapping(&map);
952 #endif
953
954         /*
955          * Map the cache flushing regions.
956          */
957 #ifdef FLUSH_BASE
958         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
959         map.virtual = FLUSH_BASE;
960         map.length = SZ_1M;
961         map.type = MT_CACHECLEAN;
962         create_mapping(&map);
963 #endif
964 #ifdef FLUSH_BASE_MINICACHE
965         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
966         map.virtual = FLUSH_BASE_MINICACHE;
967         map.length = SZ_1M;
968         map.type = MT_MINICLEAN;
969         create_mapping(&map);
970 #endif
971
972         /*
973          * Create a mapping for the machine vectors at the high-vectors
974          * location (0xffff0000).  If we aren't using high-vectors, also
975          * create a mapping at the low-vectors virtual address.
976          */
977         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
978         map.virtual = 0xffff0000;
979         map.length = PAGE_SIZE;
980         map.type = MT_HIGH_VECTORS;
981         create_mapping(&map);
982
983         if (!vectors_high()) {
984                 map.virtual = 0;
985                 map.type = MT_LOW_VECTORS;
986                 create_mapping(&map);
987         }
988
989         /*
990          * Ask the machine support to map in the statically mapped devices.
991          */
992         if (mdesc->map_io)
993                 mdesc->map_io();
994
995         /*
996          * Finally flush the caches and tlb to ensure that we're in a
997          * consistent state wrt the writebuffer.  This also ensures that
998          * any write-allocated cache lines in the vector page are written
999          * back.  After this point, we can start to touch devices again.
1000          */
1001         local_flush_tlb_all();
1002         flush_cache_all();
1003 }
1004
1005 static void __init kmap_init(void)
1006 {
1007 #ifdef CONFIG_HIGHMEM
1008         pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1009         pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1010         BUG_ON(!pmd_none(*pmd) || !pte);
1011         __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1012         pkmap_page_table = pte + PTRS_PER_PTE;
1013 #endif
1014 }
1015
1016 /*
1017  * paging_init() sets up the page tables, initialises the zone memory
1018  * maps, and sets up the zero page, bad page and bad page tables.
1019  */
1020 void __init paging_init(struct machine_desc *mdesc)
1021 {
1022         void *zero_page;
1023
1024         build_mem_type_table();
1025         sanity_check_meminfo();
1026         prepare_page_table();
1027         bootmem_init();
1028         devicemaps_init(mdesc);
1029         kmap_init();
1030
1031         top_pmd = pmd_off_k(0xffff0000);
1032
1033         /*
1034          * allocate the zero page.  Note that this always succeeds and
1035          * returns a zeroed result.
1036          */
1037         zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1038         empty_zero_page = virt_to_page(zero_page);
1039         __flush_dcache_page(NULL, empty_zero_page);
1040 }
1041
1042 /*
1043  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1044  * the user-mode pages.  This will then ensure that we have predictable
1045  * results when turning the mmu off
1046  */
1047 void setup_mm_for_reboot(char mode)
1048 {
1049         unsigned long base_pmdval;
1050         pgd_t *pgd;
1051         int i;
1052
1053         if (current->mm && current->mm->pgd)
1054                 pgd = current->mm->pgd;
1055         else
1056                 pgd = init_mm.pgd;
1057
1058         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1059         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1060                 base_pmdval |= PMD_BIT4;
1061
1062         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1063                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1064                 pmd_t *pmd;
1065
1066                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1067                 pmd[0] = __pmd(pmdval);
1068                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1069                 flush_pmd_entry(pmd);
1070         }
1071 }