Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / arm / mach-vexpress / spc.c
1 /*
2  * Versatile Express Serial Power Controller (SPC) support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  *
6  * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7  *          Achin Gupta           <achin.gupta@arm.com>
8  *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/clk-provider.h>
21 #include <linux/clkdev.h>
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_opp.h>
29 #include <linux/slab.h>
30 #include <linux/semaphore.h>
31
32 #include <asm/cacheflush.h>
33
34 #define SPCLOG "vexpress-spc: "
35
36 #define PERF_LVL_A15            0x00
37 #define PERF_REQ_A15            0x04
38 #define PERF_LVL_A7             0x08
39 #define PERF_REQ_A7             0x0c
40 #define COMMS                   0x10
41 #define COMMS_REQ               0x14
42 #define PWC_STATUS              0x18
43 #define PWC_FLAG                0x1c
44
45 /* SPC wake-up IRQs status and mask */
46 #define WAKE_INT_MASK           0x24
47 #define WAKE_INT_RAW            0x28
48 #define WAKE_INT_STAT           0x2c
49 /* SPC power down registers */
50 #define A15_PWRDN_EN            0x30
51 #define A7_PWRDN_EN             0x34
52 /* SPC per-CPU mailboxes */
53 #define A15_BX_ADDR0            0x68
54 #define A7_BX_ADDR0             0x78
55
56 /* SPC CPU/cluster reset statue */
57 #define STANDBYWFI_STAT         0x3c
58 #define STANDBYWFI_STAT_A15_CPU_MASK(cpu)       (1 << (cpu))
59 #define STANDBYWFI_STAT_A7_CPU_MASK(cpu)        (1 << (3 + (cpu)))
60
61 /* SPC system config interface registers */
62 #define SYSCFG_WDATA            0x70
63 #define SYSCFG_RDATA            0x74
64
65 /* A15/A7 OPP virtual register base */
66 #define A15_PERFVAL_BASE        0xC10
67 #define A7_PERFVAL_BASE         0xC30
68
69 /* Config interface control bits */
70 #define SYSCFG_START            (1 << 31)
71 #define SYSCFG_SCC              (6 << 20)
72 #define SYSCFG_STAT             (14 << 20)
73
74 /* wake-up interrupt masks */
75 #define GBL_WAKEUP_INT_MSK      (0x3 << 10)
76
77 /* TC2 static dual-cluster configuration */
78 #define MAX_CLUSTERS            2
79
80 /*
81  * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
82  * operation, the operation could start just before jiffie is about
83  * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
84  */
85 #define TIMEOUT_US      20000
86
87 #define MAX_OPPS        8
88 #define CA15_DVFS       0
89 #define CA7_DVFS        1
90 #define SPC_SYS_CFG     2
91 #define STAT_COMPLETE(type)     ((1 << 0) << (type << 2))
92 #define STAT_ERR(type)          ((1 << 1) << (type << 2))
93 #define RESPONSE_MASK(type)     (STAT_COMPLETE(type) | STAT_ERR(type))
94
95 struct ve_spc_opp {
96         unsigned long freq;
97         unsigned long u_volt;
98 };
99
100 struct ve_spc_drvdata {
101         void __iomem *baseaddr;
102         /*
103          * A15s cluster identifier
104          * It corresponds to A15 processors MPIDR[15:8] bitfield
105          */
106         u32 a15_clusid;
107         uint32_t cur_rsp_mask;
108         uint32_t cur_rsp_stat;
109         struct semaphore sem;
110         struct completion done;
111         struct ve_spc_opp *opps[MAX_CLUSTERS];
112         int num_opps[MAX_CLUSTERS];
113 };
114
115 static struct ve_spc_drvdata *info;
116
117 static inline bool cluster_is_a15(u32 cluster)
118 {
119         return cluster == info->a15_clusid;
120 }
121
122 /**
123  * ve_spc_global_wakeup_irq()
124  *
125  * Function to set/clear global wakeup IRQs. Not protected by locking since
126  * it might be used in code paths where normal cacheable locks are not
127  * working. Locking must be provided by the caller to ensure atomicity.
128  *
129  * @set: if true, global wake-up IRQs are set, if false they are cleared
130  */
131 void ve_spc_global_wakeup_irq(bool set)
132 {
133         u32 reg;
134
135         reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
136
137         if (set)
138                 reg |= GBL_WAKEUP_INT_MSK;
139         else
140                 reg &= ~GBL_WAKEUP_INT_MSK;
141
142         writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
143 }
144
145 /**
146  * ve_spc_cpu_wakeup_irq()
147  *
148  * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
149  * it might be used in code paths where normal cacheable locks are not
150  * working. Locking must be provided by the caller to ensure atomicity.
151  *
152  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
153  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
154  * @set: if true, wake-up IRQs are set, if false they are cleared
155  */
156 void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
157 {
158         u32 mask, reg;
159
160         if (cluster >= MAX_CLUSTERS)
161                 return;
162
163         mask = 1 << cpu;
164
165         if (!cluster_is_a15(cluster))
166                 mask <<= 4;
167
168         reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
169
170         if (set)
171                 reg |= mask;
172         else
173                 reg &= ~mask;
174
175         writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
176 }
177
178 /**
179  * ve_spc_set_resume_addr() - set the jump address used for warm boot
180  *
181  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
182  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
183  * @addr: physical resume address
184  */
185 void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
186 {
187         void __iomem *baseaddr;
188
189         if (cluster >= MAX_CLUSTERS)
190                 return;
191
192         if (cluster_is_a15(cluster))
193                 baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
194         else
195                 baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
196
197         writel_relaxed(addr, baseaddr);
198 }
199
200 /**
201  * ve_spc_powerdown()
202  *
203  * Function to enable/disable cluster powerdown. Not protected by locking
204  * since it might be used in code paths where normal cacheable locks are not
205  * working. Locking must be provided by the caller to ensure atomicity.
206  *
207  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
208  * @enable: if true enables powerdown, if false disables it
209  */
210 void ve_spc_powerdown(u32 cluster, bool enable)
211 {
212         u32 pwdrn_reg;
213
214         if (cluster >= MAX_CLUSTERS)
215                 return;
216
217         pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
218         writel_relaxed(enable, info->baseaddr + pwdrn_reg);
219 }
220
221 static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
222 {
223         return cluster_is_a15(cluster) ?
224                   STANDBYWFI_STAT_A15_CPU_MASK(cpu)
225                 : STANDBYWFI_STAT_A7_CPU_MASK(cpu);
226 }
227
228 /**
229  * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
230  *
231  * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
232  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
233  *
234  * @return: non-zero if and only if the specified CPU is in WFI
235  *
236  * Take care when interpreting the result of this function: a CPU might
237  * be in WFI temporarily due to idle, and is not necessarily safely
238  * parked.
239  */
240 int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
241 {
242         int ret;
243         u32 mask = standbywfi_cpu_mask(cpu, cluster);
244
245         if (cluster >= MAX_CLUSTERS)
246                 return 1;
247
248         ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
249
250         pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
251                  __func__, STANDBYWFI_STAT, ret, mask);
252
253         return ret & mask;
254 }
255
256 static int ve_spc_get_performance(int cluster, u32 *freq)
257 {
258         struct ve_spc_opp *opps = info->opps[cluster];
259         u32 perf_cfg_reg = 0;
260         u32 perf;
261
262         perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
263
264         perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
265         if (perf >= info->num_opps[cluster])
266                 return -EINVAL;
267
268         opps += perf;
269         *freq = opps->freq;
270
271         return 0;
272 }
273
274 /* find closest match to given frequency in OPP table */
275 static int ve_spc_round_performance(int cluster, u32 freq)
276 {
277         int idx, max_opp = info->num_opps[cluster];
278         struct ve_spc_opp *opps = info->opps[cluster];
279         u32 fmin = 0, fmax = ~0, ftmp;
280
281         freq /= 1000; /* OPP entries in kHz */
282         for (idx = 0; idx < max_opp; idx++, opps++) {
283                 ftmp = opps->freq;
284                 if (ftmp >= freq) {
285                         if (ftmp <= fmax)
286                                 fmax = ftmp;
287                 } else {
288                         if (ftmp >= fmin)
289                                 fmin = ftmp;
290                 }
291         }
292         if (fmax != ~0)
293                 return fmax * 1000;
294         else
295                 return fmin * 1000;
296 }
297
298 static int ve_spc_find_performance_index(int cluster, u32 freq)
299 {
300         int idx, max_opp = info->num_opps[cluster];
301         struct ve_spc_opp *opps = info->opps[cluster];
302
303         for (idx = 0; idx < max_opp; idx++, opps++)
304                 if (opps->freq == freq)
305                         break;
306         return (idx == max_opp) ? -EINVAL : idx;
307 }
308
309 static int ve_spc_waitforcompletion(int req_type)
310 {
311         int ret = wait_for_completion_interruptible_timeout(
312                         &info->done, usecs_to_jiffies(TIMEOUT_US));
313         if (ret == 0)
314                 ret = -ETIMEDOUT;
315         else if (ret > 0)
316                 ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
317         return ret;
318 }
319
320 static int ve_spc_set_performance(int cluster, u32 freq)
321 {
322         u32 perf_cfg_reg, perf_stat_reg;
323         int ret, perf, req_type;
324
325         if (cluster_is_a15(cluster)) {
326                 req_type = CA15_DVFS;
327                 perf_cfg_reg = PERF_LVL_A15;
328                 perf_stat_reg = PERF_REQ_A15;
329         } else {
330                 req_type = CA7_DVFS;
331                 perf_cfg_reg = PERF_LVL_A7;
332                 perf_stat_reg = PERF_REQ_A7;
333         }
334
335         perf = ve_spc_find_performance_index(cluster, freq);
336
337         if (perf < 0)
338                 return perf;
339
340         if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341                 return -ETIME;
342
343         init_completion(&info->done);
344         info->cur_rsp_mask = RESPONSE_MASK(req_type);
345
346         writel(perf, info->baseaddr + perf_cfg_reg);
347         ret = ve_spc_waitforcompletion(req_type);
348
349         info->cur_rsp_mask = 0;
350         up(&info->sem);
351
352         return ret;
353 }
354
355 static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356 {
357         int ret;
358
359         if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360                 return -ETIME;
361
362         init_completion(&info->done);
363         info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364
365         /* Set the control value */
366         writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367         ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368
369         if (ret == 0)
370                 *data = readl(info->baseaddr + SYSCFG_RDATA);
371
372         info->cur_rsp_mask = 0;
373         up(&info->sem);
374
375         return ret;
376 }
377
378 static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379 {
380         struct ve_spc_drvdata *drv_data = data;
381         uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382
383         if (info->cur_rsp_mask & status) {
384                 info->cur_rsp_stat = status;
385                 complete(&drv_data->done);
386         }
387
388         return IRQ_HANDLED;
389 }
390
391 /*
392  *  +--------------------------+
393  *  | 31      20 | 19        0 |
394  *  +--------------------------+
395  *  |   m_volt   |  freq(kHz)  |
396  *  +--------------------------+
397  */
398 #define MULT_FACTOR     20
399 #define VOLT_SHIFT      20
400 #define FREQ_MASK       (0xFFFFF)
401 static int ve_spc_populate_opps(uint32_t cluster)
402 {
403         uint32_t data = 0, off, ret, idx;
404         struct ve_spc_opp *opps;
405
406         opps = kzalloc(sizeof(*opps) * MAX_OPPS, GFP_KERNEL);
407         if (!opps)
408                 return -ENOMEM;
409
410         info->opps[cluster] = opps;
411
412         off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413         for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414                 ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415                 if (!ret) {
416                         opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417                         opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418                 } else {
419                         break;
420                 }
421         }
422         info->num_opps[cluster] = idx;
423
424         return ret;
425 }
426
427 static int ve_init_opp_table(struct device *cpu_dev)
428 {
429         int cluster;
430         int idx, ret = 0, max_opp;
431         struct ve_spc_opp *opps;
432
433         cluster = topology_physical_package_id(cpu_dev->id);
434         cluster = cluster < 0 ? 0 : cluster;
435
436         max_opp = info->num_opps[cluster];
437         opps = info->opps[cluster];
438
439         for (idx = 0; idx < max_opp; idx++, opps++) {
440                 ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
441                 if (ret) {
442                         dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
443                                  opps->freq, opps->u_volt);
444                         return ret;
445                 }
446         }
447         return ret;
448 }
449
450 int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
451 {
452         int ret;
453         info = kzalloc(sizeof(*info), GFP_KERNEL);
454         if (!info) {
455                 pr_err(SPCLOG "unable to allocate mem\n");
456                 return -ENOMEM;
457         }
458
459         info->baseaddr = baseaddr;
460         info->a15_clusid = a15_clusid;
461
462         if (irq <= 0) {
463                 pr_err(SPCLOG "Invalid IRQ %d\n", irq);
464                 kfree(info);
465                 return -EINVAL;
466         }
467
468         init_completion(&info->done);
469
470         readl_relaxed(info->baseaddr + PWC_STATUS);
471
472         ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
473                                 | IRQF_ONESHOT, "vexpress-spc", info);
474         if (ret) {
475                 pr_err(SPCLOG "IRQ %d request failed\n", irq);
476                 kfree(info);
477                 return -ENODEV;
478         }
479
480         sema_init(&info->sem, 1);
481         /*
482          * Multi-cluster systems may need this data when non-coherent, during
483          * cluster power-up/power-down. Make sure driver info reaches main
484          * memory.
485          */
486         sync_cache_w(info);
487         sync_cache_w(&info);
488
489         return 0;
490 }
491
492 struct clk_spc {
493         struct clk_hw hw;
494         int cluster;
495 };
496
497 #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
498 static unsigned long spc_recalc_rate(struct clk_hw *hw,
499                 unsigned long parent_rate)
500 {
501         struct clk_spc *spc = to_clk_spc(hw);
502         u32 freq;
503
504         if (ve_spc_get_performance(spc->cluster, &freq))
505                 return -EIO;
506
507         return freq * 1000;
508 }
509
510 static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
511                 unsigned long *parent_rate)
512 {
513         struct clk_spc *spc = to_clk_spc(hw);
514
515         return ve_spc_round_performance(spc->cluster, drate);
516 }
517
518 static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
519                 unsigned long parent_rate)
520 {
521         struct clk_spc *spc = to_clk_spc(hw);
522
523         return ve_spc_set_performance(spc->cluster, rate / 1000);
524 }
525
526 static struct clk_ops clk_spc_ops = {
527         .recalc_rate = spc_recalc_rate,
528         .round_rate = spc_round_rate,
529         .set_rate = spc_set_rate,
530 };
531
532 static struct clk *ve_spc_clk_register(struct device *cpu_dev)
533 {
534         struct clk_init_data init;
535         struct clk_spc *spc;
536
537         spc = kzalloc(sizeof(*spc), GFP_KERNEL);
538         if (!spc) {
539                 pr_err("could not allocate spc clk\n");
540                 return ERR_PTR(-ENOMEM);
541         }
542
543         spc->hw.init = &init;
544         spc->cluster = topology_physical_package_id(cpu_dev->id);
545
546         spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
547
548         init.name = dev_name(cpu_dev);
549         init.ops = &clk_spc_ops;
550         init.flags = CLK_IS_ROOT | CLK_GET_RATE_NOCACHE;
551         init.num_parents = 0;
552
553         return devm_clk_register(cpu_dev, &spc->hw);
554 }
555
556 static int __init ve_spc_clk_init(void)
557 {
558         int cpu;
559         struct clk *clk;
560
561         if (!info)
562                 return 0; /* Continue only if SPC is initialised */
563
564         if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
565                 pr_err("failed to build OPP table\n");
566                 return -ENODEV;
567         }
568
569         for_each_possible_cpu(cpu) {
570                 struct device *cpu_dev = get_cpu_device(cpu);
571                 if (!cpu_dev) {
572                         pr_warn("failed to get cpu%d device\n", cpu);
573                         continue;
574                 }
575                 clk = ve_spc_clk_register(cpu_dev);
576                 if (IS_ERR(clk)) {
577                         pr_warn("failed to register cpu%d clock\n", cpu);
578                         continue;
579                 }
580                 if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
581                         pr_warn("failed to register cpu%d clock lookup\n", cpu);
582                         continue;
583                 }
584
585                 if (ve_init_opp_table(cpu_dev))
586                         pr_warn("failed to initialise cpu%d opp table\n", cpu);
587         }
588
589         platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
590         return 0;
591 }
592 module_init(ve_spc_clk_init);