Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[sfrench/cifs-2.6.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73         BUG_ON(preemptible());
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79  * Must be called from non-preemptible context
80  */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83         BUG_ON(preemptible());
84         return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89  */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92         return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102         return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107         *(int *)rtn = 0;
108 }
109
110
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:        pointer to the KVM struct
114  */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117         int ret, cpu;
118
119         if (type)
120                 return -EINVAL;
121
122         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123         if (!kvm->arch.last_vcpu_ran)
124                 return -ENOMEM;
125
126         for_each_possible_cpu(cpu)
127                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129         ret = kvm_alloc_stage2_pgd(kvm);
130         if (ret)
131                 goto out_fail_alloc;
132
133         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134         if (ret)
135                 goto out_free_stage2_pgd;
136
137         kvm_vgic_early_init(kvm);
138
139         /* Mark the initial VMID generation invalid */
140         kvm->arch.vmid_gen = 0;
141
142         /* The maximum number of VCPUs is limited by the host's GIC model */
143         kvm->arch.max_vcpus = vgic_present ?
144                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         free_percpu(kvm->arch.last_vcpu_ran);
151         kvm->arch.last_vcpu_ran = NULL;
152         return ret;
153 }
154
155 bool kvm_arch_has_vcpu_debugfs(void)
156 {
157         return false;
158 }
159
160 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
161 {
162         return 0;
163 }
164
165 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
166 {
167         return VM_FAULT_SIGBUS;
168 }
169
170
171 /**
172  * kvm_arch_destroy_vm - destroy the VM data structure
173  * @kvm:        pointer to the KVM struct
174  */
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177         int i;
178
179         free_percpu(kvm->arch.last_vcpu_ran);
180         kvm->arch.last_vcpu_ran = NULL;
181
182         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
183                 if (kvm->vcpus[i]) {
184                         kvm_arch_vcpu_free(kvm->vcpus[i]);
185                         kvm->vcpus[i] = NULL;
186                 }
187         }
188
189         kvm_vgic_destroy(kvm);
190 }
191
192 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 {
194         int r;
195         switch (ext) {
196         case KVM_CAP_IRQCHIP:
197                 r = vgic_present;
198                 break;
199         case KVM_CAP_IOEVENTFD:
200         case KVM_CAP_DEVICE_CTRL:
201         case KVM_CAP_USER_MEMORY:
202         case KVM_CAP_SYNC_MMU:
203         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
204         case KVM_CAP_ONE_REG:
205         case KVM_CAP_ARM_PSCI:
206         case KVM_CAP_ARM_PSCI_0_2:
207         case KVM_CAP_READONLY_MEM:
208         case KVM_CAP_MP_STATE:
209         case KVM_CAP_IMMEDIATE_EXIT:
210                 r = 1;
211                 break;
212         case KVM_CAP_COALESCED_MMIO:
213                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214                 break;
215         case KVM_CAP_ARM_SET_DEVICE_ADDR:
216                 r = 1;
217                 break;
218         case KVM_CAP_NR_VCPUS:
219                 r = num_online_cpus();
220                 break;
221         case KVM_CAP_MAX_VCPUS:
222                 r = KVM_MAX_VCPUS;
223                 break;
224         case KVM_CAP_MSI_DEVID:
225                 if (!kvm)
226                         r = -EINVAL;
227                 else
228                         r = kvm->arch.vgic.msis_require_devid;
229                 break;
230         default:
231                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
232                 break;
233         }
234         return r;
235 }
236
237 long kvm_arch_dev_ioctl(struct file *filp,
238                         unsigned int ioctl, unsigned long arg)
239 {
240         return -EINVAL;
241 }
242
243
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246         int err;
247         struct kvm_vcpu *vcpu;
248
249         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
250                 err = -EBUSY;
251                 goto out;
252         }
253
254         if (id >= kvm->arch.max_vcpus) {
255                 err = -EINVAL;
256                 goto out;
257         }
258
259         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
260         if (!vcpu) {
261                 err = -ENOMEM;
262                 goto out;
263         }
264
265         err = kvm_vcpu_init(vcpu, kvm, id);
266         if (err)
267                 goto free_vcpu;
268
269         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
270         if (err)
271                 goto vcpu_uninit;
272
273         return vcpu;
274 vcpu_uninit:
275         kvm_vcpu_uninit(vcpu);
276 free_vcpu:
277         kmem_cache_free(kvm_vcpu_cache, vcpu);
278 out:
279         return ERR_PTR(err);
280 }
281
282 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
283 {
284         kvm_vgic_vcpu_early_init(vcpu);
285 }
286
287 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
288 {
289         kvm_mmu_free_memory_caches(vcpu);
290         kvm_timer_vcpu_terminate(vcpu);
291         kvm_vgic_vcpu_destroy(vcpu);
292         kvm_pmu_vcpu_destroy(vcpu);
293         kvm_vcpu_uninit(vcpu);
294         kmem_cache_free(kvm_vcpu_cache, vcpu);
295 }
296
297 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
298 {
299         kvm_arch_vcpu_free(vcpu);
300 }
301
302 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
303 {
304         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
305                kvm_timer_should_fire(vcpu_ptimer(vcpu));
306 }
307
308 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
309 {
310         kvm_timer_schedule(vcpu);
311 }
312
313 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
314 {
315         kvm_timer_unschedule(vcpu);
316 }
317
318 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
319 {
320         /* Force users to call KVM_ARM_VCPU_INIT */
321         vcpu->arch.target = -1;
322         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
323
324         /* Set up the timer */
325         kvm_timer_vcpu_init(vcpu);
326
327         kvm_arm_reset_debug_ptr(vcpu);
328
329         return 0;
330 }
331
332 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
333 {
334         int *last_ran;
335
336         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
337
338         /*
339          * We might get preempted before the vCPU actually runs, but
340          * over-invalidation doesn't affect correctness.
341          */
342         if (*last_ran != vcpu->vcpu_id) {
343                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
344                 *last_ran = vcpu->vcpu_id;
345         }
346
347         vcpu->cpu = cpu;
348         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
349
350         kvm_arm_set_running_vcpu(vcpu);
351 }
352
353 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
354 {
355         /*
356          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
357          * if the vcpu is no longer assigned to a cpu.  This is used for the
358          * optimized make_all_cpus_request path.
359          */
360         vcpu->cpu = -1;
361
362         kvm_arm_set_running_vcpu(NULL);
363         kvm_timer_vcpu_put(vcpu);
364 }
365
366 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
367                                     struct kvm_mp_state *mp_state)
368 {
369         if (vcpu->arch.power_off)
370                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
371         else
372                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
373
374         return 0;
375 }
376
377 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
378                                     struct kvm_mp_state *mp_state)
379 {
380         switch (mp_state->mp_state) {
381         case KVM_MP_STATE_RUNNABLE:
382                 vcpu->arch.power_off = false;
383                 break;
384         case KVM_MP_STATE_STOPPED:
385                 vcpu->arch.power_off = true;
386                 break;
387         default:
388                 return -EINVAL;
389         }
390
391         return 0;
392 }
393
394 /**
395  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
396  * @v:          The VCPU pointer
397  *
398  * If the guest CPU is not waiting for interrupts or an interrupt line is
399  * asserted, the CPU is by definition runnable.
400  */
401 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
402 {
403         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
404                 && !v->arch.power_off && !v->arch.pause);
405 }
406
407 /* Just ensure a guest exit from a particular CPU */
408 static void exit_vm_noop(void *info)
409 {
410 }
411
412 void force_vm_exit(const cpumask_t *mask)
413 {
414         preempt_disable();
415         smp_call_function_many(mask, exit_vm_noop, NULL, true);
416         preempt_enable();
417 }
418
419 /**
420  * need_new_vmid_gen - check that the VMID is still valid
421  * @kvm: The VM's VMID to check
422  *
423  * return true if there is a new generation of VMIDs being used
424  *
425  * The hardware supports only 256 values with the value zero reserved for the
426  * host, so we check if an assigned value belongs to a previous generation,
427  * which which requires us to assign a new value. If we're the first to use a
428  * VMID for the new generation, we must flush necessary caches and TLBs on all
429  * CPUs.
430  */
431 static bool need_new_vmid_gen(struct kvm *kvm)
432 {
433         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
434 }
435
436 /**
437  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
438  * @kvm The guest that we are about to run
439  *
440  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
441  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
442  * caches and TLBs.
443  */
444 static void update_vttbr(struct kvm *kvm)
445 {
446         phys_addr_t pgd_phys;
447         u64 vmid;
448
449         if (!need_new_vmid_gen(kvm))
450                 return;
451
452         spin_lock(&kvm_vmid_lock);
453
454         /*
455          * We need to re-check the vmid_gen here to ensure that if another vcpu
456          * already allocated a valid vmid for this vm, then this vcpu should
457          * use the same vmid.
458          */
459         if (!need_new_vmid_gen(kvm)) {
460                 spin_unlock(&kvm_vmid_lock);
461                 return;
462         }
463
464         /* First user of a new VMID generation? */
465         if (unlikely(kvm_next_vmid == 0)) {
466                 atomic64_inc(&kvm_vmid_gen);
467                 kvm_next_vmid = 1;
468
469                 /*
470                  * On SMP we know no other CPUs can use this CPU's or each
471                  * other's VMID after force_vm_exit returns since the
472                  * kvm_vmid_lock blocks them from reentry to the guest.
473                  */
474                 force_vm_exit(cpu_all_mask);
475                 /*
476                  * Now broadcast TLB + ICACHE invalidation over the inner
477                  * shareable domain to make sure all data structures are
478                  * clean.
479                  */
480                 kvm_call_hyp(__kvm_flush_vm_context);
481         }
482
483         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
484         kvm->arch.vmid = kvm_next_vmid;
485         kvm_next_vmid++;
486         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
487
488         /* update vttbr to be used with the new vmid */
489         pgd_phys = virt_to_phys(kvm->arch.pgd);
490         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
491         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
492         kvm->arch.vttbr = pgd_phys | vmid;
493
494         spin_unlock(&kvm_vmid_lock);
495 }
496
497 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
498 {
499         struct kvm *kvm = vcpu->kvm;
500         int ret = 0;
501
502         if (likely(vcpu->arch.has_run_once))
503                 return 0;
504
505         vcpu->arch.has_run_once = true;
506
507         /*
508          * Map the VGIC hardware resources before running a vcpu the first
509          * time on this VM.
510          */
511         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
512                 ret = kvm_vgic_map_resources(kvm);
513                 if (ret)
514                         return ret;
515         }
516
517         /*
518          * Enable the arch timers only if we have an in-kernel VGIC
519          * and it has been properly initialized, since we cannot handle
520          * interrupts from the virtual timer with a userspace gic.
521          */
522         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
523                 ret = kvm_timer_enable(vcpu);
524
525         return ret;
526 }
527
528 bool kvm_arch_intc_initialized(struct kvm *kvm)
529 {
530         return vgic_initialized(kvm);
531 }
532
533 void kvm_arm_halt_guest(struct kvm *kvm)
534 {
535         int i;
536         struct kvm_vcpu *vcpu;
537
538         kvm_for_each_vcpu(i, vcpu, kvm)
539                 vcpu->arch.pause = true;
540         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
541 }
542
543 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
544 {
545         vcpu->arch.pause = true;
546         kvm_vcpu_kick(vcpu);
547 }
548
549 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
550 {
551         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
552
553         vcpu->arch.pause = false;
554         swake_up(wq);
555 }
556
557 void kvm_arm_resume_guest(struct kvm *kvm)
558 {
559         int i;
560         struct kvm_vcpu *vcpu;
561
562         kvm_for_each_vcpu(i, vcpu, kvm)
563                 kvm_arm_resume_vcpu(vcpu);
564 }
565
566 static void vcpu_sleep(struct kvm_vcpu *vcpu)
567 {
568         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
569
570         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
571                                        (!vcpu->arch.pause)));
572 }
573
574 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
575 {
576         return vcpu->arch.target >= 0;
577 }
578
579 /**
580  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
581  * @vcpu:       The VCPU pointer
582  * @run:        The kvm_run structure pointer used for userspace state exchange
583  *
584  * This function is called through the VCPU_RUN ioctl called from user space. It
585  * will execute VM code in a loop until the time slice for the process is used
586  * or some emulation is needed from user space in which case the function will
587  * return with return value 0 and with the kvm_run structure filled in with the
588  * required data for the requested emulation.
589  */
590 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
591 {
592         int ret;
593         sigset_t sigsaved;
594
595         if (unlikely(!kvm_vcpu_initialized(vcpu)))
596                 return -ENOEXEC;
597
598         ret = kvm_vcpu_first_run_init(vcpu);
599         if (ret)
600                 return ret;
601
602         if (run->exit_reason == KVM_EXIT_MMIO) {
603                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
604                 if (ret)
605                         return ret;
606         }
607
608         if (run->immediate_exit)
609                 return -EINTR;
610
611         if (vcpu->sigset_active)
612                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
613
614         ret = 1;
615         run->exit_reason = KVM_EXIT_UNKNOWN;
616         while (ret > 0) {
617                 /*
618                  * Check conditions before entering the guest
619                  */
620                 cond_resched();
621
622                 update_vttbr(vcpu->kvm);
623
624                 if (vcpu->arch.power_off || vcpu->arch.pause)
625                         vcpu_sleep(vcpu);
626
627                 /*
628                  * Preparing the interrupts to be injected also
629                  * involves poking the GIC, which must be done in a
630                  * non-preemptible context.
631                  */
632                 preempt_disable();
633                 kvm_pmu_flush_hwstate(vcpu);
634                 kvm_timer_flush_hwstate(vcpu);
635                 kvm_vgic_flush_hwstate(vcpu);
636
637                 local_irq_disable();
638
639                 /*
640                  * Re-check atomic conditions
641                  */
642                 if (signal_pending(current)) {
643                         ret = -EINTR;
644                         run->exit_reason = KVM_EXIT_INTR;
645                 }
646
647                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
648                         vcpu->arch.power_off || vcpu->arch.pause) {
649                         local_irq_enable();
650                         kvm_pmu_sync_hwstate(vcpu);
651                         kvm_timer_sync_hwstate(vcpu);
652                         kvm_vgic_sync_hwstate(vcpu);
653                         preempt_enable();
654                         continue;
655                 }
656
657                 kvm_arm_setup_debug(vcpu);
658
659                 /**************************************************************
660                  * Enter the guest
661                  */
662                 trace_kvm_entry(*vcpu_pc(vcpu));
663                 guest_enter_irqoff();
664                 vcpu->mode = IN_GUEST_MODE;
665
666                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
667
668                 vcpu->mode = OUTSIDE_GUEST_MODE;
669                 vcpu->stat.exits++;
670                 /*
671                  * Back from guest
672                  *************************************************************/
673
674                 kvm_arm_clear_debug(vcpu);
675
676                 /*
677                  * We may have taken a host interrupt in HYP mode (ie
678                  * while executing the guest). This interrupt is still
679                  * pending, as we haven't serviced it yet!
680                  *
681                  * We're now back in SVC mode, with interrupts
682                  * disabled.  Enabling the interrupts now will have
683                  * the effect of taking the interrupt again, in SVC
684                  * mode this time.
685                  */
686                 local_irq_enable();
687
688                 /*
689                  * We do local_irq_enable() before calling guest_exit() so
690                  * that if a timer interrupt hits while running the guest we
691                  * account that tick as being spent in the guest.  We enable
692                  * preemption after calling guest_exit() so that if we get
693                  * preempted we make sure ticks after that is not counted as
694                  * guest time.
695                  */
696                 guest_exit();
697                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
698
699                 /*
700                  * We must sync the PMU and timer state before the vgic state so
701                  * that the vgic can properly sample the updated state of the
702                  * interrupt line.
703                  */
704                 kvm_pmu_sync_hwstate(vcpu);
705                 kvm_timer_sync_hwstate(vcpu);
706
707                 kvm_vgic_sync_hwstate(vcpu);
708
709                 preempt_enable();
710
711                 ret = handle_exit(vcpu, run, ret);
712         }
713
714         if (vcpu->sigset_active)
715                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
716         return ret;
717 }
718
719 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
720 {
721         int bit_index;
722         bool set;
723         unsigned long *ptr;
724
725         if (number == KVM_ARM_IRQ_CPU_IRQ)
726                 bit_index = __ffs(HCR_VI);
727         else /* KVM_ARM_IRQ_CPU_FIQ */
728                 bit_index = __ffs(HCR_VF);
729
730         ptr = (unsigned long *)&vcpu->arch.irq_lines;
731         if (level)
732                 set = test_and_set_bit(bit_index, ptr);
733         else
734                 set = test_and_clear_bit(bit_index, ptr);
735
736         /*
737          * If we didn't change anything, no need to wake up or kick other CPUs
738          */
739         if (set == level)
740                 return 0;
741
742         /*
743          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
744          * trigger a world-switch round on the running physical CPU to set the
745          * virtual IRQ/FIQ fields in the HCR appropriately.
746          */
747         kvm_vcpu_kick(vcpu);
748
749         return 0;
750 }
751
752 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
753                           bool line_status)
754 {
755         u32 irq = irq_level->irq;
756         unsigned int irq_type, vcpu_idx, irq_num;
757         int nrcpus = atomic_read(&kvm->online_vcpus);
758         struct kvm_vcpu *vcpu = NULL;
759         bool level = irq_level->level;
760
761         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
762         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
763         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
764
765         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
766
767         switch (irq_type) {
768         case KVM_ARM_IRQ_TYPE_CPU:
769                 if (irqchip_in_kernel(kvm))
770                         return -ENXIO;
771
772                 if (vcpu_idx >= nrcpus)
773                         return -EINVAL;
774
775                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
776                 if (!vcpu)
777                         return -EINVAL;
778
779                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
780                         return -EINVAL;
781
782                 return vcpu_interrupt_line(vcpu, irq_num, level);
783         case KVM_ARM_IRQ_TYPE_PPI:
784                 if (!irqchip_in_kernel(kvm))
785                         return -ENXIO;
786
787                 if (vcpu_idx >= nrcpus)
788                         return -EINVAL;
789
790                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
791                 if (!vcpu)
792                         return -EINVAL;
793
794                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
795                         return -EINVAL;
796
797                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
798         case KVM_ARM_IRQ_TYPE_SPI:
799                 if (!irqchip_in_kernel(kvm))
800                         return -ENXIO;
801
802                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
803                         return -EINVAL;
804
805                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
806         }
807
808         return -EINVAL;
809 }
810
811 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
812                                const struct kvm_vcpu_init *init)
813 {
814         unsigned int i;
815         int phys_target = kvm_target_cpu();
816
817         if (init->target != phys_target)
818                 return -EINVAL;
819
820         /*
821          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
822          * use the same target.
823          */
824         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
825                 return -EINVAL;
826
827         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
828         for (i = 0; i < sizeof(init->features) * 8; i++) {
829                 bool set = (init->features[i / 32] & (1 << (i % 32)));
830
831                 if (set && i >= KVM_VCPU_MAX_FEATURES)
832                         return -ENOENT;
833
834                 /*
835                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
836                  * use the same feature set.
837                  */
838                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
839                     test_bit(i, vcpu->arch.features) != set)
840                         return -EINVAL;
841
842                 if (set)
843                         set_bit(i, vcpu->arch.features);
844         }
845
846         vcpu->arch.target = phys_target;
847
848         /* Now we know what it is, we can reset it. */
849         return kvm_reset_vcpu(vcpu);
850 }
851
852
853 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
854                                          struct kvm_vcpu_init *init)
855 {
856         int ret;
857
858         ret = kvm_vcpu_set_target(vcpu, init);
859         if (ret)
860                 return ret;
861
862         /*
863          * Ensure a rebooted VM will fault in RAM pages and detect if the
864          * guest MMU is turned off and flush the caches as needed.
865          */
866         if (vcpu->arch.has_run_once)
867                 stage2_unmap_vm(vcpu->kvm);
868
869         vcpu_reset_hcr(vcpu);
870
871         /*
872          * Handle the "start in power-off" case.
873          */
874         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
875                 vcpu->arch.power_off = true;
876         else
877                 vcpu->arch.power_off = false;
878
879         return 0;
880 }
881
882 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
883                                  struct kvm_device_attr *attr)
884 {
885         int ret = -ENXIO;
886
887         switch (attr->group) {
888         default:
889                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
890                 break;
891         }
892
893         return ret;
894 }
895
896 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
897                                  struct kvm_device_attr *attr)
898 {
899         int ret = -ENXIO;
900
901         switch (attr->group) {
902         default:
903                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
904                 break;
905         }
906
907         return ret;
908 }
909
910 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
911                                  struct kvm_device_attr *attr)
912 {
913         int ret = -ENXIO;
914
915         switch (attr->group) {
916         default:
917                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
918                 break;
919         }
920
921         return ret;
922 }
923
924 long kvm_arch_vcpu_ioctl(struct file *filp,
925                          unsigned int ioctl, unsigned long arg)
926 {
927         struct kvm_vcpu *vcpu = filp->private_data;
928         void __user *argp = (void __user *)arg;
929         struct kvm_device_attr attr;
930
931         switch (ioctl) {
932         case KVM_ARM_VCPU_INIT: {
933                 struct kvm_vcpu_init init;
934
935                 if (copy_from_user(&init, argp, sizeof(init)))
936                         return -EFAULT;
937
938                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
939         }
940         case KVM_SET_ONE_REG:
941         case KVM_GET_ONE_REG: {
942                 struct kvm_one_reg reg;
943
944                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
945                         return -ENOEXEC;
946
947                 if (copy_from_user(&reg, argp, sizeof(reg)))
948                         return -EFAULT;
949                 if (ioctl == KVM_SET_ONE_REG)
950                         return kvm_arm_set_reg(vcpu, &reg);
951                 else
952                         return kvm_arm_get_reg(vcpu, &reg);
953         }
954         case KVM_GET_REG_LIST: {
955                 struct kvm_reg_list __user *user_list = argp;
956                 struct kvm_reg_list reg_list;
957                 unsigned n;
958
959                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
960                         return -ENOEXEC;
961
962                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
963                         return -EFAULT;
964                 n = reg_list.n;
965                 reg_list.n = kvm_arm_num_regs(vcpu);
966                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
967                         return -EFAULT;
968                 if (n < reg_list.n)
969                         return -E2BIG;
970                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
971         }
972         case KVM_SET_DEVICE_ATTR: {
973                 if (copy_from_user(&attr, argp, sizeof(attr)))
974                         return -EFAULT;
975                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
976         }
977         case KVM_GET_DEVICE_ATTR: {
978                 if (copy_from_user(&attr, argp, sizeof(attr)))
979                         return -EFAULT;
980                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
981         }
982         case KVM_HAS_DEVICE_ATTR: {
983                 if (copy_from_user(&attr, argp, sizeof(attr)))
984                         return -EFAULT;
985                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
986         }
987         default:
988                 return -EINVAL;
989         }
990 }
991
992 /**
993  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
994  * @kvm: kvm instance
995  * @log: slot id and address to which we copy the log
996  *
997  * Steps 1-4 below provide general overview of dirty page logging. See
998  * kvm_get_dirty_log_protect() function description for additional details.
999  *
1000  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1001  * always flush the TLB (step 4) even if previous step failed  and the dirty
1002  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1003  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1004  * writes will be marked dirty for next log read.
1005  *
1006  *   1. Take a snapshot of the bit and clear it if needed.
1007  *   2. Write protect the corresponding page.
1008  *   3. Copy the snapshot to the userspace.
1009  *   4. Flush TLB's if needed.
1010  */
1011 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1012 {
1013         bool is_dirty = false;
1014         int r;
1015
1016         mutex_lock(&kvm->slots_lock);
1017
1018         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1019
1020         if (is_dirty)
1021                 kvm_flush_remote_tlbs(kvm);
1022
1023         mutex_unlock(&kvm->slots_lock);
1024         return r;
1025 }
1026
1027 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1028                                         struct kvm_arm_device_addr *dev_addr)
1029 {
1030         unsigned long dev_id, type;
1031
1032         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1033                 KVM_ARM_DEVICE_ID_SHIFT;
1034         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1035                 KVM_ARM_DEVICE_TYPE_SHIFT;
1036
1037         switch (dev_id) {
1038         case KVM_ARM_DEVICE_VGIC_V2:
1039                 if (!vgic_present)
1040                         return -ENXIO;
1041                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1042         default:
1043                 return -ENODEV;
1044         }
1045 }
1046
1047 long kvm_arch_vm_ioctl(struct file *filp,
1048                        unsigned int ioctl, unsigned long arg)
1049 {
1050         struct kvm *kvm = filp->private_data;
1051         void __user *argp = (void __user *)arg;
1052
1053         switch (ioctl) {
1054         case KVM_CREATE_IRQCHIP: {
1055                 int ret;
1056                 if (!vgic_present)
1057                         return -ENXIO;
1058                 mutex_lock(&kvm->lock);
1059                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1060                 mutex_unlock(&kvm->lock);
1061                 return ret;
1062         }
1063         case KVM_ARM_SET_DEVICE_ADDR: {
1064                 struct kvm_arm_device_addr dev_addr;
1065
1066                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1067                         return -EFAULT;
1068                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1069         }
1070         case KVM_ARM_PREFERRED_TARGET: {
1071                 int err;
1072                 struct kvm_vcpu_init init;
1073
1074                 err = kvm_vcpu_preferred_target(&init);
1075                 if (err)
1076                         return err;
1077
1078                 if (copy_to_user(argp, &init, sizeof(init)))
1079                         return -EFAULT;
1080
1081                 return 0;
1082         }
1083         default:
1084                 return -EINVAL;
1085         }
1086 }
1087
1088 static void cpu_init_hyp_mode(void *dummy)
1089 {
1090         phys_addr_t pgd_ptr;
1091         unsigned long hyp_stack_ptr;
1092         unsigned long stack_page;
1093         unsigned long vector_ptr;
1094
1095         /* Switch from the HYP stub to our own HYP init vector */
1096         __hyp_set_vectors(kvm_get_idmap_vector());
1097
1098         pgd_ptr = kvm_mmu_get_httbr();
1099         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1100         hyp_stack_ptr = stack_page + PAGE_SIZE;
1101         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1102
1103         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1104         __cpu_init_stage2();
1105
1106         if (is_kernel_in_hyp_mode())
1107                 kvm_timer_init_vhe();
1108
1109         kvm_arm_init_debug();
1110 }
1111
1112 static void cpu_hyp_reinit(void)
1113 {
1114         if (is_kernel_in_hyp_mode()) {
1115                 /*
1116                  * __cpu_init_stage2() is safe to call even if the PM
1117                  * event was cancelled before the CPU was reset.
1118                  */
1119                 __cpu_init_stage2();
1120         } else {
1121                 if (__hyp_get_vectors() == hyp_default_vectors)
1122                         cpu_init_hyp_mode(NULL);
1123         }
1124 }
1125
1126 static void cpu_hyp_reset(void)
1127 {
1128         if (!is_kernel_in_hyp_mode())
1129                 __cpu_reset_hyp_mode(hyp_default_vectors,
1130                                      kvm_get_idmap_start());
1131 }
1132
1133 static void _kvm_arch_hardware_enable(void *discard)
1134 {
1135         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1136                 cpu_hyp_reinit();
1137                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1138         }
1139 }
1140
1141 int kvm_arch_hardware_enable(void)
1142 {
1143         _kvm_arch_hardware_enable(NULL);
1144         return 0;
1145 }
1146
1147 static void _kvm_arch_hardware_disable(void *discard)
1148 {
1149         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1150                 cpu_hyp_reset();
1151                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1152         }
1153 }
1154
1155 void kvm_arch_hardware_disable(void)
1156 {
1157         _kvm_arch_hardware_disable(NULL);
1158 }
1159
1160 #ifdef CONFIG_CPU_PM
1161 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1162                                     unsigned long cmd,
1163                                     void *v)
1164 {
1165         /*
1166          * kvm_arm_hardware_enabled is left with its old value over
1167          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1168          * re-enable hyp.
1169          */
1170         switch (cmd) {
1171         case CPU_PM_ENTER:
1172                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1173                         /*
1174                          * don't update kvm_arm_hardware_enabled here
1175                          * so that the hardware will be re-enabled
1176                          * when we resume. See below.
1177                          */
1178                         cpu_hyp_reset();
1179
1180                 return NOTIFY_OK;
1181         case CPU_PM_EXIT:
1182                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1183                         /* The hardware was enabled before suspend. */
1184                         cpu_hyp_reinit();
1185
1186                 return NOTIFY_OK;
1187
1188         default:
1189                 return NOTIFY_DONE;
1190         }
1191 }
1192
1193 static struct notifier_block hyp_init_cpu_pm_nb = {
1194         .notifier_call = hyp_init_cpu_pm_notifier,
1195 };
1196
1197 static void __init hyp_cpu_pm_init(void)
1198 {
1199         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1200 }
1201 static void __init hyp_cpu_pm_exit(void)
1202 {
1203         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1204 }
1205 #else
1206 static inline void hyp_cpu_pm_init(void)
1207 {
1208 }
1209 static inline void hyp_cpu_pm_exit(void)
1210 {
1211 }
1212 #endif
1213
1214 static void teardown_common_resources(void)
1215 {
1216         free_percpu(kvm_host_cpu_state);
1217 }
1218
1219 static int init_common_resources(void)
1220 {
1221         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1222         if (!kvm_host_cpu_state) {
1223                 kvm_err("Cannot allocate host CPU state\n");
1224                 return -ENOMEM;
1225         }
1226
1227         /* set size of VMID supported by CPU */
1228         kvm_vmid_bits = kvm_get_vmid_bits();
1229         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1230
1231         return 0;
1232 }
1233
1234 static int init_subsystems(void)
1235 {
1236         int err = 0;
1237
1238         /*
1239          * Enable hardware so that subsystem initialisation can access EL2.
1240          */
1241         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1242
1243         /*
1244          * Register CPU lower-power notifier
1245          */
1246         hyp_cpu_pm_init();
1247
1248         /*
1249          * Init HYP view of VGIC
1250          */
1251         err = kvm_vgic_hyp_init();
1252         switch (err) {
1253         case 0:
1254                 vgic_present = true;
1255                 break;
1256         case -ENODEV:
1257         case -ENXIO:
1258                 vgic_present = false;
1259                 err = 0;
1260                 break;
1261         default:
1262                 goto out;
1263         }
1264
1265         /*
1266          * Init HYP architected timer support
1267          */
1268         err = kvm_timer_hyp_init();
1269         if (err)
1270                 goto out;
1271
1272         kvm_perf_init();
1273         kvm_coproc_table_init();
1274
1275 out:
1276         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1277
1278         return err;
1279 }
1280
1281 static void teardown_hyp_mode(void)
1282 {
1283         int cpu;
1284
1285         if (is_kernel_in_hyp_mode())
1286                 return;
1287
1288         free_hyp_pgds();
1289         for_each_possible_cpu(cpu)
1290                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1291         hyp_cpu_pm_exit();
1292 }
1293
1294 static int init_vhe_mode(void)
1295 {
1296         kvm_info("VHE mode initialized successfully\n");
1297         return 0;
1298 }
1299
1300 /**
1301  * Inits Hyp-mode on all online CPUs
1302  */
1303 static int init_hyp_mode(void)
1304 {
1305         int cpu;
1306         int err = 0;
1307
1308         /*
1309          * Allocate Hyp PGD and setup Hyp identity mapping
1310          */
1311         err = kvm_mmu_init();
1312         if (err)
1313                 goto out_err;
1314
1315         /*
1316          * It is probably enough to obtain the default on one
1317          * CPU. It's unlikely to be different on the others.
1318          */
1319         hyp_default_vectors = __hyp_get_vectors();
1320
1321         /*
1322          * Allocate stack pages for Hypervisor-mode
1323          */
1324         for_each_possible_cpu(cpu) {
1325                 unsigned long stack_page;
1326
1327                 stack_page = __get_free_page(GFP_KERNEL);
1328                 if (!stack_page) {
1329                         err = -ENOMEM;
1330                         goto out_err;
1331                 }
1332
1333                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1334         }
1335
1336         /*
1337          * Map the Hyp-code called directly from the host
1338          */
1339         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1340                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1341         if (err) {
1342                 kvm_err("Cannot map world-switch code\n");
1343                 goto out_err;
1344         }
1345
1346         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1347                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1348         if (err) {
1349                 kvm_err("Cannot map rodata section\n");
1350                 goto out_err;
1351         }
1352
1353         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1354                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1355         if (err) {
1356                 kvm_err("Cannot map bss section\n");
1357                 goto out_err;
1358         }
1359
1360         /*
1361          * Map the Hyp stack pages
1362          */
1363         for_each_possible_cpu(cpu) {
1364                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1365                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1366                                           PAGE_HYP);
1367
1368                 if (err) {
1369                         kvm_err("Cannot map hyp stack\n");
1370                         goto out_err;
1371                 }
1372         }
1373
1374         for_each_possible_cpu(cpu) {
1375                 kvm_cpu_context_t *cpu_ctxt;
1376
1377                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1378                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1379
1380                 if (err) {
1381                         kvm_err("Cannot map host CPU state: %d\n", err);
1382                         goto out_err;
1383                 }
1384         }
1385
1386         kvm_info("Hyp mode initialized successfully\n");
1387
1388         return 0;
1389
1390 out_err:
1391         teardown_hyp_mode();
1392         kvm_err("error initializing Hyp mode: %d\n", err);
1393         return err;
1394 }
1395
1396 static void check_kvm_target_cpu(void *ret)
1397 {
1398         *(int *)ret = kvm_target_cpu();
1399 }
1400
1401 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1402 {
1403         struct kvm_vcpu *vcpu;
1404         int i;
1405
1406         mpidr &= MPIDR_HWID_BITMASK;
1407         kvm_for_each_vcpu(i, vcpu, kvm) {
1408                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1409                         return vcpu;
1410         }
1411         return NULL;
1412 }
1413
1414 /**
1415  * Initialize Hyp-mode and memory mappings on all CPUs.
1416  */
1417 int kvm_arch_init(void *opaque)
1418 {
1419         int err;
1420         int ret, cpu;
1421
1422         if (!is_hyp_mode_available()) {
1423                 kvm_err("HYP mode not available\n");
1424                 return -ENODEV;
1425         }
1426
1427         for_each_online_cpu(cpu) {
1428                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1429                 if (ret < 0) {
1430                         kvm_err("Error, CPU %d not supported!\n", cpu);
1431                         return -ENODEV;
1432                 }
1433         }
1434
1435         err = init_common_resources();
1436         if (err)
1437                 return err;
1438
1439         if (is_kernel_in_hyp_mode())
1440                 err = init_vhe_mode();
1441         else
1442                 err = init_hyp_mode();
1443         if (err)
1444                 goto out_err;
1445
1446         err = init_subsystems();
1447         if (err)
1448                 goto out_hyp;
1449
1450         return 0;
1451
1452 out_hyp:
1453         teardown_hyp_mode();
1454 out_err:
1455         teardown_common_resources();
1456         return err;
1457 }
1458
1459 /* NOP: Compiling as a module not supported */
1460 void kvm_arch_exit(void)
1461 {
1462         kvm_perf_teardown();
1463 }
1464
1465 static int arm_init(void)
1466 {
1467         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1468         return rc;
1469 }
1470
1471 module_init(arm_init);