Merge branch 'nohz/printk-v8' into irq/core
[sfrench/cifs-2.6.git] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23
24 #include <asm/arch_timer.h>
25 #include <asm/hardware/gic.h>
26 #include <asm/localtimer.h>
27
28 #include <plat/cpu.h>
29
30 #include <mach/map.h>
31 #include <mach/irqs.h>
32 #include <mach/regs-mct.h>
33 #include <asm/mach/time.h>
34
35 #define TICK_BASE_CNT   1
36
37 enum {
38         MCT_INT_SPI,
39         MCT_INT_PPI
40 };
41
42 static unsigned long clk_rate;
43 static unsigned int mct_int_type;
44
45 struct mct_clock_event_device {
46         struct clock_event_device *evt;
47         void __iomem *base;
48         char name[10];
49 };
50
51 static void exynos4_mct_write(unsigned int value, void *addr)
52 {
53         void __iomem *stat_addr;
54         u32 mask;
55         u32 i;
56
57         __raw_writel(value, addr);
58
59         if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
60                 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
61                 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
62                 case (u32) MCT_L_TCON_OFFSET:
63                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
64                         mask = 1 << 3;          /* L_TCON write status */
65                         break;
66                 case (u32) MCT_L_ICNTB_OFFSET:
67                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
68                         mask = 1 << 1;          /* L_ICNTB write status */
69                         break;
70                 case (u32) MCT_L_TCNTB_OFFSET:
71                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
72                         mask = 1 << 0;          /* L_TCNTB write status */
73                         break;
74                 default:
75                         return;
76                 }
77         } else {
78                 switch ((u32) addr) {
79                 case (u32) EXYNOS4_MCT_G_TCON:
80                         stat_addr = EXYNOS4_MCT_G_WSTAT;
81                         mask = 1 << 16;         /* G_TCON write status */
82                         break;
83                 case (u32) EXYNOS4_MCT_G_COMP0_L:
84                         stat_addr = EXYNOS4_MCT_G_WSTAT;
85                         mask = 1 << 0;          /* G_COMP0_L write status */
86                         break;
87                 case (u32) EXYNOS4_MCT_G_COMP0_U:
88                         stat_addr = EXYNOS4_MCT_G_WSTAT;
89                         mask = 1 << 1;          /* G_COMP0_U write status */
90                         break;
91                 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
92                         stat_addr = EXYNOS4_MCT_G_WSTAT;
93                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
94                         break;
95                 case (u32) EXYNOS4_MCT_G_CNT_L:
96                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
97                         mask = 1 << 0;          /* G_CNT_L write status */
98                         break;
99                 case (u32) EXYNOS4_MCT_G_CNT_U:
100                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
101                         mask = 1 << 1;          /* G_CNT_U write status */
102                         break;
103                 default:
104                         return;
105                 }
106         }
107
108         /* Wait maximum 1 ms until written values are applied */
109         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
110                 if (__raw_readl(stat_addr) & mask) {
111                         __raw_writel(mask, stat_addr);
112                         return;
113                 }
114
115         panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
116 }
117
118 /* Clocksource handling */
119 static void exynos4_mct_frc_start(u32 hi, u32 lo)
120 {
121         u32 reg;
122
123         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
124         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
125
126         reg = __raw_readl(EXYNOS4_MCT_G_TCON);
127         reg |= MCT_G_TCON_START;
128         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
129 }
130
131 static cycle_t exynos4_frc_read(struct clocksource *cs)
132 {
133         unsigned int lo, hi;
134         u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
135
136         do {
137                 hi = hi2;
138                 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
139                 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
140         } while (hi != hi2);
141
142         return ((cycle_t)hi << 32) | lo;
143 }
144
145 static void exynos4_frc_resume(struct clocksource *cs)
146 {
147         exynos4_mct_frc_start(0, 0);
148 }
149
150 struct clocksource mct_frc = {
151         .name           = "mct-frc",
152         .rating         = 400,
153         .read           = exynos4_frc_read,
154         .mask           = CLOCKSOURCE_MASK(64),
155         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
156         .resume         = exynos4_frc_resume,
157 };
158
159 static void __init exynos4_clocksource_init(void)
160 {
161         exynos4_mct_frc_start(0, 0);
162
163         if (clocksource_register_hz(&mct_frc, clk_rate))
164                 panic("%s: can't register clocksource\n", mct_frc.name);
165 }
166
167 static void exynos4_mct_comp0_stop(void)
168 {
169         unsigned int tcon;
170
171         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
172         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
173
174         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
175         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
176 }
177
178 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
179                                     unsigned long cycles)
180 {
181         unsigned int tcon;
182         cycle_t comp_cycle;
183
184         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
185
186         if (mode == CLOCK_EVT_MODE_PERIODIC) {
187                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
188                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
189         }
190
191         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
192         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
193         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
194
195         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
196
197         tcon |= MCT_G_TCON_COMP0_ENABLE;
198         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
199 }
200
201 static int exynos4_comp_set_next_event(unsigned long cycles,
202                                        struct clock_event_device *evt)
203 {
204         exynos4_mct_comp0_start(evt->mode, cycles);
205
206         return 0;
207 }
208
209 static void exynos4_comp_set_mode(enum clock_event_mode mode,
210                                   struct clock_event_device *evt)
211 {
212         unsigned long cycles_per_jiffy;
213         exynos4_mct_comp0_stop();
214
215         switch (mode) {
216         case CLOCK_EVT_MODE_PERIODIC:
217                 cycles_per_jiffy =
218                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
219                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
220                 break;
221
222         case CLOCK_EVT_MODE_ONESHOT:
223         case CLOCK_EVT_MODE_UNUSED:
224         case CLOCK_EVT_MODE_SHUTDOWN:
225         case CLOCK_EVT_MODE_RESUME:
226                 break;
227         }
228 }
229
230 static struct clock_event_device mct_comp_device = {
231         .name           = "mct-comp",
232         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233         .rating         = 250,
234         .set_next_event = exynos4_comp_set_next_event,
235         .set_mode       = exynos4_comp_set_mode,
236 };
237
238 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
239 {
240         struct clock_event_device *evt = dev_id;
241
242         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
243
244         evt->event_handler(evt);
245
246         return IRQ_HANDLED;
247 }
248
249 static struct irqaction mct_comp_event_irq = {
250         .name           = "mct_comp_irq",
251         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
252         .handler        = exynos4_mct_comp_isr,
253         .dev_id         = &mct_comp_device,
254 };
255
256 static void exynos4_clockevent_init(void)
257 {
258         clockevents_calc_mult_shift(&mct_comp_device, clk_rate, 5);
259         mct_comp_device.max_delta_ns =
260                 clockevent_delta2ns(0xffffffff, &mct_comp_device);
261         mct_comp_device.min_delta_ns =
262                 clockevent_delta2ns(0xf, &mct_comp_device);
263         mct_comp_device.cpumask = cpumask_of(0);
264         clockevents_register_device(&mct_comp_device);
265
266         if (soc_is_exynos5250())
267                 setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
268         else
269                 setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
270 }
271
272 #ifdef CONFIG_LOCAL_TIMERS
273
274 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
275
276 /* Clock event handling */
277 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
278 {
279         unsigned long tmp;
280         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
281         void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
282
283         tmp = __raw_readl(addr);
284         if (tmp & mask) {
285                 tmp &= ~mask;
286                 exynos4_mct_write(tmp, addr);
287         }
288 }
289
290 static void exynos4_mct_tick_start(unsigned long cycles,
291                                    struct mct_clock_event_device *mevt)
292 {
293         unsigned long tmp;
294
295         exynos4_mct_tick_stop(mevt);
296
297         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
298
299         /* update interrupt count buffer */
300         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
301
302         /* enable MCT tick interrupt */
303         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
304
305         tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
306         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
307                MCT_L_TCON_INTERVAL_MODE;
308         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
309 }
310
311 static int exynos4_tick_set_next_event(unsigned long cycles,
312                                        struct clock_event_device *evt)
313 {
314         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
315
316         exynos4_mct_tick_start(cycles, mevt);
317
318         return 0;
319 }
320
321 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
322                                          struct clock_event_device *evt)
323 {
324         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
325         unsigned long cycles_per_jiffy;
326
327         exynos4_mct_tick_stop(mevt);
328
329         switch (mode) {
330         case CLOCK_EVT_MODE_PERIODIC:
331                 cycles_per_jiffy =
332                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
333                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
334                 break;
335
336         case CLOCK_EVT_MODE_ONESHOT:
337         case CLOCK_EVT_MODE_UNUSED:
338         case CLOCK_EVT_MODE_SHUTDOWN:
339         case CLOCK_EVT_MODE_RESUME:
340                 break;
341         }
342 }
343
344 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
345 {
346         struct clock_event_device *evt = mevt->evt;
347
348         /*
349          * This is for supporting oneshot mode.
350          * Mct would generate interrupt periodically
351          * without explicit stopping.
352          */
353         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
354                 exynos4_mct_tick_stop(mevt);
355
356         /* Clear the MCT tick interrupt */
357         if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
358                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
359                 return 1;
360         } else {
361                 return 0;
362         }
363 }
364
365 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
366 {
367         struct mct_clock_event_device *mevt = dev_id;
368         struct clock_event_device *evt = mevt->evt;
369
370         exynos4_mct_tick_clear(mevt);
371
372         evt->event_handler(evt);
373
374         return IRQ_HANDLED;
375 }
376
377 static struct irqaction mct_tick0_event_irq = {
378         .name           = "mct_tick0_irq",
379         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
380         .handler        = exynos4_mct_tick_isr,
381 };
382
383 static struct irqaction mct_tick1_event_irq = {
384         .name           = "mct_tick1_irq",
385         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
386         .handler        = exynos4_mct_tick_isr,
387 };
388
389 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
390 {
391         struct mct_clock_event_device *mevt;
392         unsigned int cpu = smp_processor_id();
393         int mct_lx_irq;
394
395         mevt = this_cpu_ptr(&percpu_mct_tick);
396         mevt->evt = evt;
397
398         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
399         sprintf(mevt->name, "mct_tick%d", cpu);
400
401         evt->name = mevt->name;
402         evt->cpumask = cpumask_of(cpu);
403         evt->set_next_event = exynos4_tick_set_next_event;
404         evt->set_mode = exynos4_tick_set_mode;
405         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
406         evt->rating = 450;
407
408         clockevents_calc_mult_shift(evt, clk_rate / (TICK_BASE_CNT + 1), 5);
409         evt->max_delta_ns =
410                 clockevent_delta2ns(0x7fffffff, evt);
411         evt->min_delta_ns =
412                 clockevent_delta2ns(0xf, evt);
413
414         clockevents_register_device(evt);
415
416         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
417
418         if (mct_int_type == MCT_INT_SPI) {
419                 if (cpu == 0) {
420                         mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
421                                                 EXYNOS5_IRQ_MCT_L0;
422                         mct_tick0_event_irq.dev_id = mevt;
423                         evt->irq = mct_lx_irq;
424                         setup_irq(mct_lx_irq, &mct_tick0_event_irq);
425                 } else {
426                         mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
427                                                 EXYNOS5_IRQ_MCT_L1;
428                         mct_tick1_event_irq.dev_id = mevt;
429                         evt->irq = mct_lx_irq;
430                         setup_irq(mct_lx_irq, &mct_tick1_event_irq);
431                         irq_set_affinity(mct_lx_irq, cpumask_of(1));
432                 }
433         } else {
434                 enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
435         }
436
437         return 0;
438 }
439
440 static void exynos4_local_timer_stop(struct clock_event_device *evt)
441 {
442         unsigned int cpu = smp_processor_id();
443         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
444         if (mct_int_type == MCT_INT_SPI)
445                 if (cpu == 0)
446                         remove_irq(evt->irq, &mct_tick0_event_irq);
447                 else
448                         remove_irq(evt->irq, &mct_tick1_event_irq);
449         else
450                 disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
451 }
452
453 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
454         .setup  = exynos4_local_timer_setup,
455         .stop   = exynos4_local_timer_stop,
456 };
457 #endif /* CONFIG_LOCAL_TIMERS */
458
459 static void __init exynos4_timer_resources(void)
460 {
461         struct clk *mct_clk;
462         mct_clk = clk_get(NULL, "xtal");
463
464         clk_rate = clk_get_rate(mct_clk);
465
466 #ifdef CONFIG_LOCAL_TIMERS
467         if (mct_int_type == MCT_INT_PPI) {
468                 int err;
469
470                 err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
471                                          exynos4_mct_tick_isr, "MCT",
472                                          &percpu_mct_tick);
473                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
474                      EXYNOS_IRQ_MCT_LOCALTIMER, err);
475         }
476
477         local_timer_register(&exynos4_mct_tick_ops);
478 #endif /* CONFIG_LOCAL_TIMERS */
479 }
480
481 static void __init exynos_timer_init(void)
482 {
483         if (soc_is_exynos5440()) {
484                 arch_timer_of_register();
485                 return;
486         }
487
488         if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
489                 mct_int_type = MCT_INT_SPI;
490         else
491                 mct_int_type = MCT_INT_PPI;
492
493         exynos4_timer_resources();
494         exynos4_clocksource_init();
495         exynos4_clockevent_init();
496 }
497
498 struct sys_timer exynos4_timer = {
499         .init           = exynos_timer_init,
500 };