Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[sfrench/cifs-2.6.git] / arch / arm / mach-vexpress / spc.c
1 /*
2  * Versatile Express Serial Power Controller (SPC) support
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  *
6  * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
7  *          Achin Gupta           <achin.gupta@arm.com>
8  *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
15  * kind, whether express or implied; without even the implied warranty
16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/clk-provider.h>
21 #include <linux/clkdev.h>
22 #include <linux/cpu.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_opp.h>
29 #include <linux/slab.h>
30 #include <linux/semaphore.h>
31
32 #include <asm/cacheflush.h>
33
34 #include "spc.h"
35
36 #define SPCLOG "vexpress-spc: "
37
38 #define PERF_LVL_A15            0x00
39 #define PERF_REQ_A15            0x04
40 #define PERF_LVL_A7             0x08
41 #define PERF_REQ_A7             0x0c
42 #define COMMS                   0x10
43 #define COMMS_REQ               0x14
44 #define PWC_STATUS              0x18
45 #define PWC_FLAG                0x1c
46
47 /* SPC wake-up IRQs status and mask */
48 #define WAKE_INT_MASK           0x24
49 #define WAKE_INT_RAW            0x28
50 #define WAKE_INT_STAT           0x2c
51 /* SPC power down registers */
52 #define A15_PWRDN_EN            0x30
53 #define A7_PWRDN_EN             0x34
54 /* SPC per-CPU mailboxes */
55 #define A15_BX_ADDR0            0x68
56 #define A7_BX_ADDR0             0x78
57
58 /* SPC CPU/cluster reset statue */
59 #define STANDBYWFI_STAT         0x3c
60 #define STANDBYWFI_STAT_A15_CPU_MASK(cpu)       (1 << (cpu))
61 #define STANDBYWFI_STAT_A7_CPU_MASK(cpu)        (1 << (3 + (cpu)))
62
63 /* SPC system config interface registers */
64 #define SYSCFG_WDATA            0x70
65 #define SYSCFG_RDATA            0x74
66
67 /* A15/A7 OPP virtual register base */
68 #define A15_PERFVAL_BASE        0xC10
69 #define A7_PERFVAL_BASE         0xC30
70
71 /* Config interface control bits */
72 #define SYSCFG_START            (1 << 31)
73 #define SYSCFG_SCC              (6 << 20)
74 #define SYSCFG_STAT             (14 << 20)
75
76 /* wake-up interrupt masks */
77 #define GBL_WAKEUP_INT_MSK      (0x3 << 10)
78
79 /* TC2 static dual-cluster configuration */
80 #define MAX_CLUSTERS            2
81
82 /*
83  * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
84  * operation, the operation could start just before jiffie is about
85  * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
86  */
87 #define TIMEOUT_US      20000
88
89 #define MAX_OPPS        8
90 #define CA15_DVFS       0
91 #define CA7_DVFS        1
92 #define SPC_SYS_CFG     2
93 #define STAT_COMPLETE(type)     ((1 << 0) << (type << 2))
94 #define STAT_ERR(type)          ((1 << 1) << (type << 2))
95 #define RESPONSE_MASK(type)     (STAT_COMPLETE(type) | STAT_ERR(type))
96
97 struct ve_spc_opp {
98         unsigned long freq;
99         unsigned long u_volt;
100 };
101
102 struct ve_spc_drvdata {
103         void __iomem *baseaddr;
104         /*
105          * A15s cluster identifier
106          * It corresponds to A15 processors MPIDR[15:8] bitfield
107          */
108         u32 a15_clusid;
109         uint32_t cur_rsp_mask;
110         uint32_t cur_rsp_stat;
111         struct semaphore sem;
112         struct completion done;
113         struct ve_spc_opp *opps[MAX_CLUSTERS];
114         int num_opps[MAX_CLUSTERS];
115 };
116
117 static struct ve_spc_drvdata *info;
118
119 static inline bool cluster_is_a15(u32 cluster)
120 {
121         return cluster == info->a15_clusid;
122 }
123
124 /**
125  * ve_spc_global_wakeup_irq()
126  *
127  * Function to set/clear global wakeup IRQs. Not protected by locking since
128  * it might be used in code paths where normal cacheable locks are not
129  * working. Locking must be provided by the caller to ensure atomicity.
130  *
131  * @set: if true, global wake-up IRQs are set, if false they are cleared
132  */
133 void ve_spc_global_wakeup_irq(bool set)
134 {
135         u32 reg;
136
137         reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
138
139         if (set)
140                 reg |= GBL_WAKEUP_INT_MSK;
141         else
142                 reg &= ~GBL_WAKEUP_INT_MSK;
143
144         writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
145 }
146
147 /**
148  * ve_spc_cpu_wakeup_irq()
149  *
150  * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
151  * it might be used in code paths where normal cacheable locks are not
152  * working. Locking must be provided by the caller to ensure atomicity.
153  *
154  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
155  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
156  * @set: if true, wake-up IRQs are set, if false they are cleared
157  */
158 void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
159 {
160         u32 mask, reg;
161
162         if (cluster >= MAX_CLUSTERS)
163                 return;
164
165         mask = 1 << cpu;
166
167         if (!cluster_is_a15(cluster))
168                 mask <<= 4;
169
170         reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
171
172         if (set)
173                 reg |= mask;
174         else
175                 reg &= ~mask;
176
177         writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
178 }
179
180 /**
181  * ve_spc_set_resume_addr() - set the jump address used for warm boot
182  *
183  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
184  * @cpu: mpidr[7:0] bitfield describing cpu affinity level
185  * @addr: physical resume address
186  */
187 void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
188 {
189         void __iomem *baseaddr;
190
191         if (cluster >= MAX_CLUSTERS)
192                 return;
193
194         if (cluster_is_a15(cluster))
195                 baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
196         else
197                 baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
198
199         writel_relaxed(addr, baseaddr);
200 }
201
202 /**
203  * ve_spc_powerdown()
204  *
205  * Function to enable/disable cluster powerdown. Not protected by locking
206  * since it might be used in code paths where normal cacheable locks are not
207  * working. Locking must be provided by the caller to ensure atomicity.
208  *
209  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
210  * @enable: if true enables powerdown, if false disables it
211  */
212 void ve_spc_powerdown(u32 cluster, bool enable)
213 {
214         u32 pwdrn_reg;
215
216         if (cluster >= MAX_CLUSTERS)
217                 return;
218
219         pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
220         writel_relaxed(enable, info->baseaddr + pwdrn_reg);
221 }
222
223 static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
224 {
225         return cluster_is_a15(cluster) ?
226                   STANDBYWFI_STAT_A15_CPU_MASK(cpu)
227                 : STANDBYWFI_STAT_A7_CPU_MASK(cpu);
228 }
229
230 /**
231  * ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
232  *
233  * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
234  * @cluster: mpidr[15:8] bitfield describing cluster affinity level
235  *
236  * @return: non-zero if and only if the specified CPU is in WFI
237  *
238  * Take care when interpreting the result of this function: a CPU might
239  * be in WFI temporarily due to idle, and is not necessarily safely
240  * parked.
241  */
242 int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
243 {
244         int ret;
245         u32 mask = standbywfi_cpu_mask(cpu, cluster);
246
247         if (cluster >= MAX_CLUSTERS)
248                 return 1;
249
250         ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
251
252         pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
253                  __func__, STANDBYWFI_STAT, ret, mask);
254
255         return ret & mask;
256 }
257
258 static int ve_spc_get_performance(int cluster, u32 *freq)
259 {
260         struct ve_spc_opp *opps = info->opps[cluster];
261         u32 perf_cfg_reg = 0;
262         u32 perf;
263
264         perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
265
266         perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
267         if (perf >= info->num_opps[cluster])
268                 return -EINVAL;
269
270         opps += perf;
271         *freq = opps->freq;
272
273         return 0;
274 }
275
276 /* find closest match to given frequency in OPP table */
277 static int ve_spc_round_performance(int cluster, u32 freq)
278 {
279         int idx, max_opp = info->num_opps[cluster];
280         struct ve_spc_opp *opps = info->opps[cluster];
281         u32 fmin = 0, fmax = ~0, ftmp;
282
283         freq /= 1000; /* OPP entries in kHz */
284         for (idx = 0; idx < max_opp; idx++, opps++) {
285                 ftmp = opps->freq;
286                 if (ftmp >= freq) {
287                         if (ftmp <= fmax)
288                                 fmax = ftmp;
289                 } else {
290                         if (ftmp >= fmin)
291                                 fmin = ftmp;
292                 }
293         }
294         if (fmax != ~0)
295                 return fmax * 1000;
296         else
297                 return fmin * 1000;
298 }
299
300 static int ve_spc_find_performance_index(int cluster, u32 freq)
301 {
302         int idx, max_opp = info->num_opps[cluster];
303         struct ve_spc_opp *opps = info->opps[cluster];
304
305         for (idx = 0; idx < max_opp; idx++, opps++)
306                 if (opps->freq == freq)
307                         break;
308         return (idx == max_opp) ? -EINVAL : idx;
309 }
310
311 static int ve_spc_waitforcompletion(int req_type)
312 {
313         int ret = wait_for_completion_interruptible_timeout(
314                         &info->done, usecs_to_jiffies(TIMEOUT_US));
315         if (ret == 0)
316                 ret = -ETIMEDOUT;
317         else if (ret > 0)
318                 ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
319         return ret;
320 }
321
322 static int ve_spc_set_performance(int cluster, u32 freq)
323 {
324         u32 perf_cfg_reg;
325         int ret, perf, req_type;
326
327         if (cluster_is_a15(cluster)) {
328                 req_type = CA15_DVFS;
329                 perf_cfg_reg = PERF_LVL_A15;
330         } else {
331                 req_type = CA7_DVFS;
332                 perf_cfg_reg = PERF_LVL_A7;
333         }
334
335         perf = ve_spc_find_performance_index(cluster, freq);
336
337         if (perf < 0)
338                 return perf;
339
340         if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
341                 return -ETIME;
342
343         init_completion(&info->done);
344         info->cur_rsp_mask = RESPONSE_MASK(req_type);
345
346         writel(perf, info->baseaddr + perf_cfg_reg);
347         ret = ve_spc_waitforcompletion(req_type);
348
349         info->cur_rsp_mask = 0;
350         up(&info->sem);
351
352         return ret;
353 }
354
355 static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
356 {
357         int ret;
358
359         if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
360                 return -ETIME;
361
362         init_completion(&info->done);
363         info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
364
365         /* Set the control value */
366         writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
367         ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
368
369         if (ret == 0)
370                 *data = readl(info->baseaddr + SYSCFG_RDATA);
371
372         info->cur_rsp_mask = 0;
373         up(&info->sem);
374
375         return ret;
376 }
377
378 static irqreturn_t ve_spc_irq_handler(int irq, void *data)
379 {
380         struct ve_spc_drvdata *drv_data = data;
381         uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
382
383         if (info->cur_rsp_mask & status) {
384                 info->cur_rsp_stat = status;
385                 complete(&drv_data->done);
386         }
387
388         return IRQ_HANDLED;
389 }
390
391 /*
392  *  +--------------------------+
393  *  | 31      20 | 19        0 |
394  *  +--------------------------+
395  *  |   m_volt   |  freq(kHz)  |
396  *  +--------------------------+
397  */
398 #define MULT_FACTOR     20
399 #define VOLT_SHIFT      20
400 #define FREQ_MASK       (0xFFFFF)
401 static int ve_spc_populate_opps(uint32_t cluster)
402 {
403         uint32_t data = 0, off, ret, idx;
404         struct ve_spc_opp *opps;
405
406         opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
407         if (!opps)
408                 return -ENOMEM;
409
410         info->opps[cluster] = opps;
411
412         off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
413         for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
414                 ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
415                 if (!ret) {
416                         opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
417                         opps->u_volt = (data >> VOLT_SHIFT) * 1000;
418                 } else {
419                         break;
420                 }
421         }
422         info->num_opps[cluster] = idx;
423
424         return ret;
425 }
426
427 static int ve_init_opp_table(struct device *cpu_dev)
428 {
429         int cluster;
430         int idx, ret = 0, max_opp;
431         struct ve_spc_opp *opps;
432
433         cluster = topology_physical_package_id(cpu_dev->id);
434         cluster = cluster < 0 ? 0 : cluster;
435
436         max_opp = info->num_opps[cluster];
437         opps = info->opps[cluster];
438
439         for (idx = 0; idx < max_opp; idx++, opps++) {
440                 ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
441                 if (ret) {
442                         dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
443                                  opps->freq, opps->u_volt);
444                         return ret;
445                 }
446         }
447         return ret;
448 }
449
450 int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
451 {
452         int ret;
453         info = kzalloc(sizeof(*info), GFP_KERNEL);
454         if (!info)
455                 return -ENOMEM;
456
457         info->baseaddr = baseaddr;
458         info->a15_clusid = a15_clusid;
459
460         if (irq <= 0) {
461                 pr_err(SPCLOG "Invalid IRQ %d\n", irq);
462                 kfree(info);
463                 return -EINVAL;
464         }
465
466         init_completion(&info->done);
467
468         readl_relaxed(info->baseaddr + PWC_STATUS);
469
470         ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
471                                 | IRQF_ONESHOT, "vexpress-spc", info);
472         if (ret) {
473                 pr_err(SPCLOG "IRQ %d request failed\n", irq);
474                 kfree(info);
475                 return -ENODEV;
476         }
477
478         sema_init(&info->sem, 1);
479         /*
480          * Multi-cluster systems may need this data when non-coherent, during
481          * cluster power-up/power-down. Make sure driver info reaches main
482          * memory.
483          */
484         sync_cache_w(info);
485         sync_cache_w(&info);
486
487         return 0;
488 }
489
490 struct clk_spc {
491         struct clk_hw hw;
492         int cluster;
493 };
494
495 #define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
496 static unsigned long spc_recalc_rate(struct clk_hw *hw,
497                 unsigned long parent_rate)
498 {
499         struct clk_spc *spc = to_clk_spc(hw);
500         u32 freq;
501
502         if (ve_spc_get_performance(spc->cluster, &freq))
503                 return -EIO;
504
505         return freq * 1000;
506 }
507
508 static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
509                 unsigned long *parent_rate)
510 {
511         struct clk_spc *spc = to_clk_spc(hw);
512
513         return ve_spc_round_performance(spc->cluster, drate);
514 }
515
516 static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
517                 unsigned long parent_rate)
518 {
519         struct clk_spc *spc = to_clk_spc(hw);
520
521         return ve_spc_set_performance(spc->cluster, rate / 1000);
522 }
523
524 static struct clk_ops clk_spc_ops = {
525         .recalc_rate = spc_recalc_rate,
526         .round_rate = spc_round_rate,
527         .set_rate = spc_set_rate,
528 };
529
530 static struct clk *ve_spc_clk_register(struct device *cpu_dev)
531 {
532         struct clk_init_data init;
533         struct clk_spc *spc;
534
535         spc = kzalloc(sizeof(*spc), GFP_KERNEL);
536         if (!spc)
537                 return ERR_PTR(-ENOMEM);
538
539         spc->hw.init = &init;
540         spc->cluster = topology_physical_package_id(cpu_dev->id);
541
542         spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
543
544         init.name = dev_name(cpu_dev);
545         init.ops = &clk_spc_ops;
546         init.flags = CLK_GET_RATE_NOCACHE;
547         init.num_parents = 0;
548
549         return devm_clk_register(cpu_dev, &spc->hw);
550 }
551
552 static int __init ve_spc_clk_init(void)
553 {
554         int cpu;
555         struct clk *clk;
556
557         if (!info)
558                 return 0; /* Continue only if SPC is initialised */
559
560         if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
561                 pr_err("failed to build OPP table\n");
562                 return -ENODEV;
563         }
564
565         for_each_possible_cpu(cpu) {
566                 struct device *cpu_dev = get_cpu_device(cpu);
567                 if (!cpu_dev) {
568                         pr_warn("failed to get cpu%d device\n", cpu);
569                         continue;
570                 }
571                 clk = ve_spc_clk_register(cpu_dev);
572                 if (IS_ERR(clk)) {
573                         pr_warn("failed to register cpu%d clock\n", cpu);
574                         continue;
575                 }
576                 if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
577                         pr_warn("failed to register cpu%d clock lookup\n", cpu);
578                         continue;
579                 }
580
581                 if (ve_init_opp_table(cpu_dev))
582                         pr_warn("failed to initialise cpu%d opp table\n", cpu);
583         }
584
585         platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
586         return 0;
587 }
588 device_initcall(ve_spc_clk_init);