Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / arm / include / asm / dma-mapping.h
1 #ifndef ASMARM_DMA_MAPPING_H
2 #define ASMARM_DMA_MAPPING_H
3
4 #ifdef __KERNEL__
5
6 #include <linux/mm_types.h>
7 #include <linux/scatterlist.h>
8 #include <linux/dma-attrs.h>
9 #include <linux/dma-debug.h>
10
11 #include <asm-generic/dma-coherent.h>
12 #include <asm/memory.h>
13
14 #include <xen/xen.h>
15 #include <asm/xen/hypervisor.h>
16
17 #define DMA_ERROR_CODE  (~0)
18 extern struct dma_map_ops arm_dma_ops;
19 extern struct dma_map_ops arm_coherent_dma_ops;
20
21 static inline struct dma_map_ops *__generic_dma_ops(struct device *dev)
22 {
23         if (dev && dev->archdata.dma_ops)
24                 return dev->archdata.dma_ops;
25         return &arm_dma_ops;
26 }
27
28 static inline struct dma_map_ops *get_dma_ops(struct device *dev)
29 {
30         if (xen_initial_domain())
31                 return xen_dma_ops;
32         else
33                 return __generic_dma_ops(dev);
34 }
35
36 static inline void set_dma_ops(struct device *dev, struct dma_map_ops *ops)
37 {
38         BUG_ON(!dev);
39         dev->archdata.dma_ops = ops;
40 }
41
42 #include <asm-generic/dma-mapping-common.h>
43
44 static inline int dma_set_mask(struct device *dev, u64 mask)
45 {
46         return get_dma_ops(dev)->set_dma_mask(dev, mask);
47 }
48
49 #ifdef __arch_page_to_dma
50 #error Please update to __arch_pfn_to_dma
51 #endif
52
53 /*
54  * dma_to_pfn/pfn_to_dma/dma_to_virt/virt_to_dma are architecture private
55  * functions used internally by the DMA-mapping API to provide DMA
56  * addresses. They must not be used by drivers.
57  */
58 #ifndef __arch_pfn_to_dma
59 static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
60 {
61         if (dev)
62                 pfn -= dev->dma_pfn_offset;
63         return (dma_addr_t)__pfn_to_bus(pfn);
64 }
65
66 static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
67 {
68         unsigned long pfn = __bus_to_pfn(addr);
69
70         if (dev)
71                 pfn += dev->dma_pfn_offset;
72
73         return pfn;
74 }
75
76 static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
77 {
78         if (dev) {
79                 unsigned long pfn = dma_to_pfn(dev, addr);
80
81                 return phys_to_virt(__pfn_to_phys(pfn));
82         }
83
84         return (void *)__bus_to_virt((unsigned long)addr);
85 }
86
87 static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
88 {
89         if (dev)
90                 return pfn_to_dma(dev, virt_to_pfn(addr));
91
92         return (dma_addr_t)__virt_to_bus((unsigned long)(addr));
93 }
94
95 #else
96 static inline dma_addr_t pfn_to_dma(struct device *dev, unsigned long pfn)
97 {
98         return __arch_pfn_to_dma(dev, pfn);
99 }
100
101 static inline unsigned long dma_to_pfn(struct device *dev, dma_addr_t addr)
102 {
103         return __arch_dma_to_pfn(dev, addr);
104 }
105
106 static inline void *dma_to_virt(struct device *dev, dma_addr_t addr)
107 {
108         return __arch_dma_to_virt(dev, addr);
109 }
110
111 static inline dma_addr_t virt_to_dma(struct device *dev, void *addr)
112 {
113         return __arch_virt_to_dma(dev, addr);
114 }
115 #endif
116
117 /* The ARM override for dma_max_pfn() */
118 static inline unsigned long dma_max_pfn(struct device *dev)
119 {
120         return PHYS_PFN_OFFSET + dma_to_pfn(dev, *dev->dma_mask);
121 }
122 #define dma_max_pfn(dev) dma_max_pfn(dev)
123
124 static inline int set_arch_dma_coherent_ops(struct device *dev)
125 {
126         set_dma_ops(dev, &arm_coherent_dma_ops);
127         return 0;
128 }
129 #define set_arch_dma_coherent_ops(dev)  set_arch_dma_coherent_ops(dev)
130
131 static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
132 {
133         unsigned int offset = paddr & ~PAGE_MASK;
134         return pfn_to_dma(dev, __phys_to_pfn(paddr)) + offset;
135 }
136
137 static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t dev_addr)
138 {
139         unsigned int offset = dev_addr & ~PAGE_MASK;
140         return __pfn_to_phys(dma_to_pfn(dev, dev_addr)) + offset;
141 }
142
143 static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
144 {
145         u64 limit, mask;
146
147         if (!dev->dma_mask)
148                 return 0;
149
150         mask = *dev->dma_mask;
151
152         limit = (mask + 1) & ~mask;
153         if (limit && size > limit)
154                 return 0;
155
156         if ((addr | (addr + size - 1)) & ~mask)
157                 return 0;
158
159         return 1;
160 }
161
162 static inline void dma_mark_clean(void *addr, size_t size) { }
163
164 /*
165  * DMA errors are defined by all-bits-set in the DMA address.
166  */
167 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
168 {
169         debug_dma_mapping_error(dev, dma_addr);
170         return dma_addr == DMA_ERROR_CODE;
171 }
172
173 /*
174  * Dummy noncoherent implementation.  We don't provide a dma_cache_sync
175  * function so drivers using this API are highlighted with build warnings.
176  */
177 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
178                 dma_addr_t *handle, gfp_t gfp)
179 {
180         return NULL;
181 }
182
183 static inline void dma_free_noncoherent(struct device *dev, size_t size,
184                 void *cpu_addr, dma_addr_t handle)
185 {
186 }
187
188 extern int dma_supported(struct device *dev, u64 mask);
189
190 extern int arm_dma_set_mask(struct device *dev, u64 dma_mask);
191
192 /**
193  * arm_dma_alloc - allocate consistent memory for DMA
194  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
195  * @size: required memory size
196  * @handle: bus-specific DMA address
197  * @attrs: optinal attributes that specific mapping properties
198  *
199  * Allocate some memory for a device for performing DMA.  This function
200  * allocates pages, and will return the CPU-viewed address, and sets @handle
201  * to be the device-viewed address.
202  */
203 extern void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
204                            gfp_t gfp, struct dma_attrs *attrs);
205
206 #define dma_alloc_coherent(d, s, h, f) dma_alloc_attrs(d, s, h, f, NULL)
207
208 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
209                                        dma_addr_t *dma_handle, gfp_t flag,
210                                        struct dma_attrs *attrs)
211 {
212         struct dma_map_ops *ops = get_dma_ops(dev);
213         void *cpu_addr;
214         BUG_ON(!ops);
215
216         cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
217         debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
218         return cpu_addr;
219 }
220
221 /**
222  * arm_dma_free - free memory allocated by arm_dma_alloc
223  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
224  * @size: size of memory originally requested in dma_alloc_coherent
225  * @cpu_addr: CPU-view address returned from dma_alloc_coherent
226  * @handle: device-view address returned from dma_alloc_coherent
227  * @attrs: optinal attributes that specific mapping properties
228  *
229  * Free (and unmap) a DMA buffer previously allocated by
230  * arm_dma_alloc().
231  *
232  * References to memory and mappings associated with cpu_addr/handle
233  * during and after this call executing are illegal.
234  */
235 extern void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
236                          dma_addr_t handle, struct dma_attrs *attrs);
237
238 #define dma_free_coherent(d, s, c, h) dma_free_attrs(d, s, c, h, NULL)
239
240 static inline void dma_free_attrs(struct device *dev, size_t size,
241                                      void *cpu_addr, dma_addr_t dma_handle,
242                                      struct dma_attrs *attrs)
243 {
244         struct dma_map_ops *ops = get_dma_ops(dev);
245         BUG_ON(!ops);
246
247         debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
248         ops->free(dev, size, cpu_addr, dma_handle, attrs);
249 }
250
251 /**
252  * arm_dma_mmap - map a coherent DMA allocation into user space
253  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
254  * @vma: vm_area_struct describing requested user mapping
255  * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
256  * @handle: device-view address returned from dma_alloc_coherent
257  * @size: size of memory originally requested in dma_alloc_coherent
258  * @attrs: optinal attributes that specific mapping properties
259  *
260  * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
261  * into user space.  The coherent DMA buffer must not be freed by the
262  * driver until the user space mapping has been released.
263  */
264 extern int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
265                         void *cpu_addr, dma_addr_t dma_addr, size_t size,
266                         struct dma_attrs *attrs);
267
268 /*
269  * This can be called during early boot to increase the size of the atomic
270  * coherent DMA pool above the default value of 256KiB. It must be called
271  * before postcore_initcall.
272  */
273 extern void __init init_dma_coherent_pool_size(unsigned long size);
274
275 /*
276  * For SA-1111, IXP425, and ADI systems  the dma-mapping functions are "magic"
277  * and utilize bounce buffers as needed to work around limited DMA windows.
278  *
279  * On the SA-1111, a bug limits DMA to only certain regions of RAM.
280  * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
281  * On some ADI engineering systems, PCI inbound window is 32MB (12MB total RAM)
282  *
283  * The following are helper functions used by the dmabounce subystem
284  *
285  */
286
287 /**
288  * dmabounce_register_dev
289  *
290  * @dev: valid struct device pointer
291  * @small_buf_size: size of buffers to use with small buffer pool
292  * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
293  * @needs_bounce_fn: called to determine whether buffer needs bouncing
294  *
295  * This function should be called by low-level platform code to register
296  * a device as requireing DMA buffer bouncing. The function will allocate
297  * appropriate DMA pools for the device.
298  */
299 extern int dmabounce_register_dev(struct device *, unsigned long,
300                 unsigned long, int (*)(struct device *, dma_addr_t, size_t));
301
302 /**
303  * dmabounce_unregister_dev
304  *
305  * @dev: valid struct device pointer
306  *
307  * This function should be called by low-level platform code when device
308  * that was previously registered with dmabounce_register_dev is removed
309  * from the system.
310  *
311  */
312 extern void dmabounce_unregister_dev(struct device *);
313
314
315
316 /*
317  * The scatter list versions of the above methods.
318  */
319 extern int arm_dma_map_sg(struct device *, struct scatterlist *, int,
320                 enum dma_data_direction, struct dma_attrs *attrs);
321 extern void arm_dma_unmap_sg(struct device *, struct scatterlist *, int,
322                 enum dma_data_direction, struct dma_attrs *attrs);
323 extern void arm_dma_sync_sg_for_cpu(struct device *, struct scatterlist *, int,
324                 enum dma_data_direction);
325 extern void arm_dma_sync_sg_for_device(struct device *, struct scatterlist *, int,
326                 enum dma_data_direction);
327 extern int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
328                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
329                 struct dma_attrs *attrs);
330
331 #endif /* __KERNEL__ */
332 #endif