Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[sfrench/cifs-2.6.git] / arch / arm / kernel / kprobes.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/cacheflush.h>
28
29 #define MIN_STACK_SIZE(addr)                            \
30         min((unsigned long)MAX_STACK_SIZE,              \
31             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
32
33 #define flush_insns(addr, cnt)                          \
34         flush_icache_range((unsigned long)(addr),       \
35                            (unsigned long)(addr) +      \
36                            sizeof(kprobe_opcode_t) * (cnt))
37
38 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
39 #define JPROBE_MAGIC_ADDR               0xffffffff
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
46 {
47         kprobe_opcode_t insn;
48         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
49         unsigned long addr = (unsigned long)p->addr;
50         int is;
51
52         if (addr & 0x3 || in_exception_text(addr))
53                 return -EINVAL;
54
55         insn = *p->addr;
56         p->opcode = insn;
57         p->ainsn.insn = tmp_insn;
58
59         switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
60         case INSN_REJECTED:     /* not supported */
61                 return -EINVAL;
62
63         case INSN_GOOD:         /* instruction uses slot */
64                 p->ainsn.insn = get_insn_slot();
65                 if (!p->ainsn.insn)
66                         return -ENOMEM;
67                 for (is = 0; is < MAX_INSN_SIZE; ++is)
68                         p->ainsn.insn[is] = tmp_insn[is];
69                 flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
70                 break;
71
72         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
73                 p->ainsn.insn = NULL;
74                 break;
75         }
76
77         return 0;
78 }
79
80 void __kprobes arch_arm_kprobe(struct kprobe *p)
81 {
82         *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
83         flush_insns(p->addr, 1);
84 }
85
86 void __kprobes arch_disarm_kprobe(struct kprobe *p)
87 {
88         *p->addr = p->opcode;
89         flush_insns(p->addr, 1);
90 }
91
92 void __kprobes arch_remove_kprobe(struct kprobe *p)
93 {
94         if (p->ainsn.insn) {
95                 free_insn_slot(p->ainsn.insn, 0);
96                 p->ainsn.insn = NULL;
97         }
98 }
99
100 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
101 {
102         kcb->prev_kprobe.kp = kprobe_running();
103         kcb->prev_kprobe.status = kcb->kprobe_status;
104 }
105
106 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
107 {
108         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
109         kcb->kprobe_status = kcb->prev_kprobe.status;
110 }
111
112 static void __kprobes set_current_kprobe(struct kprobe *p)
113 {
114         __get_cpu_var(current_kprobe) = p;
115 }
116
117 static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
118                                  struct kprobe_ctlblk *kcb)
119 {
120         regs->ARM_pc += 4;
121         p->ainsn.insn_handler(p, regs);
122 }
123
124 /*
125  * Called with IRQs disabled. IRQs must remain disabled from that point
126  * all the way until processing this kprobe is complete.  The current
127  * kprobes implementation cannot process more than one nested level of
128  * kprobe, and that level is reserved for user kprobe handlers, so we can't
129  * risk encountering a new kprobe in an interrupt handler.
130  */
131 void __kprobes kprobe_handler(struct pt_regs *regs)
132 {
133         struct kprobe *p, *cur;
134         struct kprobe_ctlblk *kcb;
135         kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
136
137         kcb = get_kprobe_ctlblk();
138         cur = kprobe_running();
139         p = get_kprobe(addr);
140
141         if (p) {
142                 if (cur) {
143                         /* Kprobe is pending, so we're recursing. */
144                         switch (kcb->kprobe_status) {
145                         case KPROBE_HIT_ACTIVE:
146                         case KPROBE_HIT_SSDONE:
147                                 /* A pre- or post-handler probe got us here. */
148                                 kprobes_inc_nmissed_count(p);
149                                 save_previous_kprobe(kcb);
150                                 set_current_kprobe(p);
151                                 kcb->kprobe_status = KPROBE_REENTER;
152                                 singlestep(p, regs, kcb);
153                                 restore_previous_kprobe(kcb);
154                                 break;
155                         default:
156                                 /* impossible cases */
157                                 BUG();
158                         }
159                 } else {
160                         set_current_kprobe(p);
161                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
162
163                         /*
164                          * If we have no pre-handler or it returned 0, we
165                          * continue with normal processing.  If we have a
166                          * pre-handler and it returned non-zero, it prepped
167                          * for calling the break_handler below on re-entry,
168                          * so get out doing nothing more here.
169                          */
170                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
171                                 kcb->kprobe_status = KPROBE_HIT_SS;
172                                 singlestep(p, regs, kcb);
173                                 if (p->post_handler) {
174                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
175                                         p->post_handler(p, regs, 0);
176                                 }
177                                 reset_current_kprobe();
178                         }
179                 }
180         } else if (cur) {
181                 /* We probably hit a jprobe.  Call its break handler. */
182                 if (cur->break_handler && cur->break_handler(cur, regs)) {
183                         kcb->kprobe_status = KPROBE_HIT_SS;
184                         singlestep(cur, regs, kcb);
185                         if (cur->post_handler) {
186                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
187                                 cur->post_handler(cur, regs, 0);
188                         }
189                 }
190                 reset_current_kprobe();
191         } else {
192                 /*
193                  * The probe was removed and a race is in progress.
194                  * There is nothing we can do about it.  Let's restart
195                  * the instruction.  By the time we can restart, the
196                  * real instruction will be there.
197                  */
198         }
199 }
200
201 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
202 {
203         unsigned long flags;
204         local_irq_save(flags);
205         kprobe_handler(regs);
206         local_irq_restore(flags);
207         return 0;
208 }
209
210 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
211 {
212         struct kprobe *cur = kprobe_running();
213         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
214
215         switch (kcb->kprobe_status) {
216         case KPROBE_HIT_SS:
217         case KPROBE_REENTER:
218                 /*
219                  * We are here because the instruction being single
220                  * stepped caused a page fault. We reset the current
221                  * kprobe and the PC to point back to the probe address
222                  * and allow the page fault handler to continue as a
223                  * normal page fault.
224                  */
225                 regs->ARM_pc = (long)cur->addr;
226                 if (kcb->kprobe_status == KPROBE_REENTER) {
227                         restore_previous_kprobe(kcb);
228                 } else {
229                         reset_current_kprobe();
230                 }
231                 break;
232
233         case KPROBE_HIT_ACTIVE:
234         case KPROBE_HIT_SSDONE:
235                 /*
236                  * We increment the nmissed count for accounting,
237                  * we can also use npre/npostfault count for accounting
238                  * these specific fault cases.
239                  */
240                 kprobes_inc_nmissed_count(cur);
241
242                 /*
243                  * We come here because instructions in the pre/post
244                  * handler caused the page_fault, this could happen
245                  * if handler tries to access user space by
246                  * copy_from_user(), get_user() etc. Let the
247                  * user-specified handler try to fix it.
248                  */
249                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
250                         return 1;
251                 break;
252
253         default:
254                 break;
255         }
256
257         return 0;
258 }
259
260 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
261                                        unsigned long val, void *data)
262 {
263         /*
264          * notify_die() is currently never called on ARM,
265          * so this callback is currently empty.
266          */
267         return NOTIFY_DONE;
268 }
269
270 /*
271  * When a retprobed function returns, trampoline_handler() is called,
272  * calling the kretprobe's handler. We construct a struct pt_regs to
273  * give a view of registers r0-r11 to the user return-handler.  This is
274  * not a complete pt_regs structure, but that should be plenty sufficient
275  * for kretprobe handlers which should normally be interested in r0 only
276  * anyway.
277  */
278 void __naked __kprobes kretprobe_trampoline(void)
279 {
280         __asm__ __volatile__ (
281                 "stmdb  sp!, {r0 - r11}         \n\t"
282                 "mov    r0, sp                  \n\t"
283                 "bl     trampoline_handler      \n\t"
284                 "mov    lr, r0                  \n\t"
285                 "ldmia  sp!, {r0 - r11}         \n\t"
286                 "mov    pc, lr                  \n\t"
287                 : : : "memory");
288 }
289
290 /* Called from kretprobe_trampoline */
291 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
292 {
293         struct kretprobe_instance *ri = NULL;
294         struct hlist_head *head, empty_rp;
295         struct hlist_node *node, *tmp;
296         unsigned long flags, orig_ret_address = 0;
297         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
298
299         INIT_HLIST_HEAD(&empty_rp);
300         kretprobe_hash_lock(current, &head, &flags);
301
302         /*
303          * It is possible to have multiple instances associated with a given
304          * task either because multiple functions in the call path have
305          * a return probe installed on them, and/or more than one return
306          * probe was registered for a target function.
307          *
308          * We can handle this because:
309          *     - instances are always inserted at the head of the list
310          *     - when multiple return probes are registered for the same
311          *       function, the first instance's ret_addr will point to the
312          *       real return address, and all the rest will point to
313          *       kretprobe_trampoline
314          */
315         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
316                 if (ri->task != current)
317                         /* another task is sharing our hash bucket */
318                         continue;
319
320                 if (ri->rp && ri->rp->handler) {
321                         __get_cpu_var(current_kprobe) = &ri->rp->kp;
322                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
323                         ri->rp->handler(ri, regs);
324                         __get_cpu_var(current_kprobe) = NULL;
325                 }
326
327                 orig_ret_address = (unsigned long)ri->ret_addr;
328                 recycle_rp_inst(ri, &empty_rp);
329
330                 if (orig_ret_address != trampoline_address)
331                         /*
332                          * This is the real return address. Any other
333                          * instances associated with this task are for
334                          * other calls deeper on the call stack
335                          */
336                         break;
337         }
338
339         kretprobe_assert(ri, orig_ret_address, trampoline_address);
340         kretprobe_hash_unlock(current, &flags);
341
342         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
343                 hlist_del(&ri->hlist);
344                 kfree(ri);
345         }
346
347         return (void *)orig_ret_address;
348 }
349
350 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
351                                       struct pt_regs *regs)
352 {
353         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
354
355         /* Replace the return addr with trampoline addr. */
356         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
357 }
358
359 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
360 {
361         struct jprobe *jp = container_of(p, struct jprobe, kp);
362         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
363         long sp_addr = regs->ARM_sp;
364
365         kcb->jprobe_saved_regs = *regs;
366         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
367         regs->ARM_pc = (long)jp->entry;
368         regs->ARM_cpsr |= PSR_I_BIT;
369         preempt_disable();
370         return 1;
371 }
372
373 void __kprobes jprobe_return(void)
374 {
375         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376
377         __asm__ __volatile__ (
378                 /*
379                  * Setup an empty pt_regs. Fill SP and PC fields as
380                  * they're needed by longjmp_break_handler.
381                  */
382                 "sub    sp, %0, %1              \n\t"
383                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
384                 "str    %0, [sp, %2]            \n\t"
385                 "str    r0, [sp, %3]            \n\t"
386                 "mov    r0, sp                  \n\t"
387                 "bl     kprobe_handler          \n\t"
388
389                 /*
390                  * Return to the context saved by setjmp_pre_handler
391                  * and restored by longjmp_break_handler.
392                  */
393                 "ldr    r0, [sp, %4]            \n\t"
394                 "msr    cpsr_cxsf, r0           \n\t"
395                 "ldmia  sp, {r0 - pc}           \n\t"
396                 :
397                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
398                   "I" (sizeof(struct pt_regs)),
399                   "J" (offsetof(struct pt_regs, ARM_sp)),
400                   "J" (offsetof(struct pt_regs, ARM_pc)),
401                   "J" (offsetof(struct pt_regs, ARM_cpsr))
402                 : "memory", "cc");
403 }
404
405 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
406 {
407         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
409         long orig_sp = regs->ARM_sp;
410         struct jprobe *jp = container_of(p, struct jprobe, kp);
411
412         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
413                 if (orig_sp != stack_addr) {
414                         struct pt_regs *saved_regs =
415                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
416                         printk("current sp %lx does not match saved sp %lx\n",
417                                orig_sp, stack_addr);
418                         printk("Saved registers for jprobe %p\n", jp);
419                         show_regs(saved_regs);
420                         printk("Current registers\n");
421                         show_regs(regs);
422                         BUG();
423                 }
424                 *regs = kcb->jprobe_saved_regs;
425                 memcpy((void *)stack_addr, kcb->jprobes_stack,
426                        MIN_STACK_SIZE(stack_addr));
427                 preempt_enable_no_resched();
428                 return 1;
429         }
430         return 0;
431 }
432
433 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
434 {
435         return 0;
436 }
437
438 static struct undef_hook kprobes_break_hook = {
439         .instr_mask     = 0xffffffff,
440         .instr_val      = KPROBE_BREAKPOINT_INSTRUCTION,
441         .cpsr_mask      = MODE_MASK,
442         .cpsr_val       = SVC_MODE,
443         .fn             = kprobe_trap_handler,
444 };
445
446 int __init arch_init_kprobes()
447 {
448         arm_kprobe_decode_init();
449         register_undef_hook(&kprobes_break_hook);
450         return 0;
451 }