Merge tag 'tag-chrome-platform-fixes-for-v5.1-rc2' of git://git.kernel.org/pub/scm...
[sfrench/cifs-2.6.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64
65 enum ipi_msg_type {
66         IPI_WAKEUP,
67         IPI_TIMER,
68         IPI_RESCHEDULE,
69         IPI_CALL_FUNC,
70         IPI_CPU_STOP,
71         IPI_IRQ_WORK,
72         IPI_COMPLETION,
73         IPI_CPU_BACKTRACE,
74         /*
75          * SGI8-15 can be reserved by secure firmware, and thus may
76          * not be usable by the kernel. Please keep the above limited
77          * to at most 8 entries.
78          */
79 };
80
81 static DECLARE_COMPLETION(cpu_running);
82
83 static struct smp_operations smp_ops __ro_after_init;
84
85 void __init smp_set_ops(const struct smp_operations *ops)
86 {
87         if (ops)
88                 smp_ops = *ops;
89 };
90
91 static unsigned long get_arch_pgd(pgd_t *pgd)
92 {
93 #ifdef CONFIG_ARM_LPAE
94         return __phys_to_pfn(virt_to_phys(pgd));
95 #else
96         return virt_to_phys(pgd);
97 #endif
98 }
99
100 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
101 static int secondary_biglittle_prepare(unsigned int cpu)
102 {
103         if (!cpu_vtable[cpu])
104                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
105
106         return cpu_vtable[cpu] ? 0 : -ENOMEM;
107 }
108
109 static void secondary_biglittle_init(void)
110 {
111         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
112 }
113 #else
114 static int secondary_biglittle_prepare(unsigned int cpu)
115 {
116         return 0;
117 }
118
119 static void secondary_biglittle_init(void)
120 {
121 }
122 #endif
123
124 int __cpu_up(unsigned int cpu, struct task_struct *idle)
125 {
126         int ret;
127
128         if (!smp_ops.smp_boot_secondary)
129                 return -ENOSYS;
130
131         ret = secondary_biglittle_prepare(cpu);
132         if (ret)
133                 return ret;
134
135         /*
136          * We need to tell the secondary core where to find
137          * its stack and the page tables.
138          */
139         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
140 #ifdef CONFIG_ARM_MPU
141         secondary_data.mpu_rgn_info = &mpu_rgn_info;
142 #endif
143
144 #ifdef CONFIG_MMU
145         secondary_data.pgdir = virt_to_phys(idmap_pgd);
146         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
147 #endif
148         sync_cache_w(&secondary_data);
149
150         /*
151          * Now bring the CPU into our world.
152          */
153         ret = smp_ops.smp_boot_secondary(cpu, idle);
154         if (ret == 0) {
155                 /*
156                  * CPU was successfully started, wait for it
157                  * to come online or time out.
158                  */
159                 wait_for_completion_timeout(&cpu_running,
160                                                  msecs_to_jiffies(1000));
161
162                 if (!cpu_online(cpu)) {
163                         pr_crit("CPU%u: failed to come online\n", cpu);
164                         ret = -EIO;
165                 }
166         } else {
167                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
168         }
169
170
171         memset(&secondary_data, 0, sizeof(secondary_data));
172         return ret;
173 }
174
175 /* platform specific SMP operations */
176 void __init smp_init_cpus(void)
177 {
178         if (smp_ops.smp_init_cpus)
179                 smp_ops.smp_init_cpus();
180 }
181
182 int platform_can_secondary_boot(void)
183 {
184         return !!smp_ops.smp_boot_secondary;
185 }
186
187 int platform_can_cpu_hotplug(void)
188 {
189 #ifdef CONFIG_HOTPLUG_CPU
190         if (smp_ops.cpu_kill)
191                 return 1;
192 #endif
193
194         return 0;
195 }
196
197 #ifdef CONFIG_HOTPLUG_CPU
198 static int platform_cpu_kill(unsigned int cpu)
199 {
200         if (smp_ops.cpu_kill)
201                 return smp_ops.cpu_kill(cpu);
202         return 1;
203 }
204
205 static int platform_cpu_disable(unsigned int cpu)
206 {
207         if (smp_ops.cpu_disable)
208                 return smp_ops.cpu_disable(cpu);
209
210         return 0;
211 }
212
213 int platform_can_hotplug_cpu(unsigned int cpu)
214 {
215         /* cpu_die must be specified to support hotplug */
216         if (!smp_ops.cpu_die)
217                 return 0;
218
219         if (smp_ops.cpu_can_disable)
220                 return smp_ops.cpu_can_disable(cpu);
221
222         /*
223          * By default, allow disabling all CPUs except the first one,
224          * since this is special on a lot of platforms, e.g. because
225          * of clock tick interrupts.
226          */
227         return cpu != 0;
228 }
229
230 /*
231  * __cpu_disable runs on the processor to be shutdown.
232  */
233 int __cpu_disable(void)
234 {
235         unsigned int cpu = smp_processor_id();
236         int ret;
237
238         ret = platform_cpu_disable(cpu);
239         if (ret)
240                 return ret;
241
242         /*
243          * Take this CPU offline.  Once we clear this, we can't return,
244          * and we must not schedule until we're ready to give up the cpu.
245          */
246         set_cpu_online(cpu, false);
247
248         /*
249          * OK - migrate IRQs away from this CPU
250          */
251         irq_migrate_all_off_this_cpu();
252
253         /*
254          * Flush user cache and TLB mappings, and then remove this CPU
255          * from the vm mask set of all processes.
256          *
257          * Caches are flushed to the Level of Unification Inner Shareable
258          * to write-back dirty lines to unified caches shared by all CPUs.
259          */
260         flush_cache_louis();
261         local_flush_tlb_all();
262
263         return 0;
264 }
265
266 static DECLARE_COMPLETION(cpu_died);
267
268 /*
269  * called on the thread which is asking for a CPU to be shutdown -
270  * waits until shutdown has completed, or it is timed out.
271  */
272 void __cpu_die(unsigned int cpu)
273 {
274         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
275                 pr_err("CPU%u: cpu didn't die\n", cpu);
276                 return;
277         }
278         pr_debug("CPU%u: shutdown\n", cpu);
279
280         clear_tasks_mm_cpumask(cpu);
281         /*
282          * platform_cpu_kill() is generally expected to do the powering off
283          * and/or cutting of clocks to the dying CPU.  Optionally, this may
284          * be done by the CPU which is dying in preference to supporting
285          * this call, but that means there is _no_ synchronisation between
286          * the requesting CPU and the dying CPU actually losing power.
287          */
288         if (!platform_cpu_kill(cpu))
289                 pr_err("CPU%u: unable to kill\n", cpu);
290 }
291
292 /*
293  * Called from the idle thread for the CPU which has been shutdown.
294  *
295  * Note that we disable IRQs here, but do not re-enable them
296  * before returning to the caller. This is also the behaviour
297  * of the other hotplug-cpu capable cores, so presumably coming
298  * out of idle fixes this.
299  */
300 void arch_cpu_idle_dead(void)
301 {
302         unsigned int cpu = smp_processor_id();
303
304         idle_task_exit();
305
306         local_irq_disable();
307
308         /*
309          * Flush the data out of the L1 cache for this CPU.  This must be
310          * before the completion to ensure that data is safely written out
311          * before platform_cpu_kill() gets called - which may disable
312          * *this* CPU and power down its cache.
313          */
314         flush_cache_louis();
315
316         /*
317          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
318          * this returns, power and/or clocks can be removed at any point
319          * from this CPU and its cache by platform_cpu_kill().
320          */
321         complete(&cpu_died);
322
323         /*
324          * Ensure that the cache lines associated with that completion are
325          * written out.  This covers the case where _this_ CPU is doing the
326          * powering down, to ensure that the completion is visible to the
327          * CPU waiting for this one.
328          */
329         flush_cache_louis();
330
331         /*
332          * The actual CPU shutdown procedure is at least platform (if not
333          * CPU) specific.  This may remove power, or it may simply spin.
334          *
335          * Platforms are generally expected *NOT* to return from this call,
336          * although there are some which do because they have no way to
337          * power down the CPU.  These platforms are the _only_ reason we
338          * have a return path which uses the fragment of assembly below.
339          *
340          * The return path should not be used for platforms which can
341          * power off the CPU.
342          */
343         if (smp_ops.cpu_die)
344                 smp_ops.cpu_die(cpu);
345
346         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
347                 cpu);
348
349         /*
350          * Do not return to the idle loop - jump back to the secondary
351          * cpu initialisation.  There's some initialisation which needs
352          * to be repeated to undo the effects of taking the CPU offline.
353          */
354         __asm__("mov    sp, %0\n"
355         "       mov     fp, #0\n"
356         "       b       secondary_start_kernel"
357                 :
358                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
359 }
360 #endif /* CONFIG_HOTPLUG_CPU */
361
362 /*
363  * Called by both boot and secondaries to move global data into
364  * per-processor storage.
365  */
366 static void smp_store_cpu_info(unsigned int cpuid)
367 {
368         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
369
370         cpu_info->loops_per_jiffy = loops_per_jiffy;
371         cpu_info->cpuid = read_cpuid_id();
372
373         store_cpu_topology(cpuid);
374 }
375
376 /*
377  * This is the secondary CPU boot entry.  We're using this CPUs
378  * idle thread stack, but a set of temporary page tables.
379  */
380 asmlinkage void secondary_start_kernel(void)
381 {
382         struct mm_struct *mm = &init_mm;
383         unsigned int cpu;
384
385         secondary_biglittle_init();
386
387         /*
388          * The identity mapping is uncached (strongly ordered), so
389          * switch away from it before attempting any exclusive accesses.
390          */
391         cpu_switch_mm(mm->pgd, mm);
392         local_flush_bp_all();
393         enter_lazy_tlb(mm, current);
394         local_flush_tlb_all();
395
396         /*
397          * All kernel threads share the same mm context; grab a
398          * reference and switch to it.
399          */
400         cpu = smp_processor_id();
401         mmgrab(mm);
402         current->active_mm = mm;
403         cpumask_set_cpu(cpu, mm_cpumask(mm));
404
405         cpu_init();
406
407 #ifndef CONFIG_MMU
408         setup_vectors_base();
409 #endif
410         pr_debug("CPU%u: Booted secondary processor\n", cpu);
411
412         preempt_disable();
413         trace_hardirqs_off();
414
415         /*
416          * Give the platform a chance to do its own initialisation.
417          */
418         if (smp_ops.smp_secondary_init)
419                 smp_ops.smp_secondary_init(cpu);
420
421         notify_cpu_starting(cpu);
422
423         calibrate_delay();
424
425         smp_store_cpu_info(cpu);
426
427         /*
428          * OK, now it's safe to let the boot CPU continue.  Wait for
429          * the CPU migration code to notice that the CPU is online
430          * before we continue - which happens after __cpu_up returns.
431          */
432         set_cpu_online(cpu, true);
433
434         check_other_bugs();
435
436         complete(&cpu_running);
437
438         local_irq_enable();
439         local_fiq_enable();
440         local_abt_enable();
441
442         /*
443          * OK, it's off to the idle thread for us
444          */
445         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
446 }
447
448 void __init smp_cpus_done(unsigned int max_cpus)
449 {
450         int cpu;
451         unsigned long bogosum = 0;
452
453         for_each_online_cpu(cpu)
454                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
455
456         printk(KERN_INFO "SMP: Total of %d processors activated "
457                "(%lu.%02lu BogoMIPS).\n",
458                num_online_cpus(),
459                bogosum / (500000/HZ),
460                (bogosum / (5000/HZ)) % 100);
461
462         hyp_mode_check();
463 }
464
465 void __init smp_prepare_boot_cpu(void)
466 {
467         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
468 }
469
470 void __init smp_prepare_cpus(unsigned int max_cpus)
471 {
472         unsigned int ncores = num_possible_cpus();
473
474         init_cpu_topology();
475
476         smp_store_cpu_info(smp_processor_id());
477
478         /*
479          * are we trying to boot more cores than exist?
480          */
481         if (max_cpus > ncores)
482                 max_cpus = ncores;
483         if (ncores > 1 && max_cpus) {
484                 /*
485                  * Initialise the present map, which describes the set of CPUs
486                  * actually populated at the present time. A platform should
487                  * re-initialize the map in the platforms smp_prepare_cpus()
488                  * if present != possible (e.g. physical hotplug).
489                  */
490                 init_cpu_present(cpu_possible_mask);
491
492                 /*
493                  * Initialise the SCU if there are more than one CPU
494                  * and let them know where to start.
495                  */
496                 if (smp_ops.smp_prepare_cpus)
497                         smp_ops.smp_prepare_cpus(max_cpus);
498         }
499 }
500
501 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
502
503 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
504 {
505         if (!__smp_cross_call)
506                 __smp_cross_call = fn;
507 }
508
509 static const char *ipi_types[NR_IPI] __tracepoint_string = {
510 #define S(x,s)  [x] = s
511         S(IPI_WAKEUP, "CPU wakeup interrupts"),
512         S(IPI_TIMER, "Timer broadcast interrupts"),
513         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
514         S(IPI_CALL_FUNC, "Function call interrupts"),
515         S(IPI_CPU_STOP, "CPU stop interrupts"),
516         S(IPI_IRQ_WORK, "IRQ work interrupts"),
517         S(IPI_COMPLETION, "completion interrupts"),
518 };
519
520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521 {
522         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
523         __smp_cross_call(target, ipinr);
524 }
525
526 void show_ipi_list(struct seq_file *p, int prec)
527 {
528         unsigned int cpu, i;
529
530         for (i = 0; i < NR_IPI; i++) {
531                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533                 for_each_online_cpu(cpu)
534                         seq_printf(p, "%10u ",
535                                    __get_irq_stat(cpu, ipi_irqs[i]));
536
537                 seq_printf(p, " %s\n", ipi_types[i]);
538         }
539 }
540
541 u64 smp_irq_stat_cpu(unsigned int cpu)
542 {
543         u64 sum = 0;
544         int i;
545
546         for (i = 0; i < NR_IPI; i++)
547                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
549         return sum;
550 }
551
552 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
553 {
554         smp_cross_call(mask, IPI_CALL_FUNC);
555 }
556
557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
558 {
559         smp_cross_call(mask, IPI_WAKEUP);
560 }
561
562 void arch_send_call_function_single_ipi(int cpu)
563 {
564         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
565 }
566
567 #ifdef CONFIG_IRQ_WORK
568 void arch_irq_work_raise(void)
569 {
570         if (arch_irq_work_has_interrupt())
571                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572 }
573 #endif
574
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578         smp_cross_call(mask, IPI_TIMER);
579 }
580 #endif
581
582 static DEFINE_RAW_SPINLOCK(stop_lock);
583
584 /*
585  * ipi_cpu_stop - handle IPI from smp_send_stop()
586  */
587 static void ipi_cpu_stop(unsigned int cpu)
588 {
589         if (system_state <= SYSTEM_RUNNING) {
590                 raw_spin_lock(&stop_lock);
591                 pr_crit("CPU%u: stopping\n", cpu);
592                 dump_stack();
593                 raw_spin_unlock(&stop_lock);
594         }
595
596         set_cpu_online(cpu, false);
597
598         local_fiq_disable();
599         local_irq_disable();
600
601         while (1) {
602                 cpu_relax();
603                 wfe();
604         }
605 }
606
607 static DEFINE_PER_CPU(struct completion *, cpu_completion);
608
609 int register_ipi_completion(struct completion *completion, int cpu)
610 {
611         per_cpu(cpu_completion, cpu) = completion;
612         return IPI_COMPLETION;
613 }
614
615 static void ipi_complete(unsigned int cpu)
616 {
617         complete(per_cpu(cpu_completion, cpu));
618 }
619
620 /*
621  * Main handler for inter-processor interrupts
622  */
623 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
624 {
625         handle_IPI(ipinr, regs);
626 }
627
628 void handle_IPI(int ipinr, struct pt_regs *regs)
629 {
630         unsigned int cpu = smp_processor_id();
631         struct pt_regs *old_regs = set_irq_regs(regs);
632
633         if ((unsigned)ipinr < NR_IPI) {
634                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
635                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
636         }
637
638         switch (ipinr) {
639         case IPI_WAKEUP:
640                 break;
641
642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643         case IPI_TIMER:
644                 irq_enter();
645                 tick_receive_broadcast();
646                 irq_exit();
647                 break;
648 #endif
649
650         case IPI_RESCHEDULE:
651                 scheduler_ipi();
652                 break;
653
654         case IPI_CALL_FUNC:
655                 irq_enter();
656                 generic_smp_call_function_interrupt();
657                 irq_exit();
658                 break;
659
660         case IPI_CPU_STOP:
661                 irq_enter();
662                 ipi_cpu_stop(cpu);
663                 irq_exit();
664                 break;
665
666 #ifdef CONFIG_IRQ_WORK
667         case IPI_IRQ_WORK:
668                 irq_enter();
669                 irq_work_run();
670                 irq_exit();
671                 break;
672 #endif
673
674         case IPI_COMPLETION:
675                 irq_enter();
676                 ipi_complete(cpu);
677                 irq_exit();
678                 break;
679
680         case IPI_CPU_BACKTRACE:
681                 printk_nmi_enter();
682                 irq_enter();
683                 nmi_cpu_backtrace(regs);
684                 irq_exit();
685                 printk_nmi_exit();
686                 break;
687
688         default:
689                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690                         cpu, ipinr);
691                 break;
692         }
693
694         if ((unsigned)ipinr < NR_IPI)
695                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696         set_irq_regs(old_regs);
697 }
698
699 void smp_send_reschedule(int cpu)
700 {
701         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
702 }
703
704 void smp_send_stop(void)
705 {
706         unsigned long timeout;
707         struct cpumask mask;
708
709         cpumask_copy(&mask, cpu_online_mask);
710         cpumask_clear_cpu(smp_processor_id(), &mask);
711         if (!cpumask_empty(&mask))
712                 smp_cross_call(&mask, IPI_CPU_STOP);
713
714         /* Wait up to one second for other CPUs to stop */
715         timeout = USEC_PER_SEC;
716         while (num_online_cpus() > 1 && timeout--)
717                 udelay(1);
718
719         if (num_online_cpus() > 1)
720                 pr_warn("SMP: failed to stop secondary CPUs\n");
721 }
722
723 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
724  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
725  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
726  * kdump fails. So split out the panic_smp_self_stop() and add
727  * set_cpu_online(smp_processor_id(), false).
728  */
729 void panic_smp_self_stop(void)
730 {
731         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
732                  smp_processor_id());
733         set_cpu_online(smp_processor_id(), false);
734         while (1)
735                 cpu_relax();
736 }
737
738 /*
739  * not supported here
740  */
741 int setup_profiling_timer(unsigned int multiplier)
742 {
743         return -EINVAL;
744 }
745
746 #ifdef CONFIG_CPU_FREQ
747
748 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
750 static unsigned long global_l_p_j_ref;
751 static unsigned long global_l_p_j_ref_freq;
752
753 static int cpufreq_callback(struct notifier_block *nb,
754                                         unsigned long val, void *data)
755 {
756         struct cpufreq_freqs *freq = data;
757         int cpu = freq->cpu;
758
759         if (freq->flags & CPUFREQ_CONST_LOOPS)
760                 return NOTIFY_OK;
761
762         if (!per_cpu(l_p_j_ref, cpu)) {
763                 per_cpu(l_p_j_ref, cpu) =
764                         per_cpu(cpu_data, cpu).loops_per_jiffy;
765                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
766                 if (!global_l_p_j_ref) {
767                         global_l_p_j_ref = loops_per_jiffy;
768                         global_l_p_j_ref_freq = freq->old;
769                 }
770         }
771
772         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
773             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
774                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
775                                                 global_l_p_j_ref_freq,
776                                                 freq->new);
777                 per_cpu(cpu_data, cpu).loops_per_jiffy =
778                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
779                                         per_cpu(l_p_j_ref_freq, cpu),
780                                         freq->new);
781         }
782         return NOTIFY_OK;
783 }
784
785 static struct notifier_block cpufreq_notifier = {
786         .notifier_call  = cpufreq_callback,
787 };
788
789 static int __init register_cpufreq_notifier(void)
790 {
791         return cpufreq_register_notifier(&cpufreq_notifier,
792                                                 CPUFREQ_TRANSITION_NOTIFIER);
793 }
794 core_initcall(register_cpufreq_notifier);
795
796 #endif
797
798 static void raise_nmi(cpumask_t *mask)
799 {
800         smp_cross_call(mask, IPI_CPU_BACKTRACE);
801 }
802
803 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
804 {
805         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
806 }