Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[sfrench/cifs-2.6.git] / arch / arm / mach-sa1100 / cpu-sa1110.c
1 /*
2  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *
6  *  $Id: cpu-sa1110.c,v 1.9 2002/07/06 16:53:18 rmk Exp $
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * Note: there are two erratas that apply to the SA1110 here:
13  *  7 - SDRAM auto-power-up failure (rev A0)
14  * 13 - Corruption of internal register reads/writes following
15  *      SDRAM reads (rev A0, B0, B1)
16  *
17  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
18  *
19  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/cpufreq.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28
29 #include <asm/hardware.h>
30 #include <asm/mach-types.h>
31 #include <asm/io.h>
32 #include <asm/system.h>
33
34 #include "generic.h"
35
36 #undef DEBUG
37
38 static struct cpufreq_driver sa1110_driver;
39
40 struct sdram_params {
41         const char name[16];
42         u_char  rows;           /* bits                          */
43         u_char  cas_latency;    /* cycles                        */
44         u_char  tck;            /* clock cycle time (ns)         */
45         u_char  trcd;           /* activate to r/w (ns)          */
46         u_char  trp;            /* precharge to activate (ns)    */
47         u_char  twr;            /* write recovery time (ns)      */
48         u_short refresh;        /* refresh time for array (us)   */
49 };
50
51 struct sdram_info {
52         u_int   mdcnfg;
53         u_int   mdrefr;
54         u_int   mdcas[3];
55 };
56
57 static struct sdram_params sdram_tbl[] __initdata = {
58         {       /* Toshiba TC59SM716 CL2 */
59                 .name           = "TC59SM716-CL2",
60                 .rows           = 12,
61                 .tck            = 10,
62                 .trcd           = 20,
63                 .trp            = 20,
64                 .twr            = 10,
65                 .refresh        = 64000,
66                 .cas_latency    = 2,
67         }, {    /* Toshiba TC59SM716 CL3 */
68                 .name           = "TC59SM716-CL3",
69                 .rows           = 12,
70                 .tck            = 8,
71                 .trcd           = 20,
72                 .trp            = 20,
73                 .twr            = 8,
74                 .refresh        = 64000,
75                 .cas_latency    = 3,
76         }, {    /* Samsung K4S641632D TC75 */
77                 .name           = "K4S641632D",
78                 .rows           = 14,
79                 .tck            = 9,
80                 .trcd           = 27,
81                 .trp            = 20,
82                 .twr            = 9,
83                 .refresh        = 64000,
84                 .cas_latency    = 3,
85         }, {    /* Samsung KM416S4030CT */
86                 .name           = "KM416S4030CT",
87                 .rows           = 13,
88                 .tck            = 8,
89                 .trcd           = 24,   /* 3 CLKs */
90                 .trp            = 24,   /* 3 CLKs */
91                 .twr            = 16,   /* Trdl: 2 CLKs */
92                 .refresh        = 64000,
93                 .cas_latency    = 3,
94         }, {    /* Winbond W982516AH75L CL3 */
95                 .name           = "W982516AH75L",
96                 .rows           = 16,
97                 .tck            = 8,
98                 .trcd           = 20,
99                 .trp            = 20,
100                 .twr            = 8,
101                 .refresh        = 64000,
102                 .cas_latency    = 3,
103         },
104 };
105
106 static struct sdram_params sdram_params;
107
108 /*
109  * Given a period in ns and frequency in khz, calculate the number of
110  * cycles of frequency in period.  Note that we round up to the next
111  * cycle, even if we are only slightly over.
112  */
113 static inline u_int ns_to_cycles(u_int ns, u_int khz)
114 {
115         return (ns * khz + 999999) / 1000000;
116 }
117
118 /*
119  * Create the MDCAS register bit pattern.
120  */
121 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
122 {
123         u_int shift;
124
125         rcd = 2 * rcd - 1;
126         shift = delayed + 1 + rcd;
127
128         mdcas[0]  = (1 << rcd) - 1;
129         mdcas[0] |= 0x55555555 << shift;
130         mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
131 }
132
133 static void
134 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
135                        struct sdram_params *sdram)
136 {
137         u_int mem_khz, sd_khz, trp, twr;
138
139         mem_khz = cpu_khz / 2;
140         sd_khz = mem_khz;
141
142         /*
143          * If SDCLK would invalidate the SDRAM timings,
144          * run SDCLK at half speed.
145          *
146          * CPU steppings prior to B2 must either run the memory at
147          * half speed or use delayed read latching (errata 13).
148          */
149         if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
150             (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
151                 sd_khz /= 2;
152
153         sd->mdcnfg = MDCNFG & 0x007f007f;
154
155         twr = ns_to_cycles(sdram->twr, mem_khz);
156
157         /* trp should always be >1 */
158         trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
159         if (trp < 1)
160                 trp = 1;
161
162         sd->mdcnfg |= trp << 8;
163         sd->mdcnfg |= trp << 24;
164         sd->mdcnfg |= sdram->cas_latency << 12;
165         sd->mdcnfg |= sdram->cas_latency << 28;
166         sd->mdcnfg |= twr << 14;
167         sd->mdcnfg |= twr << 30;
168
169         sd->mdrefr = MDREFR & 0xffbffff0;
170         sd->mdrefr |= 7;
171
172         if (sd_khz != mem_khz)
173                 sd->mdrefr |= MDREFR_K1DB2;
174
175         /* initial number of '1's in MDCAS + 1 */
176         set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz));
177
178 #ifdef DEBUG
179         printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
180                 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]);
181 #endif
182 }
183
184 /*
185  * Set the SDRAM refresh rate.
186  */
187 static inline void sdram_set_refresh(u_int dri)
188 {
189         MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
190         (void) MDREFR;
191 }
192
193 /*
194  * Update the refresh period.  We do this such that we always refresh
195  * the SDRAMs within their permissible period.  The refresh period is
196  * always a multiple of the memory clock (fixed at cpu_clock / 2).
197  *
198  * FIXME: we don't currently take account of burst accesses here,
199  * but neither do Intels DM nor Angel.
200  */
201 static void
202 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
203 {
204         u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
205         u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
206
207 #ifdef DEBUG
208         mdelay(250);
209         printk("new dri value = %d\n", dri);
210 #endif
211
212         sdram_set_refresh(dri);
213 }
214
215 /*
216  * Ok, set the CPU frequency.  
217  */
218 static int sa1110_target(struct cpufreq_policy *policy,
219                          unsigned int target_freq,
220                          unsigned int relation)
221 {
222         struct sdram_params *sdram = &sdram_params;
223         struct cpufreq_freqs freqs;
224         struct sdram_info sd;
225         unsigned long flags;
226         unsigned int ppcr, unused;
227
228         switch(relation){
229         case CPUFREQ_RELATION_L:
230                 ppcr = sa11x0_freq_to_ppcr(target_freq);
231                 if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
232                         ppcr--;
233                 break;
234         case CPUFREQ_RELATION_H:
235                 ppcr = sa11x0_freq_to_ppcr(target_freq);
236                 if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
237                     (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
238                         ppcr--;
239                 break;
240         default:
241                 return -EINVAL;
242         }
243
244         freqs.old = sa11x0_getspeed(0);
245         freqs.new = sa11x0_ppcr_to_freq(ppcr);
246         freqs.cpu = 0;
247
248         sdram_calculate_timing(&sd, freqs.new, sdram);
249
250 #if 0
251         /*
252          * These values are wrong according to the SA1110 documentation
253          * and errata, but they seem to work.  Need to get a storage
254          * scope on to the SDRAM signals to work out why.
255          */
256         if (policy->max < 147500) {
257                 sd.mdrefr |= MDREFR_K1DB2;
258                 sd.mdcas[0] = 0xaaaaaa7f;
259         } else {
260                 sd.mdrefr &= ~MDREFR_K1DB2;
261                 sd.mdcas[0] = 0xaaaaaa9f;
262         }
263         sd.mdcas[1] = 0xaaaaaaaa;
264         sd.mdcas[2] = 0xaaaaaaaa;
265 #endif
266
267         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
268
269         /*
270          * The clock could be going away for some time.  Set the SDRAMs
271          * to refresh rapidly (every 64 memory clock cycles).  To get
272          * through the whole array, we need to wait 262144 mclk cycles.
273          * We wait 20ms to be safe.
274          */
275         sdram_set_refresh(2);
276         if (!irqs_disabled()) {
277                 msleep(20);
278         } else {
279                 mdelay(20);
280         }
281
282         /*
283          * Reprogram the DRAM timings with interrupts disabled, and
284          * ensure that we are doing this within a complete cache line.
285          * This means that we won't access SDRAM for the duration of
286          * the programming.
287          */
288         local_irq_save(flags);
289         asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
290         udelay(10);
291         __asm__ __volatile__("                                  \n\
292                 b       2f                                      \n\
293                 .align  5                                       \n\
294 1:              str     %3, [%1, #0]            @ MDCNFG        \n\
295                 str     %4, [%1, #28]           @ MDREFR        \n\
296                 str     %5, [%1, #4]            @ MDCAS0        \n\
297                 str     %6, [%1, #8]            @ MDCAS1        \n\
298                 str     %7, [%1, #12]           @ MDCAS2        \n\
299                 str     %8, [%2, #0]            @ PPCR          \n\
300                 ldr     %0, [%1, #0]                            \n\
301                 b       3f                                      \n\
302 2:              b       1b                                      \n\
303 3:              nop                                             \n\
304                 nop"
305                 : "=&r" (unused)
306                 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
307                   "r" (sd.mdrefr), "r" (sd.mdcas[0]),
308                   "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
309         local_irq_restore(flags);
310
311         /*
312          * Now, return the SDRAM refresh back to normal.
313          */
314         sdram_update_refresh(freqs.new, sdram);
315
316         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
317
318         return 0;
319 }
320
321 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
322 {
323         if (policy->cpu != 0)
324                 return -EINVAL;
325         policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
326         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
327         policy->cpuinfo.min_freq = 59000;
328         policy->cpuinfo.max_freq = 287000;
329         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
330         return 0;
331 }
332
333 static struct cpufreq_driver sa1110_driver = {
334         .flags          = CPUFREQ_STICKY,
335         .verify         = sa11x0_verify_speed,
336         .target         = sa1110_target,
337         .get            = sa11x0_getspeed,
338         .init           = sa1110_cpu_init,
339         .name           = "sa1110",
340 };
341
342 static struct sdram_params *sa1110_find_sdram(const char *name)
343 {
344         struct sdram_params *sdram;
345
346         for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); sdram++)
347                 if (strcmp(name, sdram->name) == 0)
348                         return sdram;
349
350         return NULL;
351 }
352
353 static char sdram_name[16];
354
355 static int __init sa1110_clk_init(void)
356 {
357         struct sdram_params *sdram;
358         const char *name = sdram_name;
359
360         if (!name[0]) {
361                 if (machine_is_assabet())
362                         name = "TC59SM716-CL3";
363
364                 if (machine_is_pt_system3())
365                         name = "K4S641632D";
366
367                 if (machine_is_h3100())
368                         name = "KM416S4030CT";
369         }
370
371         sdram = sa1110_find_sdram(name);
372         if (sdram) {
373                 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
374                         " twr: %d refresh: %d cas_latency: %d\n",
375                         sdram->tck, sdram->trcd, sdram->trp,
376                         sdram->twr, sdram->refresh, sdram->cas_latency);
377
378                 memcpy(&sdram_params, sdram, sizeof(sdram_params));
379
380                 return cpufreq_register_driver(&sa1110_driver);
381         }
382
383         return 0;
384 }
385
386 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
387 arch_initcall(sa1110_clk_init);