Merge remote-tracking branch 'asoc/fix/rt286' into asoc-linus
[sfrench/cifs-2.6.git] / arch / arm / kvm / coproc.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Authors: Rusty Russell <rusty@rustcorp.com.au>
4  *          Christoffer Dall <c.dall@virtualopensystems.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18  */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 #include "coproc.h"
38
39
40 /******************************************************************************
41  * Co-processor emulation
42  *****************************************************************************/
43
44 static bool write_to_read_only(struct kvm_vcpu *vcpu,
45                                const struct coproc_params *params)
46 {
47         WARN_ONCE(1, "CP15 write to read-only register\n");
48         print_cp_instr(params);
49         kvm_inject_undefined(vcpu);
50         return false;
51 }
52
53 static bool read_from_write_only(struct kvm_vcpu *vcpu,
54                                  const struct coproc_params *params)
55 {
56         WARN_ONCE(1, "CP15 read to write-only register\n");
57         print_cp_instr(params);
58         kvm_inject_undefined(vcpu);
59         return false;
60 }
61
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels;
64
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66 #define CSSELR_MAX 12
67
68 /*
69  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70  * of cp15 registers can be viewed either as couple of two u32 registers
71  * or one u64 register. Current u64 register encoding is that least
72  * significant u32 word is followed by most significant u32 word.
73  */
74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75                                        const struct coproc_reg *r,
76                                        u64 val)
77 {
78         vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79         vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 }
81
82 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83                                       const struct coproc_reg *r)
84 {
85         u64 val;
86
87         val = vcpu_cp15(vcpu, r->reg + 1);
88         val = val << 32;
89         val = val | vcpu_cp15(vcpu, r->reg);
90         return val;
91 }
92
93 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94 {
95         kvm_inject_undefined(vcpu);
96         return 1;
97 }
98
99 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100 {
101         /*
102          * We can get here, if the host has been built without VFPv3 support,
103          * but the guest attempted a floating point operation.
104          */
105         kvm_inject_undefined(vcpu);
106         return 1;
107 }
108
109 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110 {
111         kvm_inject_undefined(vcpu);
112         return 1;
113 }
114
115 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116 {
117         /*
118          * Compute guest MPIDR. We build a virtual cluster out of the
119          * vcpu_id, but we read the 'U' bit from the underlying
120          * hardware directly.
121          */
122         vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123                                      ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124                                      (vcpu->vcpu_id & 3));
125 }
126
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
128 static bool access_actlr(struct kvm_vcpu *vcpu,
129                          const struct coproc_params *p,
130                          const struct coproc_reg *r)
131 {
132         if (p->is_write)
133                 return ignore_write(vcpu, p);
134
135         *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136         return true;
137 }
138
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
140 static bool access_cbar(struct kvm_vcpu *vcpu,
141                         const struct coproc_params *p,
142                         const struct coproc_reg *r)
143 {
144         if (p->is_write)
145                 return write_to_read_only(vcpu, p);
146         return read_zero(vcpu, p);
147 }
148
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
150 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151                           const struct coproc_params *p,
152                           const struct coproc_reg *r)
153 {
154         if (p->is_write)
155                 return ignore_write(vcpu, p);
156
157         *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158         return true;
159 }
160
161 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162 {
163         u32 l2ctlr, ncores;
164
165         asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166         l2ctlr &= ~(3 << 24);
167         ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168         /* How many cores in the current cluster and the next ones */
169         ncores -= (vcpu->vcpu_id & ~3);
170         /* Cap it to the maximum number of cores in a single cluster */
171         ncores = min(ncores, 3U);
172         l2ctlr |= (ncores & 3) << 24;
173
174         vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 }
176
177 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178 {
179         u32 actlr;
180
181         /* ACTLR contains SMP bit: make sure you create all cpus first! */
182         asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183         /* Make the SMP bit consistent with the guest configuration */
184         if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185                 actlr |= 1U << 6;
186         else
187                 actlr &= ~(1U << 6);
188
189         vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 }
191
192 /*
193  * TRM entries: A7:4.3.50, A15:4.3.49
194  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195  */
196 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197                            const struct coproc_params *p,
198                            const struct coproc_reg *r)
199 {
200         if (p->is_write)
201                 return ignore_write(vcpu, p);
202
203         *vcpu_reg(vcpu, p->Rt1) = 0;
204         return true;
205 }
206
207 /*
208  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209  */
210 static bool access_dcsw(struct kvm_vcpu *vcpu,
211                         const struct coproc_params *p,
212                         const struct coproc_reg *r)
213 {
214         if (!p->is_write)
215                 return read_from_write_only(vcpu, p);
216
217         kvm_set_way_flush(vcpu);
218         return true;
219 }
220
221 /*
222  * Generic accessor for VM registers. Only called as long as HCR_TVM
223  * is set.  If the guest enables the MMU, we stop trapping the VM
224  * sys_regs and leave it in complete control of the caches.
225  *
226  * Used by the cpu-specific code.
227  */
228 bool access_vm_reg(struct kvm_vcpu *vcpu,
229                    const struct coproc_params *p,
230                    const struct coproc_reg *r)
231 {
232         bool was_enabled = vcpu_has_cache_enabled(vcpu);
233
234         BUG_ON(!p->is_write);
235
236         vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237         if (p->is_64bit)
238                 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239
240         kvm_toggle_cache(vcpu, was_enabled);
241         return true;
242 }
243
244 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245                            const struct coproc_params *p,
246                            const struct coproc_reg *r)
247 {
248         u64 reg;
249
250         if (!p->is_write)
251                 return read_from_write_only(vcpu, p);
252
253         reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
254         reg |= *vcpu_reg(vcpu, p->Rt1) ;
255
256         vgic_v3_dispatch_sgi(vcpu, reg);
257
258         return true;
259 }
260
261 static bool access_gic_sre(struct kvm_vcpu *vcpu,
262                            const struct coproc_params *p,
263                            const struct coproc_reg *r)
264 {
265         if (p->is_write)
266                 return ignore_write(vcpu, p);
267
268         *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
269
270         return true;
271 }
272
273 /*
274  * We could trap ID_DFR0 and tell the guest we don't support performance
275  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
276  * NAKed, so it will read the PMCR anyway.
277  *
278  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
279  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
280  * all PM registers, which doesn't crash the guest kernel at least.
281  */
282 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
283                     const struct coproc_params *p,
284                     const struct coproc_reg *r)
285 {
286         if (p->is_write)
287                 return ignore_write(vcpu, p);
288         else
289                 return read_zero(vcpu, p);
290 }
291
292 #define access_pmcr trap_raz_wi
293 #define access_pmcntenset trap_raz_wi
294 #define access_pmcntenclr trap_raz_wi
295 #define access_pmovsr trap_raz_wi
296 #define access_pmselr trap_raz_wi
297 #define access_pmceid0 trap_raz_wi
298 #define access_pmceid1 trap_raz_wi
299 #define access_pmccntr trap_raz_wi
300 #define access_pmxevtyper trap_raz_wi
301 #define access_pmxevcntr trap_raz_wi
302 #define access_pmuserenr trap_raz_wi
303 #define access_pmintenset trap_raz_wi
304 #define access_pmintenclr trap_raz_wi
305
306 /* Architected CP15 registers.
307  * CRn denotes the primary register number, but is copied to the CRm in the
308  * user space API for 64-bit register access in line with the terminology used
309  * in the ARM ARM.
310  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
311  *            registers preceding 32-bit ones.
312  */
313 static const struct coproc_reg cp15_regs[] = {
314         /* MPIDR: we use VMPIDR for guest access. */
315         { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
316                         NULL, reset_mpidr, c0_MPIDR },
317
318         /* CSSELR: swapped by interrupt.S. */
319         { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
320                         NULL, reset_unknown, c0_CSSELR },
321
322         /* ACTLR: trapped by HCR.TAC bit. */
323         { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
324                         access_actlr, reset_actlr, c1_ACTLR },
325
326         /* CPACR: swapped by interrupt.S. */
327         { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
328                         NULL, reset_val, c1_CPACR, 0x00000000 },
329
330         /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
331         { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
332         { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
333                         access_vm_reg, reset_unknown, c2_TTBR0 },
334         { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
335                         access_vm_reg, reset_unknown, c2_TTBR1 },
336         { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
337                         access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
338         { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
339
340
341         /* DACR: swapped by interrupt.S. */
342         { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
343                         access_vm_reg, reset_unknown, c3_DACR },
344
345         /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
346         { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
347                         access_vm_reg, reset_unknown, c5_DFSR },
348         { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
349                         access_vm_reg, reset_unknown, c5_IFSR },
350         { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
351                         access_vm_reg, reset_unknown, c5_ADFSR },
352         { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
353                         access_vm_reg, reset_unknown, c5_AIFSR },
354
355         /* DFAR/IFAR: swapped by interrupt.S. */
356         { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
357                         access_vm_reg, reset_unknown, c6_DFAR },
358         { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
359                         access_vm_reg, reset_unknown, c6_IFAR },
360
361         /* PAR swapped by interrupt.S */
362         { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
363
364         /*
365          * DC{C,I,CI}SW operations:
366          */
367         { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
368         { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
369         { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
370         /*
371          * L2CTLR access (guest wants to know #CPUs).
372          */
373         { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
374                         access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
375         { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
376
377         /*
378          * Dummy performance monitor implementation.
379          */
380         { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
381         { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
382         { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
383         { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
384         { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
385         { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
386         { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
387         { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
388         { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
389         { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
390         { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
391         { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
392         { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
393
394         /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
395         { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
396                         access_vm_reg, reset_unknown, c10_PRRR},
397         { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
398                         access_vm_reg, reset_unknown, c10_NMRR},
399
400         /* AMAIR0/AMAIR1: swapped by interrupt.S. */
401         { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
402                         access_vm_reg, reset_unknown, c10_AMAIR0},
403         { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
404                         access_vm_reg, reset_unknown, c10_AMAIR1},
405
406         /* ICC_SGI1R */
407         { CRm64(12), Op1( 0), is64, access_gic_sgi},
408
409         /* VBAR: swapped by interrupt.S. */
410         { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
411                         NULL, reset_val, c12_VBAR, 0x00000000 },
412
413         /* ICC_SRE */
414         { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
415
416         /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
417         { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
418                         access_vm_reg, reset_val, c13_CID, 0x00000000 },
419         { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
420                         NULL, reset_unknown, c13_TID_URW },
421         { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
422                         NULL, reset_unknown, c13_TID_URO },
423         { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
424                         NULL, reset_unknown, c13_TID_PRIV },
425
426         /* CNTKCTL: swapped by interrupt.S. */
427         { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
428                         NULL, reset_val, c14_CNTKCTL, 0x00000000 },
429
430         /* The Configuration Base Address Register. */
431         { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
432 };
433
434 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
435 {
436         unsigned int i;
437
438         for (i = 1; i < n; i++) {
439                 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
440                         kvm_err("reg table %p out of order (%d)\n", table, i - 1);
441                         return 1;
442                 }
443         }
444
445         return 0;
446 }
447
448 /* Target specific emulation tables */
449 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
450
451 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
452 {
453         BUG_ON(check_reg_table(table->table, table->num));
454         target_tables[table->target] = table;
455 }
456
457 /* Get specific register table for this target. */
458 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
459 {
460         struct kvm_coproc_target_table *table;
461
462         table = target_tables[target];
463         *num = table->num;
464         return table->table;
465 }
466
467 #define reg_to_match_value(x)                                           \
468         ({                                                              \
469                 unsigned long val;                                      \
470                 val  = (x)->CRn << 11;                                  \
471                 val |= (x)->CRm << 7;                                   \
472                 val |= (x)->Op1 << 4;                                   \
473                 val |= (x)->Op2 << 1;                                   \
474                 val |= !(x)->is_64bit;                                  \
475                 val;                                                    \
476          })
477
478 static int match_reg(const void *key, const void *elt)
479 {
480         const unsigned long pval = (unsigned long)key;
481         const struct coproc_reg *r = elt;
482
483         return pval - reg_to_match_value(r);
484 }
485
486 static const struct coproc_reg *find_reg(const struct coproc_params *params,
487                                          const struct coproc_reg table[],
488                                          unsigned int num)
489 {
490         unsigned long pval = reg_to_match_value(params);
491
492         return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
493 }
494
495 static int emulate_cp15(struct kvm_vcpu *vcpu,
496                         const struct coproc_params *params)
497 {
498         size_t num;
499         const struct coproc_reg *table, *r;
500
501         trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
502                                    params->CRm, params->Op2, params->is_write);
503
504         table = get_target_table(vcpu->arch.target, &num);
505
506         /* Search target-specific then generic table. */
507         r = find_reg(params, table, num);
508         if (!r)
509                 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
510
511         if (likely(r)) {
512                 /* If we don't have an accessor, we should never get here! */
513                 BUG_ON(!r->access);
514
515                 if (likely(r->access(vcpu, params, r))) {
516                         /* Skip instruction, since it was emulated */
517                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
518                 }
519         } else {
520                 /* If access function fails, it should complain. */
521                 kvm_err("Unsupported guest CP15 access at: %08lx\n",
522                         *vcpu_pc(vcpu));
523                 print_cp_instr(params);
524                 kvm_inject_undefined(vcpu);
525         }
526
527         return 1;
528 }
529
530 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
531 {
532         struct coproc_params params;
533
534         params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
535         params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
536         params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
537         params.is_64bit = true;
538
539         params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
540         params.Op2 = 0;
541         params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
542         params.CRm = 0;
543
544         return params;
545 }
546
547 /**
548  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
549  * @vcpu: The VCPU pointer
550  * @run:  The kvm_run struct
551  */
552 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
553 {
554         struct coproc_params params = decode_64bit_hsr(vcpu);
555
556         return emulate_cp15(vcpu, &params);
557 }
558
559 /**
560  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
561  * @vcpu: The VCPU pointer
562  * @run:  The kvm_run struct
563  */
564 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
565 {
566         struct coproc_params params = decode_64bit_hsr(vcpu);
567
568         /* raz_wi cp14 */
569         trap_raz_wi(vcpu, &params, NULL);
570
571         /* handled */
572         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
573         return 1;
574 }
575
576 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
577                               const struct coproc_reg *table, size_t num)
578 {
579         unsigned long i;
580
581         for (i = 0; i < num; i++)
582                 if (table[i].reset)
583                         table[i].reset(vcpu, &table[i]);
584 }
585
586 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
587 {
588         struct coproc_params params;
589
590         params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
591         params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
592         params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
593         params.is_64bit = false;
594
595         params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
596         params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
597         params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
598         params.Rt2 = 0;
599
600         return params;
601 }
602
603 /**
604  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
605  * @vcpu: The VCPU pointer
606  * @run:  The kvm_run struct
607  */
608 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
609 {
610         struct coproc_params params = decode_32bit_hsr(vcpu);
611         return emulate_cp15(vcpu, &params);
612 }
613
614 /**
615  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
616  * @vcpu: The VCPU pointer
617  * @run:  The kvm_run struct
618  */
619 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
620 {
621         struct coproc_params params = decode_32bit_hsr(vcpu);
622
623         /* raz_wi cp14 */
624         trap_raz_wi(vcpu, &params, NULL);
625
626         /* handled */
627         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
628         return 1;
629 }
630
631 /******************************************************************************
632  * Userspace API
633  *****************************************************************************/
634
635 static bool index_to_params(u64 id, struct coproc_params *params)
636 {
637         switch (id & KVM_REG_SIZE_MASK) {
638         case KVM_REG_SIZE_U32:
639                 /* Any unused index bits means it's not valid. */
640                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
641                            | KVM_REG_ARM_COPROC_MASK
642                            | KVM_REG_ARM_32_CRN_MASK
643                            | KVM_REG_ARM_CRM_MASK
644                            | KVM_REG_ARM_OPC1_MASK
645                            | KVM_REG_ARM_32_OPC2_MASK))
646                         return false;
647
648                 params->is_64bit = false;
649                 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
650                                >> KVM_REG_ARM_32_CRN_SHIFT);
651                 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
652                                >> KVM_REG_ARM_CRM_SHIFT);
653                 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
654                                >> KVM_REG_ARM_OPC1_SHIFT);
655                 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
656                                >> KVM_REG_ARM_32_OPC2_SHIFT);
657                 return true;
658         case KVM_REG_SIZE_U64:
659                 /* Any unused index bits means it's not valid. */
660                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
661                               | KVM_REG_ARM_COPROC_MASK
662                               | KVM_REG_ARM_CRM_MASK
663                               | KVM_REG_ARM_OPC1_MASK))
664                         return false;
665                 params->is_64bit = true;
666                 /* CRm to CRn: see cp15_to_index for details */
667                 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
668                                >> KVM_REG_ARM_CRM_SHIFT);
669                 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
670                                >> KVM_REG_ARM_OPC1_SHIFT);
671                 params->Op2 = 0;
672                 params->CRm = 0;
673                 return true;
674         default:
675                 return false;
676         }
677 }
678
679 /* Decode an index value, and find the cp15 coproc_reg entry. */
680 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
681                                                     u64 id)
682 {
683         size_t num;
684         const struct coproc_reg *table, *r;
685         struct coproc_params params;
686
687         /* We only do cp15 for now. */
688         if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
689                 return NULL;
690
691         if (!index_to_params(id, &params))
692                 return NULL;
693
694         table = get_target_table(vcpu->arch.target, &num);
695         r = find_reg(&params, table, num);
696         if (!r)
697                 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
698
699         /* Not saved in the cp15 array? */
700         if (r && !r->reg)
701                 r = NULL;
702
703         return r;
704 }
705
706 /*
707  * These are the invariant cp15 registers: we let the guest see the host
708  * versions of these, so they're part of the guest state.
709  *
710  * A future CPU may provide a mechanism to present different values to
711  * the guest, or a future kvm may trap them.
712  */
713 /* Unfortunately, there's no register-argument for mrc, so generate. */
714 #define FUNCTION_FOR32(crn, crm, op1, op2, name)                        \
715         static void get_##name(struct kvm_vcpu *v,                      \
716                                const struct coproc_reg *r)              \
717         {                                                               \
718                 u32 val;                                                \
719                                                                         \
720                 asm volatile("mrc p15, " __stringify(op1)               \
721                              ", %0, c" __stringify(crn)                 \
722                              ", c" __stringify(crm)                     \
723                              ", " __stringify(op2) "\n" : "=r" (val));  \
724                 ((struct coproc_reg *)r)->val = val;                    \
725         }
726
727 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
728 FUNCTION_FOR32(0, 0, 0, 1, CTR)
729 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
730 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
731 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
732 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
733 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
734 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
735 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
736 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
737 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
738 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
739 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
740 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
741 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
742 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
743 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
744 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
745 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
746 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
747 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
748
749 /* ->val is filled in by kvm_invariant_coproc_table_init() */
750 static struct coproc_reg invariant_cp15[] = {
751         { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
752         { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
753         { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
754         { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
755         { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
756
757         { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
758         { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
759
760         { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
761         { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
762         { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
763         { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
764         { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
765         { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
766         { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
767         { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
768
769         { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
770         { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
771         { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
772         { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
773         { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
774         { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
775 };
776
777 /*
778  * Reads a register value from a userspace address to a kernel
779  * variable. Make sure that register size matches sizeof(*__val).
780  */
781 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
782 {
783         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
784                 return -EFAULT;
785         return 0;
786 }
787
788 /*
789  * Writes a register value to a userspace address from a kernel variable.
790  * Make sure that register size matches sizeof(*__val).
791  */
792 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
793 {
794         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
795                 return -EFAULT;
796         return 0;
797 }
798
799 static int get_invariant_cp15(u64 id, void __user *uaddr)
800 {
801         struct coproc_params params;
802         const struct coproc_reg *r;
803         int ret;
804
805         if (!index_to_params(id, &params))
806                 return -ENOENT;
807
808         r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
809         if (!r)
810                 return -ENOENT;
811
812         ret = -ENOENT;
813         if (KVM_REG_SIZE(id) == 4) {
814                 u32 val = r->val;
815
816                 ret = reg_to_user(uaddr, &val, id);
817         } else if (KVM_REG_SIZE(id) == 8) {
818                 ret = reg_to_user(uaddr, &r->val, id);
819         }
820         return ret;
821 }
822
823 static int set_invariant_cp15(u64 id, void __user *uaddr)
824 {
825         struct coproc_params params;
826         const struct coproc_reg *r;
827         int err;
828         u64 val;
829
830         if (!index_to_params(id, &params))
831                 return -ENOENT;
832         r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
833         if (!r)
834                 return -ENOENT;
835
836         err = -ENOENT;
837         if (KVM_REG_SIZE(id) == 4) {
838                 u32 val32;
839
840                 err = reg_from_user(&val32, uaddr, id);
841                 if (!err)
842                         val = val32;
843         } else if (KVM_REG_SIZE(id) == 8) {
844                 err = reg_from_user(&val, uaddr, id);
845         }
846         if (err)
847                 return err;
848
849         /* This is what we mean by invariant: you can't change it. */
850         if (r->val != val)
851                 return -EINVAL;
852
853         return 0;
854 }
855
856 static bool is_valid_cache(u32 val)
857 {
858         u32 level, ctype;
859
860         if (val >= CSSELR_MAX)
861                 return false;
862
863         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
864         level = (val >> 1);
865         ctype = (cache_levels >> (level * 3)) & 7;
866
867         switch (ctype) {
868         case 0: /* No cache */
869                 return false;
870         case 1: /* Instruction cache only */
871                 return (val & 1);
872         case 2: /* Data cache only */
873         case 4: /* Unified cache */
874                 return !(val & 1);
875         case 3: /* Separate instruction and data caches */
876                 return true;
877         default: /* Reserved: we can't know instruction or data. */
878                 return false;
879         }
880 }
881
882 /* Which cache CCSIDR represents depends on CSSELR value. */
883 static u32 get_ccsidr(u32 csselr)
884 {
885         u32 ccsidr;
886
887         /* Make sure noone else changes CSSELR during this! */
888         local_irq_disable();
889         /* Put value into CSSELR */
890         asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
891         isb();
892         /* Read result out of CCSIDR */
893         asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
894         local_irq_enable();
895
896         return ccsidr;
897 }
898
899 static int demux_c15_get(u64 id, void __user *uaddr)
900 {
901         u32 val;
902         u32 __user *uval = uaddr;
903
904         /* Fail if we have unknown bits set. */
905         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
906                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
907                 return -ENOENT;
908
909         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
910         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
911                 if (KVM_REG_SIZE(id) != 4)
912                         return -ENOENT;
913                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
914                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
915                 if (!is_valid_cache(val))
916                         return -ENOENT;
917
918                 return put_user(get_ccsidr(val), uval);
919         default:
920                 return -ENOENT;
921         }
922 }
923
924 static int demux_c15_set(u64 id, void __user *uaddr)
925 {
926         u32 val, newval;
927         u32 __user *uval = uaddr;
928
929         /* Fail if we have unknown bits set. */
930         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
931                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
932                 return -ENOENT;
933
934         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
935         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
936                 if (KVM_REG_SIZE(id) != 4)
937                         return -ENOENT;
938                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
939                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
940                 if (!is_valid_cache(val))
941                         return -ENOENT;
942
943                 if (get_user(newval, uval))
944                         return -EFAULT;
945
946                 /* This is also invariant: you can't change it. */
947                 if (newval != get_ccsidr(val))
948                         return -EINVAL;
949                 return 0;
950         default:
951                 return -ENOENT;
952         }
953 }
954
955 #ifdef CONFIG_VFPv3
956 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
957                                    KVM_REG_ARM_VFP_FPSCR,
958                                    KVM_REG_ARM_VFP_FPINST,
959                                    KVM_REG_ARM_VFP_FPINST2,
960                                    KVM_REG_ARM_VFP_MVFR0,
961                                    KVM_REG_ARM_VFP_MVFR1,
962                                    KVM_REG_ARM_VFP_FPSID };
963
964 static unsigned int num_fp_regs(void)
965 {
966         if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
967                 return 32;
968         else
969                 return 16;
970 }
971
972 static unsigned int num_vfp_regs(void)
973 {
974         /* Normal FP regs + control regs. */
975         return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
976 }
977
978 static int copy_vfp_regids(u64 __user *uindices)
979 {
980         unsigned int i;
981         const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
982         const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
983
984         for (i = 0; i < num_fp_regs(); i++) {
985                 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
986                              uindices))
987                         return -EFAULT;
988                 uindices++;
989         }
990
991         for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
992                 if (put_user(u32reg | vfp_sysregs[i], uindices))
993                         return -EFAULT;
994                 uindices++;
995         }
996
997         return num_vfp_regs();
998 }
999
1000 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1001 {
1002         u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1003         u32 val;
1004
1005         /* Fail if we have unknown bits set. */
1006         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1007                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1008                 return -ENOENT;
1009
1010         if (vfpid < num_fp_regs()) {
1011                 if (KVM_REG_SIZE(id) != 8)
1012                         return -ENOENT;
1013                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1014                                    id);
1015         }
1016
1017         /* FP control registers are all 32 bit. */
1018         if (KVM_REG_SIZE(id) != 4)
1019                 return -ENOENT;
1020
1021         switch (vfpid) {
1022         case KVM_REG_ARM_VFP_FPEXC:
1023                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1024         case KVM_REG_ARM_VFP_FPSCR:
1025                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1026         case KVM_REG_ARM_VFP_FPINST:
1027                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1028         case KVM_REG_ARM_VFP_FPINST2:
1029                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1030         case KVM_REG_ARM_VFP_MVFR0:
1031                 val = fmrx(MVFR0);
1032                 return reg_to_user(uaddr, &val, id);
1033         case KVM_REG_ARM_VFP_MVFR1:
1034                 val = fmrx(MVFR1);
1035                 return reg_to_user(uaddr, &val, id);
1036         case KVM_REG_ARM_VFP_FPSID:
1037                 val = fmrx(FPSID);
1038                 return reg_to_user(uaddr, &val, id);
1039         default:
1040                 return -ENOENT;
1041         }
1042 }
1043
1044 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1045 {
1046         u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1047         u32 val;
1048
1049         /* Fail if we have unknown bits set. */
1050         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1051                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1052                 return -ENOENT;
1053
1054         if (vfpid < num_fp_regs()) {
1055                 if (KVM_REG_SIZE(id) != 8)
1056                         return -ENOENT;
1057                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1058                                      uaddr, id);
1059         }
1060
1061         /* FP control registers are all 32 bit. */
1062         if (KVM_REG_SIZE(id) != 4)
1063                 return -ENOENT;
1064
1065         switch (vfpid) {
1066         case KVM_REG_ARM_VFP_FPEXC:
1067                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1068         case KVM_REG_ARM_VFP_FPSCR:
1069                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1070         case KVM_REG_ARM_VFP_FPINST:
1071                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1072         case KVM_REG_ARM_VFP_FPINST2:
1073                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1074         /* These are invariant. */
1075         case KVM_REG_ARM_VFP_MVFR0:
1076                 if (reg_from_user(&val, uaddr, id))
1077                         return -EFAULT;
1078                 if (val != fmrx(MVFR0))
1079                         return -EINVAL;
1080                 return 0;
1081         case KVM_REG_ARM_VFP_MVFR1:
1082                 if (reg_from_user(&val, uaddr, id))
1083                         return -EFAULT;
1084                 if (val != fmrx(MVFR1))
1085                         return -EINVAL;
1086                 return 0;
1087         case KVM_REG_ARM_VFP_FPSID:
1088                 if (reg_from_user(&val, uaddr, id))
1089                         return -EFAULT;
1090                 if (val != fmrx(FPSID))
1091                         return -EINVAL;
1092                 return 0;
1093         default:
1094                 return -ENOENT;
1095         }
1096 }
1097 #else /* !CONFIG_VFPv3 */
1098 static unsigned int num_vfp_regs(void)
1099 {
1100         return 0;
1101 }
1102
1103 static int copy_vfp_regids(u64 __user *uindices)
1104 {
1105         return 0;
1106 }
1107
1108 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1109 {
1110         return -ENOENT;
1111 }
1112
1113 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1114 {
1115         return -ENOENT;
1116 }
1117 #endif /* !CONFIG_VFPv3 */
1118
1119 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1120 {
1121         const struct coproc_reg *r;
1122         void __user *uaddr = (void __user *)(long)reg->addr;
1123         int ret;
1124
1125         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1126                 return demux_c15_get(reg->id, uaddr);
1127
1128         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1129                 return vfp_get_reg(vcpu, reg->id, uaddr);
1130
1131         r = index_to_coproc_reg(vcpu, reg->id);
1132         if (!r)
1133                 return get_invariant_cp15(reg->id, uaddr);
1134
1135         ret = -ENOENT;
1136         if (KVM_REG_SIZE(reg->id) == 8) {
1137                 u64 val;
1138
1139                 val = vcpu_cp15_reg64_get(vcpu, r);
1140                 ret = reg_to_user(uaddr, &val, reg->id);
1141         } else if (KVM_REG_SIZE(reg->id) == 4) {
1142                 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1149 {
1150         const struct coproc_reg *r;
1151         void __user *uaddr = (void __user *)(long)reg->addr;
1152         int ret;
1153
1154         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1155                 return demux_c15_set(reg->id, uaddr);
1156
1157         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1158                 return vfp_set_reg(vcpu, reg->id, uaddr);
1159
1160         r = index_to_coproc_reg(vcpu, reg->id);
1161         if (!r)
1162                 return set_invariant_cp15(reg->id, uaddr);
1163
1164         ret = -ENOENT;
1165         if (KVM_REG_SIZE(reg->id) == 8) {
1166                 u64 val;
1167
1168                 ret = reg_from_user(&val, uaddr, reg->id);
1169                 if (!ret)
1170                         vcpu_cp15_reg64_set(vcpu, r, val);
1171         } else if (KVM_REG_SIZE(reg->id) == 4) {
1172                 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1173         }
1174
1175         return ret;
1176 }
1177
1178 static unsigned int num_demux_regs(void)
1179 {
1180         unsigned int i, count = 0;
1181
1182         for (i = 0; i < CSSELR_MAX; i++)
1183                 if (is_valid_cache(i))
1184                         count++;
1185
1186         return count;
1187 }
1188
1189 static int write_demux_regids(u64 __user *uindices)
1190 {
1191         u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1192         unsigned int i;
1193
1194         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1195         for (i = 0; i < CSSELR_MAX; i++) {
1196                 if (!is_valid_cache(i))
1197                         continue;
1198                 if (put_user(val | i, uindices))
1199                         return -EFAULT;
1200                 uindices++;
1201         }
1202         return 0;
1203 }
1204
1205 static u64 cp15_to_index(const struct coproc_reg *reg)
1206 {
1207         u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1208         if (reg->is_64bit) {
1209                 val |= KVM_REG_SIZE_U64;
1210                 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1211                 /*
1212                  * CRn always denotes the primary coproc. reg. nr. for the
1213                  * in-kernel representation, but the user space API uses the
1214                  * CRm for the encoding, because it is modelled after the
1215                  * MRRC/MCRR instructions: see the ARM ARM rev. c page
1216                  * B3-1445
1217                  */
1218                 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1219         } else {
1220                 val |= KVM_REG_SIZE_U32;
1221                 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1222                 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1223                 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1224                 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1225         }
1226         return val;
1227 }
1228
1229 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1230 {
1231         if (!*uind)
1232                 return true;
1233
1234         if (put_user(cp15_to_index(reg), *uind))
1235                 return false;
1236
1237         (*uind)++;
1238         return true;
1239 }
1240
1241 /* Assumed ordered tables, see kvm_coproc_table_init. */
1242 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1243 {
1244         const struct coproc_reg *i1, *i2, *end1, *end2;
1245         unsigned int total = 0;
1246         size_t num;
1247
1248         /* We check for duplicates here, to allow arch-specific overrides. */
1249         i1 = get_target_table(vcpu->arch.target, &num);
1250         end1 = i1 + num;
1251         i2 = cp15_regs;
1252         end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1253
1254         BUG_ON(i1 == end1 || i2 == end2);
1255
1256         /* Walk carefully, as both tables may refer to the same register. */
1257         while (i1 || i2) {
1258                 int cmp = cmp_reg(i1, i2);
1259                 /* target-specific overrides generic entry. */
1260                 if (cmp <= 0) {
1261                         /* Ignore registers we trap but don't save. */
1262                         if (i1->reg) {
1263                                 if (!copy_reg_to_user(i1, &uind))
1264                                         return -EFAULT;
1265                                 total++;
1266                         }
1267                 } else {
1268                         /* Ignore registers we trap but don't save. */
1269                         if (i2->reg) {
1270                                 if (!copy_reg_to_user(i2, &uind))
1271                                         return -EFAULT;
1272                                 total++;
1273                         }
1274                 }
1275
1276                 if (cmp <= 0 && ++i1 == end1)
1277                         i1 = NULL;
1278                 if (cmp >= 0 && ++i2 == end2)
1279                         i2 = NULL;
1280         }
1281         return total;
1282 }
1283
1284 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1285 {
1286         return ARRAY_SIZE(invariant_cp15)
1287                 + num_demux_regs()
1288                 + num_vfp_regs()
1289                 + walk_cp15(vcpu, (u64 __user *)NULL);
1290 }
1291
1292 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1293 {
1294         unsigned int i;
1295         int err;
1296
1297         /* Then give them all the invariant registers' indices. */
1298         for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1299                 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1300                         return -EFAULT;
1301                 uindices++;
1302         }
1303
1304         err = walk_cp15(vcpu, uindices);
1305         if (err < 0)
1306                 return err;
1307         uindices += err;
1308
1309         err = copy_vfp_regids(uindices);
1310         if (err < 0)
1311                 return err;
1312         uindices += err;
1313
1314         return write_demux_regids(uindices);
1315 }
1316
1317 void kvm_coproc_table_init(void)
1318 {
1319         unsigned int i;
1320
1321         /* Make sure tables are unique and in order. */
1322         BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1323         BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1324
1325         /* We abuse the reset function to overwrite the table itself. */
1326         for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1327                 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1328
1329         /*
1330          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1331          *
1332          *   If software reads the Cache Type fields from Ctype1
1333          *   upwards, once it has seen a value of 0b000, no caches
1334          *   exist at further-out levels of the hierarchy. So, for
1335          *   example, if Ctype3 is the first Cache Type field with a
1336          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1337          *   ignored.
1338          */
1339         asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1340         for (i = 0; i < 7; i++)
1341                 if (((cache_levels >> (i*3)) & 7) == 0)
1342                         break;
1343         /* Clear all higher bits. */
1344         cache_levels &= (1 << (i*3))-1;
1345 }
1346
1347 /**
1348  * kvm_reset_coprocs - sets cp15 registers to reset value
1349  * @vcpu: The VCPU pointer
1350  *
1351  * This function finds the right table above and sets the registers on the
1352  * virtual CPU struct to their architecturally defined reset values.
1353  */
1354 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1355 {
1356         size_t num;
1357         const struct coproc_reg *table;
1358
1359         /* Catch someone adding a register without putting in reset entry. */
1360         memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1361
1362         /* Generic chip reset first (so target could override). */
1363         reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1364
1365         table = get_target_table(vcpu->arch.target, &num);
1366         reset_coproc_regs(vcpu, table, num);
1367
1368         for (num = 1; num < NR_CP15_REGS; num++)
1369                 if (vcpu_cp15(vcpu, num) == 0x42424242)
1370                         panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1371 }