drm/amd/powerplay: refine pwm1_enable callback functions for CI.
[sfrench/cifs-2.6.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73         BUG_ON(preemptible());
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79  * Must be called from non-preemptible context
80  */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83         BUG_ON(preemptible());
84         return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89  */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92         return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102         return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107         *(int *)rtn = 0;
108 }
109
110
111 /**
112  * kvm_arch_init_vm - initializes a VM data structure
113  * @kvm:        pointer to the KVM struct
114  */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117         int ret, cpu;
118
119         if (type)
120                 return -EINVAL;
121
122         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123         if (!kvm->arch.last_vcpu_ran)
124                 return -ENOMEM;
125
126         for_each_possible_cpu(cpu)
127                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129         ret = kvm_alloc_stage2_pgd(kvm);
130         if (ret)
131                 goto out_fail_alloc;
132
133         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134         if (ret)
135                 goto out_free_stage2_pgd;
136
137         kvm_vgic_early_init(kvm);
138
139         /* Mark the initial VMID generation invalid */
140         kvm->arch.vmid_gen = 0;
141
142         /* The maximum number of VCPUs is limited by the host's GIC model */
143         kvm->arch.max_vcpus = vgic_present ?
144                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         free_percpu(kvm->arch.last_vcpu_ran);
151         kvm->arch.last_vcpu_ran = NULL;
152         return ret;
153 }
154
155 bool kvm_arch_has_vcpu_debugfs(void)
156 {
157         return false;
158 }
159
160 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
161 {
162         return 0;
163 }
164
165 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
166 {
167         return VM_FAULT_SIGBUS;
168 }
169
170
171 /**
172  * kvm_arch_destroy_vm - destroy the VM data structure
173  * @kvm:        pointer to the KVM struct
174  */
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177         int i;
178
179         free_percpu(kvm->arch.last_vcpu_ran);
180         kvm->arch.last_vcpu_ran = NULL;
181
182         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
183                 if (kvm->vcpus[i]) {
184                         kvm_arch_vcpu_free(kvm->vcpus[i]);
185                         kvm->vcpus[i] = NULL;
186                 }
187         }
188
189         kvm_vgic_destroy(kvm);
190 }
191
192 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 {
194         int r;
195         switch (ext) {
196         case KVM_CAP_IRQCHIP:
197                 r = vgic_present;
198                 break;
199         case KVM_CAP_IOEVENTFD:
200         case KVM_CAP_DEVICE_CTRL:
201         case KVM_CAP_USER_MEMORY:
202         case KVM_CAP_SYNC_MMU:
203         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
204         case KVM_CAP_ONE_REG:
205         case KVM_CAP_ARM_PSCI:
206         case KVM_CAP_ARM_PSCI_0_2:
207         case KVM_CAP_READONLY_MEM:
208         case KVM_CAP_MP_STATE:
209         case KVM_CAP_IMMEDIATE_EXIT:
210                 r = 1;
211                 break;
212         case KVM_CAP_COALESCED_MMIO:
213                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214                 break;
215         case KVM_CAP_ARM_SET_DEVICE_ADDR:
216                 r = 1;
217                 break;
218         case KVM_CAP_NR_VCPUS:
219                 r = num_online_cpus();
220                 break;
221         case KVM_CAP_MAX_VCPUS:
222                 r = KVM_MAX_VCPUS;
223                 break;
224         case KVM_CAP_NR_MEMSLOTS:
225                 r = KVM_USER_MEM_SLOTS;
226                 break;
227         case KVM_CAP_MSI_DEVID:
228                 if (!kvm)
229                         r = -EINVAL;
230                 else
231                         r = kvm->arch.vgic.msis_require_devid;
232                 break;
233         default:
234                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
235                 break;
236         }
237         return r;
238 }
239
240 long kvm_arch_dev_ioctl(struct file *filp,
241                         unsigned int ioctl, unsigned long arg)
242 {
243         return -EINVAL;
244 }
245
246
247 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
248 {
249         int err;
250         struct kvm_vcpu *vcpu;
251
252         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
253                 err = -EBUSY;
254                 goto out;
255         }
256
257         if (id >= kvm->arch.max_vcpus) {
258                 err = -EINVAL;
259                 goto out;
260         }
261
262         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
263         if (!vcpu) {
264                 err = -ENOMEM;
265                 goto out;
266         }
267
268         err = kvm_vcpu_init(vcpu, kvm, id);
269         if (err)
270                 goto free_vcpu;
271
272         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
273         if (err)
274                 goto vcpu_uninit;
275
276         return vcpu;
277 vcpu_uninit:
278         kvm_vcpu_uninit(vcpu);
279 free_vcpu:
280         kmem_cache_free(kvm_vcpu_cache, vcpu);
281 out:
282         return ERR_PTR(err);
283 }
284
285 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
286 {
287         kvm_vgic_vcpu_early_init(vcpu);
288 }
289
290 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
291 {
292         kvm_mmu_free_memory_caches(vcpu);
293         kvm_timer_vcpu_terminate(vcpu);
294         kvm_vgic_vcpu_destroy(vcpu);
295         kvm_pmu_vcpu_destroy(vcpu);
296         kvm_vcpu_uninit(vcpu);
297         kmem_cache_free(kvm_vcpu_cache, vcpu);
298 }
299
300 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
301 {
302         kvm_arch_vcpu_free(vcpu);
303 }
304
305 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
306 {
307         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
308                kvm_timer_should_fire(vcpu_ptimer(vcpu));
309 }
310
311 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
312 {
313         kvm_timer_schedule(vcpu);
314 }
315
316 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
317 {
318         kvm_timer_unschedule(vcpu);
319 }
320
321 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
322 {
323         /* Force users to call KVM_ARM_VCPU_INIT */
324         vcpu->arch.target = -1;
325         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
326
327         /* Set up the timer */
328         kvm_timer_vcpu_init(vcpu);
329
330         kvm_arm_reset_debug_ptr(vcpu);
331
332         return 0;
333 }
334
335 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
336 {
337         int *last_ran;
338
339         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
340
341         /*
342          * We might get preempted before the vCPU actually runs, but
343          * over-invalidation doesn't affect correctness.
344          */
345         if (*last_ran != vcpu->vcpu_id) {
346                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
347                 *last_ran = vcpu->vcpu_id;
348         }
349
350         vcpu->cpu = cpu;
351         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
352
353         kvm_arm_set_running_vcpu(vcpu);
354 }
355
356 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
357 {
358         /*
359          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
360          * if the vcpu is no longer assigned to a cpu.  This is used for the
361          * optimized make_all_cpus_request path.
362          */
363         vcpu->cpu = -1;
364
365         kvm_arm_set_running_vcpu(NULL);
366         kvm_timer_vcpu_put(vcpu);
367 }
368
369 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
370                                     struct kvm_mp_state *mp_state)
371 {
372         if (vcpu->arch.power_off)
373                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
374         else
375                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
376
377         return 0;
378 }
379
380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
381                                     struct kvm_mp_state *mp_state)
382 {
383         switch (mp_state->mp_state) {
384         case KVM_MP_STATE_RUNNABLE:
385                 vcpu->arch.power_off = false;
386                 break;
387         case KVM_MP_STATE_STOPPED:
388                 vcpu->arch.power_off = true;
389                 break;
390         default:
391                 return -EINVAL;
392         }
393
394         return 0;
395 }
396
397 /**
398  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
399  * @v:          The VCPU pointer
400  *
401  * If the guest CPU is not waiting for interrupts or an interrupt line is
402  * asserted, the CPU is by definition runnable.
403  */
404 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
405 {
406         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
407                 && !v->arch.power_off && !v->arch.pause);
408 }
409
410 /* Just ensure a guest exit from a particular CPU */
411 static void exit_vm_noop(void *info)
412 {
413 }
414
415 void force_vm_exit(const cpumask_t *mask)
416 {
417         preempt_disable();
418         smp_call_function_many(mask, exit_vm_noop, NULL, true);
419         preempt_enable();
420 }
421
422 /**
423  * need_new_vmid_gen - check that the VMID is still valid
424  * @kvm: The VM's VMID to check
425  *
426  * return true if there is a new generation of VMIDs being used
427  *
428  * The hardware supports only 256 values with the value zero reserved for the
429  * host, so we check if an assigned value belongs to a previous generation,
430  * which which requires us to assign a new value. If we're the first to use a
431  * VMID for the new generation, we must flush necessary caches and TLBs on all
432  * CPUs.
433  */
434 static bool need_new_vmid_gen(struct kvm *kvm)
435 {
436         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
437 }
438
439 /**
440  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
441  * @kvm The guest that we are about to run
442  *
443  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
444  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
445  * caches and TLBs.
446  */
447 static void update_vttbr(struct kvm *kvm)
448 {
449         phys_addr_t pgd_phys;
450         u64 vmid;
451
452         if (!need_new_vmid_gen(kvm))
453                 return;
454
455         spin_lock(&kvm_vmid_lock);
456
457         /*
458          * We need to re-check the vmid_gen here to ensure that if another vcpu
459          * already allocated a valid vmid for this vm, then this vcpu should
460          * use the same vmid.
461          */
462         if (!need_new_vmid_gen(kvm)) {
463                 spin_unlock(&kvm_vmid_lock);
464                 return;
465         }
466
467         /* First user of a new VMID generation? */
468         if (unlikely(kvm_next_vmid == 0)) {
469                 atomic64_inc(&kvm_vmid_gen);
470                 kvm_next_vmid = 1;
471
472                 /*
473                  * On SMP we know no other CPUs can use this CPU's or each
474                  * other's VMID after force_vm_exit returns since the
475                  * kvm_vmid_lock blocks them from reentry to the guest.
476                  */
477                 force_vm_exit(cpu_all_mask);
478                 /*
479                  * Now broadcast TLB + ICACHE invalidation over the inner
480                  * shareable domain to make sure all data structures are
481                  * clean.
482                  */
483                 kvm_call_hyp(__kvm_flush_vm_context);
484         }
485
486         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
487         kvm->arch.vmid = kvm_next_vmid;
488         kvm_next_vmid++;
489         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
490
491         /* update vttbr to be used with the new vmid */
492         pgd_phys = virt_to_phys(kvm->arch.pgd);
493         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
494         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
495         kvm->arch.vttbr = pgd_phys | vmid;
496
497         spin_unlock(&kvm_vmid_lock);
498 }
499
500 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
501 {
502         struct kvm *kvm = vcpu->kvm;
503         int ret = 0;
504
505         if (likely(vcpu->arch.has_run_once))
506                 return 0;
507
508         vcpu->arch.has_run_once = true;
509
510         /*
511          * Map the VGIC hardware resources before running a vcpu the first
512          * time on this VM.
513          */
514         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
515                 ret = kvm_vgic_map_resources(kvm);
516                 if (ret)
517                         return ret;
518         }
519
520         /*
521          * Enable the arch timers only if we have an in-kernel VGIC
522          * and it has been properly initialized, since we cannot handle
523          * interrupts from the virtual timer with a userspace gic.
524          */
525         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
526                 ret = kvm_timer_enable(vcpu);
527
528         return ret;
529 }
530
531 bool kvm_arch_intc_initialized(struct kvm *kvm)
532 {
533         return vgic_initialized(kvm);
534 }
535
536 void kvm_arm_halt_guest(struct kvm *kvm)
537 {
538         int i;
539         struct kvm_vcpu *vcpu;
540
541         kvm_for_each_vcpu(i, vcpu, kvm)
542                 vcpu->arch.pause = true;
543         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
544 }
545
546 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
547 {
548         vcpu->arch.pause = true;
549         kvm_vcpu_kick(vcpu);
550 }
551
552 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
553 {
554         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
555
556         vcpu->arch.pause = false;
557         swake_up(wq);
558 }
559
560 void kvm_arm_resume_guest(struct kvm *kvm)
561 {
562         int i;
563         struct kvm_vcpu *vcpu;
564
565         kvm_for_each_vcpu(i, vcpu, kvm)
566                 kvm_arm_resume_vcpu(vcpu);
567 }
568
569 static void vcpu_sleep(struct kvm_vcpu *vcpu)
570 {
571         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
572
573         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
574                                        (!vcpu->arch.pause)));
575 }
576
577 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
578 {
579         return vcpu->arch.target >= 0;
580 }
581
582 /**
583  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
584  * @vcpu:       The VCPU pointer
585  * @run:        The kvm_run structure pointer used for userspace state exchange
586  *
587  * This function is called through the VCPU_RUN ioctl called from user space. It
588  * will execute VM code in a loop until the time slice for the process is used
589  * or some emulation is needed from user space in which case the function will
590  * return with return value 0 and with the kvm_run structure filled in with the
591  * required data for the requested emulation.
592  */
593 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
594 {
595         int ret;
596         sigset_t sigsaved;
597
598         if (unlikely(!kvm_vcpu_initialized(vcpu)))
599                 return -ENOEXEC;
600
601         ret = kvm_vcpu_first_run_init(vcpu);
602         if (ret)
603                 return ret;
604
605         if (run->exit_reason == KVM_EXIT_MMIO) {
606                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
607                 if (ret)
608                         return ret;
609         }
610
611         if (run->immediate_exit)
612                 return -EINTR;
613
614         if (vcpu->sigset_active)
615                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
616
617         ret = 1;
618         run->exit_reason = KVM_EXIT_UNKNOWN;
619         while (ret > 0) {
620                 /*
621                  * Check conditions before entering the guest
622                  */
623                 cond_resched();
624
625                 update_vttbr(vcpu->kvm);
626
627                 if (vcpu->arch.power_off || vcpu->arch.pause)
628                         vcpu_sleep(vcpu);
629
630                 /*
631                  * Preparing the interrupts to be injected also
632                  * involves poking the GIC, which must be done in a
633                  * non-preemptible context.
634                  */
635                 preempt_disable();
636                 kvm_pmu_flush_hwstate(vcpu);
637                 kvm_timer_flush_hwstate(vcpu);
638                 kvm_vgic_flush_hwstate(vcpu);
639
640                 local_irq_disable();
641
642                 /*
643                  * Re-check atomic conditions
644                  */
645                 if (signal_pending(current)) {
646                         ret = -EINTR;
647                         run->exit_reason = KVM_EXIT_INTR;
648                 }
649
650                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
651                         vcpu->arch.power_off || vcpu->arch.pause) {
652                         local_irq_enable();
653                         kvm_pmu_sync_hwstate(vcpu);
654                         kvm_timer_sync_hwstate(vcpu);
655                         kvm_vgic_sync_hwstate(vcpu);
656                         preempt_enable();
657                         continue;
658                 }
659
660                 kvm_arm_setup_debug(vcpu);
661
662                 /**************************************************************
663                  * Enter the guest
664                  */
665                 trace_kvm_entry(*vcpu_pc(vcpu));
666                 guest_enter_irqoff();
667                 vcpu->mode = IN_GUEST_MODE;
668
669                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
670
671                 vcpu->mode = OUTSIDE_GUEST_MODE;
672                 vcpu->stat.exits++;
673                 /*
674                  * Back from guest
675                  *************************************************************/
676
677                 kvm_arm_clear_debug(vcpu);
678
679                 /*
680                  * We may have taken a host interrupt in HYP mode (ie
681                  * while executing the guest). This interrupt is still
682                  * pending, as we haven't serviced it yet!
683                  *
684                  * We're now back in SVC mode, with interrupts
685                  * disabled.  Enabling the interrupts now will have
686                  * the effect of taking the interrupt again, in SVC
687                  * mode this time.
688                  */
689                 local_irq_enable();
690
691                 /*
692                  * We do local_irq_enable() before calling guest_exit() so
693                  * that if a timer interrupt hits while running the guest we
694                  * account that tick as being spent in the guest.  We enable
695                  * preemption after calling guest_exit() so that if we get
696                  * preempted we make sure ticks after that is not counted as
697                  * guest time.
698                  */
699                 guest_exit();
700                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
701
702                 /*
703                  * We must sync the PMU and timer state before the vgic state so
704                  * that the vgic can properly sample the updated state of the
705                  * interrupt line.
706                  */
707                 kvm_pmu_sync_hwstate(vcpu);
708                 kvm_timer_sync_hwstate(vcpu);
709
710                 kvm_vgic_sync_hwstate(vcpu);
711
712                 preempt_enable();
713
714                 ret = handle_exit(vcpu, run, ret);
715         }
716
717         if (vcpu->sigset_active)
718                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
719         return ret;
720 }
721
722 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
723 {
724         int bit_index;
725         bool set;
726         unsigned long *ptr;
727
728         if (number == KVM_ARM_IRQ_CPU_IRQ)
729                 bit_index = __ffs(HCR_VI);
730         else /* KVM_ARM_IRQ_CPU_FIQ */
731                 bit_index = __ffs(HCR_VF);
732
733         ptr = (unsigned long *)&vcpu->arch.irq_lines;
734         if (level)
735                 set = test_and_set_bit(bit_index, ptr);
736         else
737                 set = test_and_clear_bit(bit_index, ptr);
738
739         /*
740          * If we didn't change anything, no need to wake up or kick other CPUs
741          */
742         if (set == level)
743                 return 0;
744
745         /*
746          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
747          * trigger a world-switch round on the running physical CPU to set the
748          * virtual IRQ/FIQ fields in the HCR appropriately.
749          */
750         kvm_vcpu_kick(vcpu);
751
752         return 0;
753 }
754
755 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
756                           bool line_status)
757 {
758         u32 irq = irq_level->irq;
759         unsigned int irq_type, vcpu_idx, irq_num;
760         int nrcpus = atomic_read(&kvm->online_vcpus);
761         struct kvm_vcpu *vcpu = NULL;
762         bool level = irq_level->level;
763
764         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
765         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
766         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
767
768         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
769
770         switch (irq_type) {
771         case KVM_ARM_IRQ_TYPE_CPU:
772                 if (irqchip_in_kernel(kvm))
773                         return -ENXIO;
774
775                 if (vcpu_idx >= nrcpus)
776                         return -EINVAL;
777
778                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
779                 if (!vcpu)
780                         return -EINVAL;
781
782                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
783                         return -EINVAL;
784
785                 return vcpu_interrupt_line(vcpu, irq_num, level);
786         case KVM_ARM_IRQ_TYPE_PPI:
787                 if (!irqchip_in_kernel(kvm))
788                         return -ENXIO;
789
790                 if (vcpu_idx >= nrcpus)
791                         return -EINVAL;
792
793                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
794                 if (!vcpu)
795                         return -EINVAL;
796
797                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
798                         return -EINVAL;
799
800                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
801         case KVM_ARM_IRQ_TYPE_SPI:
802                 if (!irqchip_in_kernel(kvm))
803                         return -ENXIO;
804
805                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
806                         return -EINVAL;
807
808                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
809         }
810
811         return -EINVAL;
812 }
813
814 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
815                                const struct kvm_vcpu_init *init)
816 {
817         unsigned int i;
818         int phys_target = kvm_target_cpu();
819
820         if (init->target != phys_target)
821                 return -EINVAL;
822
823         /*
824          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
825          * use the same target.
826          */
827         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
828                 return -EINVAL;
829
830         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
831         for (i = 0; i < sizeof(init->features) * 8; i++) {
832                 bool set = (init->features[i / 32] & (1 << (i % 32)));
833
834                 if (set && i >= KVM_VCPU_MAX_FEATURES)
835                         return -ENOENT;
836
837                 /*
838                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
839                  * use the same feature set.
840                  */
841                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
842                     test_bit(i, vcpu->arch.features) != set)
843                         return -EINVAL;
844
845                 if (set)
846                         set_bit(i, vcpu->arch.features);
847         }
848
849         vcpu->arch.target = phys_target;
850
851         /* Now we know what it is, we can reset it. */
852         return kvm_reset_vcpu(vcpu);
853 }
854
855
856 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
857                                          struct kvm_vcpu_init *init)
858 {
859         int ret;
860
861         ret = kvm_vcpu_set_target(vcpu, init);
862         if (ret)
863                 return ret;
864
865         /*
866          * Ensure a rebooted VM will fault in RAM pages and detect if the
867          * guest MMU is turned off and flush the caches as needed.
868          */
869         if (vcpu->arch.has_run_once)
870                 stage2_unmap_vm(vcpu->kvm);
871
872         vcpu_reset_hcr(vcpu);
873
874         /*
875          * Handle the "start in power-off" case.
876          */
877         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
878                 vcpu->arch.power_off = true;
879         else
880                 vcpu->arch.power_off = false;
881
882         return 0;
883 }
884
885 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
886                                  struct kvm_device_attr *attr)
887 {
888         int ret = -ENXIO;
889
890         switch (attr->group) {
891         default:
892                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
893                 break;
894         }
895
896         return ret;
897 }
898
899 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
900                                  struct kvm_device_attr *attr)
901 {
902         int ret = -ENXIO;
903
904         switch (attr->group) {
905         default:
906                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
907                 break;
908         }
909
910         return ret;
911 }
912
913 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
914                                  struct kvm_device_attr *attr)
915 {
916         int ret = -ENXIO;
917
918         switch (attr->group) {
919         default:
920                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
921                 break;
922         }
923
924         return ret;
925 }
926
927 long kvm_arch_vcpu_ioctl(struct file *filp,
928                          unsigned int ioctl, unsigned long arg)
929 {
930         struct kvm_vcpu *vcpu = filp->private_data;
931         void __user *argp = (void __user *)arg;
932         struct kvm_device_attr attr;
933
934         switch (ioctl) {
935         case KVM_ARM_VCPU_INIT: {
936                 struct kvm_vcpu_init init;
937
938                 if (copy_from_user(&init, argp, sizeof(init)))
939                         return -EFAULT;
940
941                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
942         }
943         case KVM_SET_ONE_REG:
944         case KVM_GET_ONE_REG: {
945                 struct kvm_one_reg reg;
946
947                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
948                         return -ENOEXEC;
949
950                 if (copy_from_user(&reg, argp, sizeof(reg)))
951                         return -EFAULT;
952                 if (ioctl == KVM_SET_ONE_REG)
953                         return kvm_arm_set_reg(vcpu, &reg);
954                 else
955                         return kvm_arm_get_reg(vcpu, &reg);
956         }
957         case KVM_GET_REG_LIST: {
958                 struct kvm_reg_list __user *user_list = argp;
959                 struct kvm_reg_list reg_list;
960                 unsigned n;
961
962                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
963                         return -ENOEXEC;
964
965                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
966                         return -EFAULT;
967                 n = reg_list.n;
968                 reg_list.n = kvm_arm_num_regs(vcpu);
969                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
970                         return -EFAULT;
971                 if (n < reg_list.n)
972                         return -E2BIG;
973                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
974         }
975         case KVM_SET_DEVICE_ATTR: {
976                 if (copy_from_user(&attr, argp, sizeof(attr)))
977                         return -EFAULT;
978                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
979         }
980         case KVM_GET_DEVICE_ATTR: {
981                 if (copy_from_user(&attr, argp, sizeof(attr)))
982                         return -EFAULT;
983                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
984         }
985         case KVM_HAS_DEVICE_ATTR: {
986                 if (copy_from_user(&attr, argp, sizeof(attr)))
987                         return -EFAULT;
988                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
989         }
990         default:
991                 return -EINVAL;
992         }
993 }
994
995 /**
996  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
997  * @kvm: kvm instance
998  * @log: slot id and address to which we copy the log
999  *
1000  * Steps 1-4 below provide general overview of dirty page logging. See
1001  * kvm_get_dirty_log_protect() function description for additional details.
1002  *
1003  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1004  * always flush the TLB (step 4) even if previous step failed  and the dirty
1005  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1006  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1007  * writes will be marked dirty for next log read.
1008  *
1009  *   1. Take a snapshot of the bit and clear it if needed.
1010  *   2. Write protect the corresponding page.
1011  *   3. Copy the snapshot to the userspace.
1012  *   4. Flush TLB's if needed.
1013  */
1014 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1015 {
1016         bool is_dirty = false;
1017         int r;
1018
1019         mutex_lock(&kvm->slots_lock);
1020
1021         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1022
1023         if (is_dirty)
1024                 kvm_flush_remote_tlbs(kvm);
1025
1026         mutex_unlock(&kvm->slots_lock);
1027         return r;
1028 }
1029
1030 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1031                                         struct kvm_arm_device_addr *dev_addr)
1032 {
1033         unsigned long dev_id, type;
1034
1035         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1036                 KVM_ARM_DEVICE_ID_SHIFT;
1037         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1038                 KVM_ARM_DEVICE_TYPE_SHIFT;
1039
1040         switch (dev_id) {
1041         case KVM_ARM_DEVICE_VGIC_V2:
1042                 if (!vgic_present)
1043                         return -ENXIO;
1044                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1045         default:
1046                 return -ENODEV;
1047         }
1048 }
1049
1050 long kvm_arch_vm_ioctl(struct file *filp,
1051                        unsigned int ioctl, unsigned long arg)
1052 {
1053         struct kvm *kvm = filp->private_data;
1054         void __user *argp = (void __user *)arg;
1055
1056         switch (ioctl) {
1057         case KVM_CREATE_IRQCHIP: {
1058                 int ret;
1059                 if (!vgic_present)
1060                         return -ENXIO;
1061                 mutex_lock(&kvm->lock);
1062                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1063                 mutex_unlock(&kvm->lock);
1064                 return ret;
1065         }
1066         case KVM_ARM_SET_DEVICE_ADDR: {
1067                 struct kvm_arm_device_addr dev_addr;
1068
1069                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1070                         return -EFAULT;
1071                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1072         }
1073         case KVM_ARM_PREFERRED_TARGET: {
1074                 int err;
1075                 struct kvm_vcpu_init init;
1076
1077                 err = kvm_vcpu_preferred_target(&init);
1078                 if (err)
1079                         return err;
1080
1081                 if (copy_to_user(argp, &init, sizeof(init)))
1082                         return -EFAULT;
1083
1084                 return 0;
1085         }
1086         default:
1087                 return -EINVAL;
1088         }
1089 }
1090
1091 static void cpu_init_hyp_mode(void *dummy)
1092 {
1093         phys_addr_t pgd_ptr;
1094         unsigned long hyp_stack_ptr;
1095         unsigned long stack_page;
1096         unsigned long vector_ptr;
1097
1098         /* Switch from the HYP stub to our own HYP init vector */
1099         __hyp_set_vectors(kvm_get_idmap_vector());
1100
1101         pgd_ptr = kvm_mmu_get_httbr();
1102         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1103         hyp_stack_ptr = stack_page + PAGE_SIZE;
1104         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1105
1106         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1107         __cpu_init_stage2();
1108
1109         if (is_kernel_in_hyp_mode())
1110                 kvm_timer_init_vhe();
1111
1112         kvm_arm_init_debug();
1113 }
1114
1115 static void cpu_hyp_reinit(void)
1116 {
1117         if (is_kernel_in_hyp_mode()) {
1118                 /*
1119                  * __cpu_init_stage2() is safe to call even if the PM
1120                  * event was cancelled before the CPU was reset.
1121                  */
1122                 __cpu_init_stage2();
1123         } else {
1124                 if (__hyp_get_vectors() == hyp_default_vectors)
1125                         cpu_init_hyp_mode(NULL);
1126         }
1127
1128         if (vgic_present)
1129                 kvm_vgic_init_cpu_hardware();
1130 }
1131
1132 static void cpu_hyp_reset(void)
1133 {
1134         if (!is_kernel_in_hyp_mode())
1135                 __cpu_reset_hyp_mode(hyp_default_vectors,
1136                                      kvm_get_idmap_start());
1137 }
1138
1139 static void _kvm_arch_hardware_enable(void *discard)
1140 {
1141         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1142                 cpu_hyp_reinit();
1143                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1144         }
1145 }
1146
1147 int kvm_arch_hardware_enable(void)
1148 {
1149         _kvm_arch_hardware_enable(NULL);
1150         return 0;
1151 }
1152
1153 static void _kvm_arch_hardware_disable(void *discard)
1154 {
1155         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1156                 cpu_hyp_reset();
1157                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1158         }
1159 }
1160
1161 void kvm_arch_hardware_disable(void)
1162 {
1163         _kvm_arch_hardware_disable(NULL);
1164 }
1165
1166 #ifdef CONFIG_CPU_PM
1167 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1168                                     unsigned long cmd,
1169                                     void *v)
1170 {
1171         /*
1172          * kvm_arm_hardware_enabled is left with its old value over
1173          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1174          * re-enable hyp.
1175          */
1176         switch (cmd) {
1177         case CPU_PM_ENTER:
1178                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1179                         /*
1180                          * don't update kvm_arm_hardware_enabled here
1181                          * so that the hardware will be re-enabled
1182                          * when we resume. See below.
1183                          */
1184                         cpu_hyp_reset();
1185
1186                 return NOTIFY_OK;
1187         case CPU_PM_EXIT:
1188                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1189                         /* The hardware was enabled before suspend. */
1190                         cpu_hyp_reinit();
1191
1192                 return NOTIFY_OK;
1193
1194         default:
1195                 return NOTIFY_DONE;
1196         }
1197 }
1198
1199 static struct notifier_block hyp_init_cpu_pm_nb = {
1200         .notifier_call = hyp_init_cpu_pm_notifier,
1201 };
1202
1203 static void __init hyp_cpu_pm_init(void)
1204 {
1205         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1206 }
1207 static void __init hyp_cpu_pm_exit(void)
1208 {
1209         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1210 }
1211 #else
1212 static inline void hyp_cpu_pm_init(void)
1213 {
1214 }
1215 static inline void hyp_cpu_pm_exit(void)
1216 {
1217 }
1218 #endif
1219
1220 static void teardown_common_resources(void)
1221 {
1222         free_percpu(kvm_host_cpu_state);
1223 }
1224
1225 static int init_common_resources(void)
1226 {
1227         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1228         if (!kvm_host_cpu_state) {
1229                 kvm_err("Cannot allocate host CPU state\n");
1230                 return -ENOMEM;
1231         }
1232
1233         /* set size of VMID supported by CPU */
1234         kvm_vmid_bits = kvm_get_vmid_bits();
1235         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1236
1237         return 0;
1238 }
1239
1240 static int init_subsystems(void)
1241 {
1242         int err = 0;
1243
1244         /*
1245          * Enable hardware so that subsystem initialisation can access EL2.
1246          */
1247         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1248
1249         /*
1250          * Register CPU lower-power notifier
1251          */
1252         hyp_cpu_pm_init();
1253
1254         /*
1255          * Init HYP view of VGIC
1256          */
1257         err = kvm_vgic_hyp_init();
1258         switch (err) {
1259         case 0:
1260                 vgic_present = true;
1261                 break;
1262         case -ENODEV:
1263         case -ENXIO:
1264                 vgic_present = false;
1265                 err = 0;
1266                 break;
1267         default:
1268                 goto out;
1269         }
1270
1271         /*
1272          * Init HYP architected timer support
1273          */
1274         err = kvm_timer_hyp_init();
1275         if (err)
1276                 goto out;
1277
1278         kvm_perf_init();
1279         kvm_coproc_table_init();
1280
1281 out:
1282         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1283
1284         return err;
1285 }
1286
1287 static void teardown_hyp_mode(void)
1288 {
1289         int cpu;
1290
1291         if (is_kernel_in_hyp_mode())
1292                 return;
1293
1294         free_hyp_pgds();
1295         for_each_possible_cpu(cpu)
1296                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1297         hyp_cpu_pm_exit();
1298 }
1299
1300 static int init_vhe_mode(void)
1301 {
1302         kvm_info("VHE mode initialized successfully\n");
1303         return 0;
1304 }
1305
1306 /**
1307  * Inits Hyp-mode on all online CPUs
1308  */
1309 static int init_hyp_mode(void)
1310 {
1311         int cpu;
1312         int err = 0;
1313
1314         /*
1315          * Allocate Hyp PGD and setup Hyp identity mapping
1316          */
1317         err = kvm_mmu_init();
1318         if (err)
1319                 goto out_err;
1320
1321         /*
1322          * It is probably enough to obtain the default on one
1323          * CPU. It's unlikely to be different on the others.
1324          */
1325         hyp_default_vectors = __hyp_get_vectors();
1326
1327         /*
1328          * Allocate stack pages for Hypervisor-mode
1329          */
1330         for_each_possible_cpu(cpu) {
1331                 unsigned long stack_page;
1332
1333                 stack_page = __get_free_page(GFP_KERNEL);
1334                 if (!stack_page) {
1335                         err = -ENOMEM;
1336                         goto out_err;
1337                 }
1338
1339                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1340         }
1341
1342         /*
1343          * Map the Hyp-code called directly from the host
1344          */
1345         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1346                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1347         if (err) {
1348                 kvm_err("Cannot map world-switch code\n");
1349                 goto out_err;
1350         }
1351
1352         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1353                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1354         if (err) {
1355                 kvm_err("Cannot map rodata section\n");
1356                 goto out_err;
1357         }
1358
1359         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1360                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1361         if (err) {
1362                 kvm_err("Cannot map bss section\n");
1363                 goto out_err;
1364         }
1365
1366         /*
1367          * Map the Hyp stack pages
1368          */
1369         for_each_possible_cpu(cpu) {
1370                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1371                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1372                                           PAGE_HYP);
1373
1374                 if (err) {
1375                         kvm_err("Cannot map hyp stack\n");
1376                         goto out_err;
1377                 }
1378         }
1379
1380         for_each_possible_cpu(cpu) {
1381                 kvm_cpu_context_t *cpu_ctxt;
1382
1383                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1384                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1385
1386                 if (err) {
1387                         kvm_err("Cannot map host CPU state: %d\n", err);
1388                         goto out_err;
1389                 }
1390         }
1391
1392         kvm_info("Hyp mode initialized successfully\n");
1393
1394         return 0;
1395
1396 out_err:
1397         teardown_hyp_mode();
1398         kvm_err("error initializing Hyp mode: %d\n", err);
1399         return err;
1400 }
1401
1402 static void check_kvm_target_cpu(void *ret)
1403 {
1404         *(int *)ret = kvm_target_cpu();
1405 }
1406
1407 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1408 {
1409         struct kvm_vcpu *vcpu;
1410         int i;
1411
1412         mpidr &= MPIDR_HWID_BITMASK;
1413         kvm_for_each_vcpu(i, vcpu, kvm) {
1414                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1415                         return vcpu;
1416         }
1417         return NULL;
1418 }
1419
1420 /**
1421  * Initialize Hyp-mode and memory mappings on all CPUs.
1422  */
1423 int kvm_arch_init(void *opaque)
1424 {
1425         int err;
1426         int ret, cpu;
1427
1428         if (!is_hyp_mode_available()) {
1429                 kvm_err("HYP mode not available\n");
1430                 return -ENODEV;
1431         }
1432
1433         for_each_online_cpu(cpu) {
1434                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1435                 if (ret < 0) {
1436                         kvm_err("Error, CPU %d not supported!\n", cpu);
1437                         return -ENODEV;
1438                 }
1439         }
1440
1441         err = init_common_resources();
1442         if (err)
1443                 return err;
1444
1445         if (is_kernel_in_hyp_mode())
1446                 err = init_vhe_mode();
1447         else
1448                 err = init_hyp_mode();
1449         if (err)
1450                 goto out_err;
1451
1452         err = init_subsystems();
1453         if (err)
1454                 goto out_hyp;
1455
1456         return 0;
1457
1458 out_hyp:
1459         teardown_hyp_mode();
1460 out_err:
1461         teardown_common_resources();
1462         return err;
1463 }
1464
1465 /* NOP: Compiling as a module not supported */
1466 void kvm_arch_exit(void)
1467 {
1468         kvm_perf_teardown();
1469 }
1470
1471 static int arm_init(void)
1472 {
1473         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1474         return rc;
1475 }
1476
1477 module_init(arm_init);