Merge tag 'dm-4.0-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[sfrench/cifs-2.6.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102         return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107         *(int *)rtn = 0;
108 }
109
110
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:        pointer to the KVM struct
114  */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117         int ret = 0;
118
119         if (type)
120                 return -EINVAL;
121
122         ret = kvm_alloc_stage2_pgd(kvm);
123         if (ret)
124                 goto out_fail_alloc;
125
126         ret = create_hyp_mappings(kvm, kvm + 1);
127         if (ret)
128                 goto out_free_stage2_pgd;
129
130         kvm_timer_init(kvm);
131
132         /* Mark the initial VMID generation invalid */
133         kvm->arch.vmid_gen = 0;
134
135         /* The maximum number of VCPUs is limited by the host's GIC model */
136         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
137
138         return ret;
139 out_free_stage2_pgd:
140         kvm_free_stage2_pgd(kvm);
141 out_fail_alloc:
142         return ret;
143 }
144
145 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
146 {
147         return VM_FAULT_SIGBUS;
148 }
149
150
151 /**
152  * kvm_arch_destroy_vm - destroy the VM data structure
153  * @kvm:        pointer to the KVM struct
154  */
155 void kvm_arch_destroy_vm(struct kvm *kvm)
156 {
157         int i;
158
159         kvm_free_stage2_pgd(kvm);
160
161         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
162                 if (kvm->vcpus[i]) {
163                         kvm_arch_vcpu_free(kvm->vcpus[i]);
164                         kvm->vcpus[i] = NULL;
165                 }
166         }
167
168         kvm_vgic_destroy(kvm);
169 }
170
171 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 {
173         int r;
174         switch (ext) {
175         case KVM_CAP_IRQCHIP:
176                 r = vgic_present;
177                 break;
178         case KVM_CAP_DEVICE_CTRL:
179         case KVM_CAP_USER_MEMORY:
180         case KVM_CAP_SYNC_MMU:
181         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
182         case KVM_CAP_ONE_REG:
183         case KVM_CAP_ARM_PSCI:
184         case KVM_CAP_ARM_PSCI_0_2:
185         case KVM_CAP_READONLY_MEM:
186                 r = 1;
187                 break;
188         case KVM_CAP_COALESCED_MMIO:
189                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190                 break;
191         case KVM_CAP_ARM_SET_DEVICE_ADDR:
192                 r = 1;
193                 break;
194         case KVM_CAP_NR_VCPUS:
195                 r = num_online_cpus();
196                 break;
197         case KVM_CAP_MAX_VCPUS:
198                 r = KVM_MAX_VCPUS;
199                 break;
200         default:
201                 r = kvm_arch_dev_ioctl_check_extension(ext);
202                 break;
203         }
204         return r;
205 }
206
207 long kvm_arch_dev_ioctl(struct file *filp,
208                         unsigned int ioctl, unsigned long arg)
209 {
210         return -EINVAL;
211 }
212
213
214 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
215 {
216         int err;
217         struct kvm_vcpu *vcpu;
218
219         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
220                 err = -EBUSY;
221                 goto out;
222         }
223
224         if (id >= kvm->arch.max_vcpus) {
225                 err = -EINVAL;
226                 goto out;
227         }
228
229         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
230         if (!vcpu) {
231                 err = -ENOMEM;
232                 goto out;
233         }
234
235         err = kvm_vcpu_init(vcpu, kvm, id);
236         if (err)
237                 goto free_vcpu;
238
239         err = create_hyp_mappings(vcpu, vcpu + 1);
240         if (err)
241                 goto vcpu_uninit;
242
243         return vcpu;
244 vcpu_uninit:
245         kvm_vcpu_uninit(vcpu);
246 free_vcpu:
247         kmem_cache_free(kvm_vcpu_cache, vcpu);
248 out:
249         return ERR_PTR(err);
250 }
251
252 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 {
254 }
255
256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
257 {
258         kvm_mmu_free_memory_caches(vcpu);
259         kvm_timer_vcpu_terminate(vcpu);
260         kvm_vgic_vcpu_destroy(vcpu);
261         kmem_cache_free(kvm_vcpu_cache, vcpu);
262 }
263
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
265 {
266         kvm_arch_vcpu_free(vcpu);
267 }
268
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
270 {
271         return 0;
272 }
273
274 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
275 {
276         /* Force users to call KVM_ARM_VCPU_INIT */
277         vcpu->arch.target = -1;
278         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
279
280         /* Set up the timer */
281         kvm_timer_vcpu_init(vcpu);
282
283         return 0;
284 }
285
286 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
287 {
288         vcpu->cpu = cpu;
289         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
290
291         kvm_arm_set_running_vcpu(vcpu);
292 }
293
294 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
295 {
296         /*
297          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
298          * if the vcpu is no longer assigned to a cpu.  This is used for the
299          * optimized make_all_cpus_request path.
300          */
301         vcpu->cpu = -1;
302
303         kvm_arm_set_running_vcpu(NULL);
304 }
305
306 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
307                                         struct kvm_guest_debug *dbg)
308 {
309         return -EINVAL;
310 }
311
312
313 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
314                                     struct kvm_mp_state *mp_state)
315 {
316         return -EINVAL;
317 }
318
319 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
320                                     struct kvm_mp_state *mp_state)
321 {
322         return -EINVAL;
323 }
324
325 /**
326  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
327  * @v:          The VCPU pointer
328  *
329  * If the guest CPU is not waiting for interrupts or an interrupt line is
330  * asserted, the CPU is by definition runnable.
331  */
332 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
333 {
334         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
335 }
336
337 /* Just ensure a guest exit from a particular CPU */
338 static void exit_vm_noop(void *info)
339 {
340 }
341
342 void force_vm_exit(const cpumask_t *mask)
343 {
344         smp_call_function_many(mask, exit_vm_noop, NULL, true);
345 }
346
347 /**
348  * need_new_vmid_gen - check that the VMID is still valid
349  * @kvm: The VM's VMID to checkt
350  *
351  * return true if there is a new generation of VMIDs being used
352  *
353  * The hardware supports only 256 values with the value zero reserved for the
354  * host, so we check if an assigned value belongs to a previous generation,
355  * which which requires us to assign a new value. If we're the first to use a
356  * VMID for the new generation, we must flush necessary caches and TLBs on all
357  * CPUs.
358  */
359 static bool need_new_vmid_gen(struct kvm *kvm)
360 {
361         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
362 }
363
364 /**
365  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
366  * @kvm The guest that we are about to run
367  *
368  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
369  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
370  * caches and TLBs.
371  */
372 static void update_vttbr(struct kvm *kvm)
373 {
374         phys_addr_t pgd_phys;
375         u64 vmid;
376
377         if (!need_new_vmid_gen(kvm))
378                 return;
379
380         spin_lock(&kvm_vmid_lock);
381
382         /*
383          * We need to re-check the vmid_gen here to ensure that if another vcpu
384          * already allocated a valid vmid for this vm, then this vcpu should
385          * use the same vmid.
386          */
387         if (!need_new_vmid_gen(kvm)) {
388                 spin_unlock(&kvm_vmid_lock);
389                 return;
390         }
391
392         /* First user of a new VMID generation? */
393         if (unlikely(kvm_next_vmid == 0)) {
394                 atomic64_inc(&kvm_vmid_gen);
395                 kvm_next_vmid = 1;
396
397                 /*
398                  * On SMP we know no other CPUs can use this CPU's or each
399                  * other's VMID after force_vm_exit returns since the
400                  * kvm_vmid_lock blocks them from reentry to the guest.
401                  */
402                 force_vm_exit(cpu_all_mask);
403                 /*
404                  * Now broadcast TLB + ICACHE invalidation over the inner
405                  * shareable domain to make sure all data structures are
406                  * clean.
407                  */
408                 kvm_call_hyp(__kvm_flush_vm_context);
409         }
410
411         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
412         kvm->arch.vmid = kvm_next_vmid;
413         kvm_next_vmid++;
414
415         /* update vttbr to be used with the new vmid */
416         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
417         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
418         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
419         kvm->arch.vttbr = pgd_phys | vmid;
420
421         spin_unlock(&kvm_vmid_lock);
422 }
423
424 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
425 {
426         struct kvm *kvm = vcpu->kvm;
427         int ret;
428
429         if (likely(vcpu->arch.has_run_once))
430                 return 0;
431
432         vcpu->arch.has_run_once = true;
433
434         /*
435          * Map the VGIC hardware resources before running a vcpu the first
436          * time on this VM.
437          */
438         if (unlikely(!vgic_ready(kvm))) {
439                 ret = kvm_vgic_map_resources(kvm);
440                 if (ret)
441                         return ret;
442         }
443
444         /*
445          * Enable the arch timers only if we have an in-kernel VGIC
446          * and it has been properly initialized, since we cannot handle
447          * interrupts from the virtual timer with a userspace gic.
448          */
449         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
450                 kvm_timer_enable(kvm);
451
452         return 0;
453 }
454
455 static void vcpu_pause(struct kvm_vcpu *vcpu)
456 {
457         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
458
459         wait_event_interruptible(*wq, !vcpu->arch.pause);
460 }
461
462 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
463 {
464         return vcpu->arch.target >= 0;
465 }
466
467 /**
468  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
469  * @vcpu:       The VCPU pointer
470  * @run:        The kvm_run structure pointer used for userspace state exchange
471  *
472  * This function is called through the VCPU_RUN ioctl called from user space. It
473  * will execute VM code in a loop until the time slice for the process is used
474  * or some emulation is needed from user space in which case the function will
475  * return with return value 0 and with the kvm_run structure filled in with the
476  * required data for the requested emulation.
477  */
478 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
479 {
480         int ret;
481         sigset_t sigsaved;
482
483         if (unlikely(!kvm_vcpu_initialized(vcpu)))
484                 return -ENOEXEC;
485
486         ret = kvm_vcpu_first_run_init(vcpu);
487         if (ret)
488                 return ret;
489
490         if (run->exit_reason == KVM_EXIT_MMIO) {
491                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
492                 if (ret)
493                         return ret;
494         }
495
496         if (vcpu->sigset_active)
497                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
498
499         ret = 1;
500         run->exit_reason = KVM_EXIT_UNKNOWN;
501         while (ret > 0) {
502                 /*
503                  * Check conditions before entering the guest
504                  */
505                 cond_resched();
506
507                 update_vttbr(vcpu->kvm);
508
509                 if (vcpu->arch.pause)
510                         vcpu_pause(vcpu);
511
512                 kvm_vgic_flush_hwstate(vcpu);
513                 kvm_timer_flush_hwstate(vcpu);
514
515                 local_irq_disable();
516
517                 /*
518                  * Re-check atomic conditions
519                  */
520                 if (signal_pending(current)) {
521                         ret = -EINTR;
522                         run->exit_reason = KVM_EXIT_INTR;
523                 }
524
525                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
526                         local_irq_enable();
527                         kvm_timer_sync_hwstate(vcpu);
528                         kvm_vgic_sync_hwstate(vcpu);
529                         continue;
530                 }
531
532                 /**************************************************************
533                  * Enter the guest
534                  */
535                 trace_kvm_entry(*vcpu_pc(vcpu));
536                 kvm_guest_enter();
537                 vcpu->mode = IN_GUEST_MODE;
538
539                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
540
541                 vcpu->mode = OUTSIDE_GUEST_MODE;
542                 kvm_guest_exit();
543                 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
544                 /*
545                  * We may have taken a host interrupt in HYP mode (ie
546                  * while executing the guest). This interrupt is still
547                  * pending, as we haven't serviced it yet!
548                  *
549                  * We're now back in SVC mode, with interrupts
550                  * disabled.  Enabling the interrupts now will have
551                  * the effect of taking the interrupt again, in SVC
552                  * mode this time.
553                  */
554                 local_irq_enable();
555
556                 /*
557                  * Back from guest
558                  *************************************************************/
559
560                 kvm_timer_sync_hwstate(vcpu);
561                 kvm_vgic_sync_hwstate(vcpu);
562
563                 ret = handle_exit(vcpu, run, ret);
564         }
565
566         if (vcpu->sigset_active)
567                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
568         return ret;
569 }
570
571 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
572 {
573         int bit_index;
574         bool set;
575         unsigned long *ptr;
576
577         if (number == KVM_ARM_IRQ_CPU_IRQ)
578                 bit_index = __ffs(HCR_VI);
579         else /* KVM_ARM_IRQ_CPU_FIQ */
580                 bit_index = __ffs(HCR_VF);
581
582         ptr = (unsigned long *)&vcpu->arch.irq_lines;
583         if (level)
584                 set = test_and_set_bit(bit_index, ptr);
585         else
586                 set = test_and_clear_bit(bit_index, ptr);
587
588         /*
589          * If we didn't change anything, no need to wake up or kick other CPUs
590          */
591         if (set == level)
592                 return 0;
593
594         /*
595          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
596          * trigger a world-switch round on the running physical CPU to set the
597          * virtual IRQ/FIQ fields in the HCR appropriately.
598          */
599         kvm_vcpu_kick(vcpu);
600
601         return 0;
602 }
603
604 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
605                           bool line_status)
606 {
607         u32 irq = irq_level->irq;
608         unsigned int irq_type, vcpu_idx, irq_num;
609         int nrcpus = atomic_read(&kvm->online_vcpus);
610         struct kvm_vcpu *vcpu = NULL;
611         bool level = irq_level->level;
612
613         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
614         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
615         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
616
617         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
618
619         switch (irq_type) {
620         case KVM_ARM_IRQ_TYPE_CPU:
621                 if (irqchip_in_kernel(kvm))
622                         return -ENXIO;
623
624                 if (vcpu_idx >= nrcpus)
625                         return -EINVAL;
626
627                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
628                 if (!vcpu)
629                         return -EINVAL;
630
631                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
632                         return -EINVAL;
633
634                 return vcpu_interrupt_line(vcpu, irq_num, level);
635         case KVM_ARM_IRQ_TYPE_PPI:
636                 if (!irqchip_in_kernel(kvm))
637                         return -ENXIO;
638
639                 if (vcpu_idx >= nrcpus)
640                         return -EINVAL;
641
642                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
643                 if (!vcpu)
644                         return -EINVAL;
645
646                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
647                         return -EINVAL;
648
649                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
650         case KVM_ARM_IRQ_TYPE_SPI:
651                 if (!irqchip_in_kernel(kvm))
652                         return -ENXIO;
653
654                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
655                     irq_num > KVM_ARM_IRQ_GIC_MAX)
656                         return -EINVAL;
657
658                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
659         }
660
661         return -EINVAL;
662 }
663
664 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
665                                const struct kvm_vcpu_init *init)
666 {
667         unsigned int i;
668         int phys_target = kvm_target_cpu();
669
670         if (init->target != phys_target)
671                 return -EINVAL;
672
673         /*
674          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
675          * use the same target.
676          */
677         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
678                 return -EINVAL;
679
680         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
681         for (i = 0; i < sizeof(init->features) * 8; i++) {
682                 bool set = (init->features[i / 32] & (1 << (i % 32)));
683
684                 if (set && i >= KVM_VCPU_MAX_FEATURES)
685                         return -ENOENT;
686
687                 /*
688                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
689                  * use the same feature set.
690                  */
691                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
692                     test_bit(i, vcpu->arch.features) != set)
693                         return -EINVAL;
694
695                 if (set)
696                         set_bit(i, vcpu->arch.features);
697         }
698
699         vcpu->arch.target = phys_target;
700
701         /* Now we know what it is, we can reset it. */
702         return kvm_reset_vcpu(vcpu);
703 }
704
705
706 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
707                                          struct kvm_vcpu_init *init)
708 {
709         int ret;
710
711         ret = kvm_vcpu_set_target(vcpu, init);
712         if (ret)
713                 return ret;
714
715         /*
716          * Ensure a rebooted VM will fault in RAM pages and detect if the
717          * guest MMU is turned off and flush the caches as needed.
718          */
719         if (vcpu->arch.has_run_once)
720                 stage2_unmap_vm(vcpu->kvm);
721
722         vcpu_reset_hcr(vcpu);
723
724         /*
725          * Handle the "start in power-off" case by marking the VCPU as paused.
726          */
727         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
728                 vcpu->arch.pause = true;
729         else
730                 vcpu->arch.pause = false;
731
732         return 0;
733 }
734
735 long kvm_arch_vcpu_ioctl(struct file *filp,
736                          unsigned int ioctl, unsigned long arg)
737 {
738         struct kvm_vcpu *vcpu = filp->private_data;
739         void __user *argp = (void __user *)arg;
740
741         switch (ioctl) {
742         case KVM_ARM_VCPU_INIT: {
743                 struct kvm_vcpu_init init;
744
745                 if (copy_from_user(&init, argp, sizeof(init)))
746                         return -EFAULT;
747
748                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
749         }
750         case KVM_SET_ONE_REG:
751         case KVM_GET_ONE_REG: {
752                 struct kvm_one_reg reg;
753
754                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
755                         return -ENOEXEC;
756
757                 if (copy_from_user(&reg, argp, sizeof(reg)))
758                         return -EFAULT;
759                 if (ioctl == KVM_SET_ONE_REG)
760                         return kvm_arm_set_reg(vcpu, &reg);
761                 else
762                         return kvm_arm_get_reg(vcpu, &reg);
763         }
764         case KVM_GET_REG_LIST: {
765                 struct kvm_reg_list __user *user_list = argp;
766                 struct kvm_reg_list reg_list;
767                 unsigned n;
768
769                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
770                         return -ENOEXEC;
771
772                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
773                         return -EFAULT;
774                 n = reg_list.n;
775                 reg_list.n = kvm_arm_num_regs(vcpu);
776                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
777                         return -EFAULT;
778                 if (n < reg_list.n)
779                         return -E2BIG;
780                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
781         }
782         default:
783                 return -EINVAL;
784         }
785 }
786
787 /**
788  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
789  * @kvm: kvm instance
790  * @log: slot id and address to which we copy the log
791  *
792  * Steps 1-4 below provide general overview of dirty page logging. See
793  * kvm_get_dirty_log_protect() function description for additional details.
794  *
795  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
796  * always flush the TLB (step 4) even if previous step failed  and the dirty
797  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
798  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
799  * writes will be marked dirty for next log read.
800  *
801  *   1. Take a snapshot of the bit and clear it if needed.
802  *   2. Write protect the corresponding page.
803  *   3. Copy the snapshot to the userspace.
804  *   4. Flush TLB's if needed.
805  */
806 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
807 {
808         bool is_dirty = false;
809         int r;
810
811         mutex_lock(&kvm->slots_lock);
812
813         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
814
815         if (is_dirty)
816                 kvm_flush_remote_tlbs(kvm);
817
818         mutex_unlock(&kvm->slots_lock);
819         return r;
820 }
821
822 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
823                                         struct kvm_arm_device_addr *dev_addr)
824 {
825         unsigned long dev_id, type;
826
827         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
828                 KVM_ARM_DEVICE_ID_SHIFT;
829         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
830                 KVM_ARM_DEVICE_TYPE_SHIFT;
831
832         switch (dev_id) {
833         case KVM_ARM_DEVICE_VGIC_V2:
834                 if (!vgic_present)
835                         return -ENXIO;
836                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
837         default:
838                 return -ENODEV;
839         }
840 }
841
842 long kvm_arch_vm_ioctl(struct file *filp,
843                        unsigned int ioctl, unsigned long arg)
844 {
845         struct kvm *kvm = filp->private_data;
846         void __user *argp = (void __user *)arg;
847
848         switch (ioctl) {
849         case KVM_CREATE_IRQCHIP: {
850                 if (vgic_present)
851                         return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
852                 else
853                         return -ENXIO;
854         }
855         case KVM_ARM_SET_DEVICE_ADDR: {
856                 struct kvm_arm_device_addr dev_addr;
857
858                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
859                         return -EFAULT;
860                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
861         }
862         case KVM_ARM_PREFERRED_TARGET: {
863                 int err;
864                 struct kvm_vcpu_init init;
865
866                 err = kvm_vcpu_preferred_target(&init);
867                 if (err)
868                         return err;
869
870                 if (copy_to_user(argp, &init, sizeof(init)))
871                         return -EFAULT;
872
873                 return 0;
874         }
875         default:
876                 return -EINVAL;
877         }
878 }
879
880 static void cpu_init_hyp_mode(void *dummy)
881 {
882         phys_addr_t boot_pgd_ptr;
883         phys_addr_t pgd_ptr;
884         unsigned long hyp_stack_ptr;
885         unsigned long stack_page;
886         unsigned long vector_ptr;
887
888         /* Switch from the HYP stub to our own HYP init vector */
889         __hyp_set_vectors(kvm_get_idmap_vector());
890
891         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
892         pgd_ptr = kvm_mmu_get_httbr();
893         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
894         hyp_stack_ptr = stack_page + PAGE_SIZE;
895         vector_ptr = (unsigned long)__kvm_hyp_vector;
896
897         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
898 }
899
900 static int hyp_init_cpu_notify(struct notifier_block *self,
901                                unsigned long action, void *cpu)
902 {
903         switch (action) {
904         case CPU_STARTING:
905         case CPU_STARTING_FROZEN:
906                 if (__hyp_get_vectors() == hyp_default_vectors)
907                         cpu_init_hyp_mode(NULL);
908                 break;
909         }
910
911         return NOTIFY_OK;
912 }
913
914 static struct notifier_block hyp_init_cpu_nb = {
915         .notifier_call = hyp_init_cpu_notify,
916 };
917
918 #ifdef CONFIG_CPU_PM
919 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
920                                     unsigned long cmd,
921                                     void *v)
922 {
923         if (cmd == CPU_PM_EXIT &&
924             __hyp_get_vectors() == hyp_default_vectors) {
925                 cpu_init_hyp_mode(NULL);
926                 return NOTIFY_OK;
927         }
928
929         return NOTIFY_DONE;
930 }
931
932 static struct notifier_block hyp_init_cpu_pm_nb = {
933         .notifier_call = hyp_init_cpu_pm_notifier,
934 };
935
936 static void __init hyp_cpu_pm_init(void)
937 {
938         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
939 }
940 #else
941 static inline void hyp_cpu_pm_init(void)
942 {
943 }
944 #endif
945
946 /**
947  * Inits Hyp-mode on all online CPUs
948  */
949 static int init_hyp_mode(void)
950 {
951         int cpu;
952         int err = 0;
953
954         /*
955          * Allocate Hyp PGD and setup Hyp identity mapping
956          */
957         err = kvm_mmu_init();
958         if (err)
959                 goto out_err;
960
961         /*
962          * It is probably enough to obtain the default on one
963          * CPU. It's unlikely to be different on the others.
964          */
965         hyp_default_vectors = __hyp_get_vectors();
966
967         /*
968          * Allocate stack pages for Hypervisor-mode
969          */
970         for_each_possible_cpu(cpu) {
971                 unsigned long stack_page;
972
973                 stack_page = __get_free_page(GFP_KERNEL);
974                 if (!stack_page) {
975                         err = -ENOMEM;
976                         goto out_free_stack_pages;
977                 }
978
979                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
980         }
981
982         /*
983          * Map the Hyp-code called directly from the host
984          */
985         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
986         if (err) {
987                 kvm_err("Cannot map world-switch code\n");
988                 goto out_free_mappings;
989         }
990
991         /*
992          * Map the Hyp stack pages
993          */
994         for_each_possible_cpu(cpu) {
995                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
996                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
997
998                 if (err) {
999                         kvm_err("Cannot map hyp stack\n");
1000                         goto out_free_mappings;
1001                 }
1002         }
1003
1004         /*
1005          * Map the host CPU structures
1006          */
1007         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1008         if (!kvm_host_cpu_state) {
1009                 err = -ENOMEM;
1010                 kvm_err("Cannot allocate host CPU state\n");
1011                 goto out_free_mappings;
1012         }
1013
1014         for_each_possible_cpu(cpu) {
1015                 kvm_cpu_context_t *cpu_ctxt;
1016
1017                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1018                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1019
1020                 if (err) {
1021                         kvm_err("Cannot map host CPU state: %d\n", err);
1022                         goto out_free_context;
1023                 }
1024         }
1025
1026         /*
1027          * Execute the init code on each CPU.
1028          */
1029         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1030
1031         /*
1032          * Init HYP view of VGIC
1033          */
1034         err = kvm_vgic_hyp_init();
1035         if (err)
1036                 goto out_free_context;
1037
1038 #ifdef CONFIG_KVM_ARM_VGIC
1039                 vgic_present = true;
1040 #endif
1041
1042         /*
1043          * Init HYP architected timer support
1044          */
1045         err = kvm_timer_hyp_init();
1046         if (err)
1047                 goto out_free_mappings;
1048
1049 #ifndef CONFIG_HOTPLUG_CPU
1050         free_boot_hyp_pgd();
1051 #endif
1052
1053         kvm_perf_init();
1054
1055         kvm_info("Hyp mode initialized successfully\n");
1056
1057         return 0;
1058 out_free_context:
1059         free_percpu(kvm_host_cpu_state);
1060 out_free_mappings:
1061         free_hyp_pgds();
1062 out_free_stack_pages:
1063         for_each_possible_cpu(cpu)
1064                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1065 out_err:
1066         kvm_err("error initializing Hyp mode: %d\n", err);
1067         return err;
1068 }
1069
1070 static void check_kvm_target_cpu(void *ret)
1071 {
1072         *(int *)ret = kvm_target_cpu();
1073 }
1074
1075 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1076 {
1077         struct kvm_vcpu *vcpu;
1078         int i;
1079
1080         mpidr &= MPIDR_HWID_BITMASK;
1081         kvm_for_each_vcpu(i, vcpu, kvm) {
1082                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1083                         return vcpu;
1084         }
1085         return NULL;
1086 }
1087
1088 /**
1089  * Initialize Hyp-mode and memory mappings on all CPUs.
1090  */
1091 int kvm_arch_init(void *opaque)
1092 {
1093         int err;
1094         int ret, cpu;
1095
1096         if (!is_hyp_mode_available()) {
1097                 kvm_err("HYP mode not available\n");
1098                 return -ENODEV;
1099         }
1100
1101         for_each_online_cpu(cpu) {
1102                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1103                 if (ret < 0) {
1104                         kvm_err("Error, CPU %d not supported!\n", cpu);
1105                         return -ENODEV;
1106                 }
1107         }
1108
1109         cpu_notifier_register_begin();
1110
1111         err = init_hyp_mode();
1112         if (err)
1113                 goto out_err;
1114
1115         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1116         if (err) {
1117                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1118                 goto out_err;
1119         }
1120
1121         cpu_notifier_register_done();
1122
1123         hyp_cpu_pm_init();
1124
1125         kvm_coproc_table_init();
1126         return 0;
1127 out_err:
1128         cpu_notifier_register_done();
1129         return err;
1130 }
1131
1132 /* NOP: Compiling as a module not supported */
1133 void kvm_arch_exit(void)
1134 {
1135         kvm_perf_teardown();
1136 }
1137
1138 static int arm_init(void)
1139 {
1140         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1141         return rc;
1142 }
1143
1144 module_init(arm_init);