Merge tag 'compiler-attributes-for-linus-v5.4' of git://github.com/ojeda/linux
[sfrench/cifs-2.6.git] / arch / arm / crypto / aes-ce-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * aes-ce-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7
8 #include <asm/hwcap.h>
9 #include <asm/neon.h>
10 #include <asm/simd.h>
11 #include <asm/unaligned.h>
12 #include <crypto/aes.h>
13 #include <crypto/ctr.h>
14 #include <crypto/internal/simd.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/scatterwalk.h>
17 #include <linux/cpufeature.h>
18 #include <linux/module.h>
19 #include <crypto/xts.h>
20
21 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
22 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
23 MODULE_LICENSE("GPL v2");
24
25 /* defined in aes-ce-core.S */
26 asmlinkage u32 ce_aes_sub(u32 input);
27 asmlinkage void ce_aes_invert(void *dst, void *src);
28
29 asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
30                                    int rounds, int blocks);
31 asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
32                                    int rounds, int blocks);
33
34 asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
35                                    int rounds, int blocks, u8 iv[]);
36 asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
37                                    int rounds, int blocks, u8 iv[]);
38 asmlinkage void ce_aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
39                                    int rounds, int bytes, u8 const iv[]);
40 asmlinkage void ce_aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
41                                    int rounds, int bytes, u8 const iv[]);
42
43 asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
44                                    int rounds, int blocks, u8 ctr[]);
45
46 asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
47                                    int rounds, int bytes, u8 iv[],
48                                    u32 const rk2[], int first);
49 asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
50                                    int rounds, int bytes, u8 iv[],
51                                    u32 const rk2[], int first);
52
53 struct aes_block {
54         u8 b[AES_BLOCK_SIZE];
55 };
56
57 static int num_rounds(struct crypto_aes_ctx *ctx)
58 {
59         /*
60          * # of rounds specified by AES:
61          * 128 bit key          10 rounds
62          * 192 bit key          12 rounds
63          * 256 bit key          14 rounds
64          * => n byte key        => 6 + (n/4) rounds
65          */
66         return 6 + ctx->key_length / 4;
67 }
68
69 static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
70                             unsigned int key_len)
71 {
72         /*
73          * The AES key schedule round constants
74          */
75         static u8 const rcon[] = {
76                 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
77         };
78
79         u32 kwords = key_len / sizeof(u32);
80         struct aes_block *key_enc, *key_dec;
81         int i, j;
82
83         if (key_len != AES_KEYSIZE_128 &&
84             key_len != AES_KEYSIZE_192 &&
85             key_len != AES_KEYSIZE_256)
86                 return -EINVAL;
87
88         ctx->key_length = key_len;
89         for (i = 0; i < kwords; i++)
90                 ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
91
92         kernel_neon_begin();
93         for (i = 0; i < sizeof(rcon); i++) {
94                 u32 *rki = ctx->key_enc + (i * kwords);
95                 u32 *rko = rki + kwords;
96
97                 rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8);
98                 rko[0] = rko[0] ^ rki[0] ^ rcon[i];
99                 rko[1] = rko[0] ^ rki[1];
100                 rko[2] = rko[1] ^ rki[2];
101                 rko[3] = rko[2] ^ rki[3];
102
103                 if (key_len == AES_KEYSIZE_192) {
104                         if (i >= 7)
105                                 break;
106                         rko[4] = rko[3] ^ rki[4];
107                         rko[5] = rko[4] ^ rki[5];
108                 } else if (key_len == AES_KEYSIZE_256) {
109                         if (i >= 6)
110                                 break;
111                         rko[4] = ce_aes_sub(rko[3]) ^ rki[4];
112                         rko[5] = rko[4] ^ rki[5];
113                         rko[6] = rko[5] ^ rki[6];
114                         rko[7] = rko[6] ^ rki[7];
115                 }
116         }
117
118         /*
119          * Generate the decryption keys for the Equivalent Inverse Cipher.
120          * This involves reversing the order of the round keys, and applying
121          * the Inverse Mix Columns transformation on all but the first and
122          * the last one.
123          */
124         key_enc = (struct aes_block *)ctx->key_enc;
125         key_dec = (struct aes_block *)ctx->key_dec;
126         j = num_rounds(ctx);
127
128         key_dec[0] = key_enc[j];
129         for (i = 1, j--; j > 0; i++, j--)
130                 ce_aes_invert(key_dec + i, key_enc + j);
131         key_dec[i] = key_enc[0];
132
133         kernel_neon_end();
134         return 0;
135 }
136
137 static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
138                          unsigned int key_len)
139 {
140         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
141         int ret;
142
143         ret = ce_aes_expandkey(ctx, in_key, key_len);
144         if (!ret)
145                 return 0;
146
147         crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
148         return -EINVAL;
149 }
150
151 struct crypto_aes_xts_ctx {
152         struct crypto_aes_ctx key1;
153         struct crypto_aes_ctx __aligned(8) key2;
154 };
155
156 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
157                        unsigned int key_len)
158 {
159         struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
160         int ret;
161
162         ret = xts_verify_key(tfm, in_key, key_len);
163         if (ret)
164                 return ret;
165
166         ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2);
167         if (!ret)
168                 ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2],
169                                        key_len / 2);
170         if (!ret)
171                 return 0;
172
173         crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
174         return -EINVAL;
175 }
176
177 static int ecb_encrypt(struct skcipher_request *req)
178 {
179         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
180         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
181         struct skcipher_walk walk;
182         unsigned int blocks;
183         int err;
184
185         err = skcipher_walk_virt(&walk, req, false);
186
187         while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
188                 kernel_neon_begin();
189                 ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
190                                    ctx->key_enc, num_rounds(ctx), blocks);
191                 kernel_neon_end();
192                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
193         }
194         return err;
195 }
196
197 static int ecb_decrypt(struct skcipher_request *req)
198 {
199         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
200         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
201         struct skcipher_walk walk;
202         unsigned int blocks;
203         int err;
204
205         err = skcipher_walk_virt(&walk, req, false);
206
207         while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
208                 kernel_neon_begin();
209                 ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
210                                    ctx->key_dec, num_rounds(ctx), blocks);
211                 kernel_neon_end();
212                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
213         }
214         return err;
215 }
216
217 static int cbc_encrypt_walk(struct skcipher_request *req,
218                             struct skcipher_walk *walk)
219 {
220         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
221         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
222         unsigned int blocks;
223         int err = 0;
224
225         while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
226                 kernel_neon_begin();
227                 ce_aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
228                                    ctx->key_enc, num_rounds(ctx), blocks,
229                                    walk->iv);
230                 kernel_neon_end();
231                 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
232         }
233         return err;
234 }
235
236 static int cbc_encrypt(struct skcipher_request *req)
237 {
238         struct skcipher_walk walk;
239         int err;
240
241         err = skcipher_walk_virt(&walk, req, false);
242         if (err)
243                 return err;
244         return cbc_encrypt_walk(req, &walk);
245 }
246
247 static int cbc_decrypt_walk(struct skcipher_request *req,
248                             struct skcipher_walk *walk)
249 {
250         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
251         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
252         unsigned int blocks;
253         int err = 0;
254
255         while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
256                 kernel_neon_begin();
257                 ce_aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
258                                    ctx->key_dec, num_rounds(ctx), blocks,
259                                    walk->iv);
260                 kernel_neon_end();
261                 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
262         }
263         return err;
264 }
265
266 static int cbc_decrypt(struct skcipher_request *req)
267 {
268         struct skcipher_walk walk;
269         int err;
270
271         err = skcipher_walk_virt(&walk, req, false);
272         if (err)
273                 return err;
274         return cbc_decrypt_walk(req, &walk);
275 }
276
277 static int cts_cbc_encrypt(struct skcipher_request *req)
278 {
279         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
280         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
281         int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
282         struct scatterlist *src = req->src, *dst = req->dst;
283         struct scatterlist sg_src[2], sg_dst[2];
284         struct skcipher_request subreq;
285         struct skcipher_walk walk;
286         int err;
287
288         skcipher_request_set_tfm(&subreq, tfm);
289         skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
290                                       NULL, NULL);
291
292         if (req->cryptlen <= AES_BLOCK_SIZE) {
293                 if (req->cryptlen < AES_BLOCK_SIZE)
294                         return -EINVAL;
295                 cbc_blocks = 1;
296         }
297
298         if (cbc_blocks > 0) {
299                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
300                                            cbc_blocks * AES_BLOCK_SIZE,
301                                            req->iv);
302
303                 err = skcipher_walk_virt(&walk, &subreq, false) ?:
304                       cbc_encrypt_walk(&subreq, &walk);
305                 if (err)
306                         return err;
307
308                 if (req->cryptlen == AES_BLOCK_SIZE)
309                         return 0;
310
311                 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
312                 if (req->dst != req->src)
313                         dst = scatterwalk_ffwd(sg_dst, req->dst,
314                                                subreq.cryptlen);
315         }
316
317         /* handle ciphertext stealing */
318         skcipher_request_set_crypt(&subreq, src, dst,
319                                    req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
320                                    req->iv);
321
322         err = skcipher_walk_virt(&walk, &subreq, false);
323         if (err)
324                 return err;
325
326         kernel_neon_begin();
327         ce_aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
328                                ctx->key_enc, num_rounds(ctx), walk.nbytes,
329                                walk.iv);
330         kernel_neon_end();
331
332         return skcipher_walk_done(&walk, 0);
333 }
334
335 static int cts_cbc_decrypt(struct skcipher_request *req)
336 {
337         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
338         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
339         int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
340         struct scatterlist *src = req->src, *dst = req->dst;
341         struct scatterlist sg_src[2], sg_dst[2];
342         struct skcipher_request subreq;
343         struct skcipher_walk walk;
344         int err;
345
346         skcipher_request_set_tfm(&subreq, tfm);
347         skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
348                                       NULL, NULL);
349
350         if (req->cryptlen <= AES_BLOCK_SIZE) {
351                 if (req->cryptlen < AES_BLOCK_SIZE)
352                         return -EINVAL;
353                 cbc_blocks = 1;
354         }
355
356         if (cbc_blocks > 0) {
357                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
358                                            cbc_blocks * AES_BLOCK_SIZE,
359                                            req->iv);
360
361                 err = skcipher_walk_virt(&walk, &subreq, false) ?:
362                       cbc_decrypt_walk(&subreq, &walk);
363                 if (err)
364                         return err;
365
366                 if (req->cryptlen == AES_BLOCK_SIZE)
367                         return 0;
368
369                 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
370                 if (req->dst != req->src)
371                         dst = scatterwalk_ffwd(sg_dst, req->dst,
372                                                subreq.cryptlen);
373         }
374
375         /* handle ciphertext stealing */
376         skcipher_request_set_crypt(&subreq, src, dst,
377                                    req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
378                                    req->iv);
379
380         err = skcipher_walk_virt(&walk, &subreq, false);
381         if (err)
382                 return err;
383
384         kernel_neon_begin();
385         ce_aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
386                                ctx->key_dec, num_rounds(ctx), walk.nbytes,
387                                walk.iv);
388         kernel_neon_end();
389
390         return skcipher_walk_done(&walk, 0);
391 }
392
393 static int ctr_encrypt(struct skcipher_request *req)
394 {
395         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
396         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
397         struct skcipher_walk walk;
398         int err, blocks;
399
400         err = skcipher_walk_virt(&walk, req, false);
401
402         while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
403                 kernel_neon_begin();
404                 ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
405                                    ctx->key_enc, num_rounds(ctx), blocks,
406                                    walk.iv);
407                 kernel_neon_end();
408                 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
409         }
410         if (walk.nbytes) {
411                 u8 __aligned(8) tail[AES_BLOCK_SIZE];
412                 unsigned int nbytes = walk.nbytes;
413                 u8 *tdst = walk.dst.virt.addr;
414                 u8 *tsrc = walk.src.virt.addr;
415
416                 /*
417                  * Tell aes_ctr_encrypt() to process a tail block.
418                  */
419                 blocks = -1;
420
421                 kernel_neon_begin();
422                 ce_aes_ctr_encrypt(tail, NULL, ctx->key_enc, num_rounds(ctx),
423                                    blocks, walk.iv);
424                 kernel_neon_end();
425                 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
426                 err = skcipher_walk_done(&walk, 0);
427         }
428         return err;
429 }
430
431 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
432 {
433         struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
434         unsigned long flags;
435
436         /*
437          * Temporarily disable interrupts to avoid races where
438          * cachelines are evicted when the CPU is interrupted
439          * to do something else.
440          */
441         local_irq_save(flags);
442         aes_encrypt(ctx, dst, src);
443         local_irq_restore(flags);
444 }
445
446 static int ctr_encrypt_sync(struct skcipher_request *req)
447 {
448         if (!crypto_simd_usable())
449                 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
450
451         return ctr_encrypt(req);
452 }
453
454 static int xts_encrypt(struct skcipher_request *req)
455 {
456         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
457         struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
458         int err, first, rounds = num_rounds(&ctx->key1);
459         int tail = req->cryptlen % AES_BLOCK_SIZE;
460         struct scatterlist sg_src[2], sg_dst[2];
461         struct skcipher_request subreq;
462         struct scatterlist *src, *dst;
463         struct skcipher_walk walk;
464
465         if (req->cryptlen < AES_BLOCK_SIZE)
466                 return -EINVAL;
467
468         err = skcipher_walk_virt(&walk, req, false);
469
470         if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
471                 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
472                                               AES_BLOCK_SIZE) - 2;
473
474                 skcipher_walk_abort(&walk);
475
476                 skcipher_request_set_tfm(&subreq, tfm);
477                 skcipher_request_set_callback(&subreq,
478                                               skcipher_request_flags(req),
479                                               NULL, NULL);
480                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
481                                            xts_blocks * AES_BLOCK_SIZE,
482                                            req->iv);
483                 req = &subreq;
484                 err = skcipher_walk_virt(&walk, req, false);
485         } else {
486                 tail = 0;
487         }
488
489         for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
490                 int nbytes = walk.nbytes;
491
492                 if (walk.nbytes < walk.total)
493                         nbytes &= ~(AES_BLOCK_SIZE - 1);
494
495                 kernel_neon_begin();
496                 ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
497                                    ctx->key1.key_enc, rounds, nbytes, walk.iv,
498                                    ctx->key2.key_enc, first);
499                 kernel_neon_end();
500                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
501         }
502
503         if (err || likely(!tail))
504                 return err;
505
506         dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
507         if (req->dst != req->src)
508                 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
509
510         skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
511                                    req->iv);
512
513         err = skcipher_walk_virt(&walk, req, false);
514         if (err)
515                 return err;
516
517         kernel_neon_begin();
518         ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
519                            ctx->key1.key_enc, rounds, walk.nbytes, walk.iv,
520                            ctx->key2.key_enc, first);
521         kernel_neon_end();
522
523         return skcipher_walk_done(&walk, 0);
524 }
525
526 static int xts_decrypt(struct skcipher_request *req)
527 {
528         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
529         struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
530         int err, first, rounds = num_rounds(&ctx->key1);
531         int tail = req->cryptlen % AES_BLOCK_SIZE;
532         struct scatterlist sg_src[2], sg_dst[2];
533         struct skcipher_request subreq;
534         struct scatterlist *src, *dst;
535         struct skcipher_walk walk;
536
537         if (req->cryptlen < AES_BLOCK_SIZE)
538                 return -EINVAL;
539
540         err = skcipher_walk_virt(&walk, req, false);
541
542         if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
543                 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
544                                               AES_BLOCK_SIZE) - 2;
545
546                 skcipher_walk_abort(&walk);
547
548                 skcipher_request_set_tfm(&subreq, tfm);
549                 skcipher_request_set_callback(&subreq,
550                                               skcipher_request_flags(req),
551                                               NULL, NULL);
552                 skcipher_request_set_crypt(&subreq, req->src, req->dst,
553                                            xts_blocks * AES_BLOCK_SIZE,
554                                            req->iv);
555                 req = &subreq;
556                 err = skcipher_walk_virt(&walk, req, false);
557         } else {
558                 tail = 0;
559         }
560
561         for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
562                 int nbytes = walk.nbytes;
563
564                 if (walk.nbytes < walk.total)
565                         nbytes &= ~(AES_BLOCK_SIZE - 1);
566
567                 kernel_neon_begin();
568                 ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
569                                    ctx->key1.key_dec, rounds, nbytes, walk.iv,
570                                    ctx->key2.key_enc, first);
571                 kernel_neon_end();
572                 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
573         }
574
575         if (err || likely(!tail))
576                 return err;
577
578         dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
579         if (req->dst != req->src)
580                 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
581
582         skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
583                                    req->iv);
584
585         err = skcipher_walk_virt(&walk, req, false);
586         if (err)
587                 return err;
588
589         kernel_neon_begin();
590         ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
591                            ctx->key1.key_dec, rounds, walk.nbytes, walk.iv,
592                            ctx->key2.key_enc, first);
593         kernel_neon_end();
594
595         return skcipher_walk_done(&walk, 0);
596 }
597
598 static struct skcipher_alg aes_algs[] = { {
599         .base.cra_name          = "__ecb(aes)",
600         .base.cra_driver_name   = "__ecb-aes-ce",
601         .base.cra_priority      = 300,
602         .base.cra_flags         = CRYPTO_ALG_INTERNAL,
603         .base.cra_blocksize     = AES_BLOCK_SIZE,
604         .base.cra_ctxsize       = sizeof(struct crypto_aes_ctx),
605         .base.cra_module        = THIS_MODULE,
606
607         .min_keysize            = AES_MIN_KEY_SIZE,
608         .max_keysize            = AES_MAX_KEY_SIZE,
609         .setkey                 = ce_aes_setkey,
610         .encrypt                = ecb_encrypt,
611         .decrypt                = ecb_decrypt,
612 }, {
613         .base.cra_name          = "__cbc(aes)",
614         .base.cra_driver_name   = "__cbc-aes-ce",
615         .base.cra_priority      = 300,
616         .base.cra_flags         = CRYPTO_ALG_INTERNAL,
617         .base.cra_blocksize     = AES_BLOCK_SIZE,
618         .base.cra_ctxsize       = sizeof(struct crypto_aes_ctx),
619         .base.cra_module        = THIS_MODULE,
620
621         .min_keysize            = AES_MIN_KEY_SIZE,
622         .max_keysize            = AES_MAX_KEY_SIZE,
623         .ivsize                 = AES_BLOCK_SIZE,
624         .setkey                 = ce_aes_setkey,
625         .encrypt                = cbc_encrypt,
626         .decrypt                = cbc_decrypt,
627 }, {
628         .base.cra_name          = "__cts(cbc(aes))",
629         .base.cra_driver_name   = "__cts-cbc-aes-ce",
630         .base.cra_priority      = 300,
631         .base.cra_flags         = CRYPTO_ALG_INTERNAL,
632         .base.cra_blocksize     = AES_BLOCK_SIZE,
633         .base.cra_ctxsize       = sizeof(struct crypto_aes_ctx),
634         .base.cra_module        = THIS_MODULE,
635
636         .min_keysize            = AES_MIN_KEY_SIZE,
637         .max_keysize            = AES_MAX_KEY_SIZE,
638         .ivsize                 = AES_BLOCK_SIZE,
639         .walksize               = 2 * AES_BLOCK_SIZE,
640         .setkey                 = ce_aes_setkey,
641         .encrypt                = cts_cbc_encrypt,
642         .decrypt                = cts_cbc_decrypt,
643 }, {
644         .base.cra_name          = "__ctr(aes)",
645         .base.cra_driver_name   = "__ctr-aes-ce",
646         .base.cra_priority      = 300,
647         .base.cra_flags         = CRYPTO_ALG_INTERNAL,
648         .base.cra_blocksize     = 1,
649         .base.cra_ctxsize       = sizeof(struct crypto_aes_ctx),
650         .base.cra_module        = THIS_MODULE,
651
652         .min_keysize            = AES_MIN_KEY_SIZE,
653         .max_keysize            = AES_MAX_KEY_SIZE,
654         .ivsize                 = AES_BLOCK_SIZE,
655         .chunksize              = AES_BLOCK_SIZE,
656         .setkey                 = ce_aes_setkey,
657         .encrypt                = ctr_encrypt,
658         .decrypt                = ctr_encrypt,
659 }, {
660         .base.cra_name          = "ctr(aes)",
661         .base.cra_driver_name   = "ctr-aes-ce-sync",
662         .base.cra_priority      = 300 - 1,
663         .base.cra_blocksize     = 1,
664         .base.cra_ctxsize       = sizeof(struct crypto_aes_ctx),
665         .base.cra_module        = THIS_MODULE,
666
667         .min_keysize            = AES_MIN_KEY_SIZE,
668         .max_keysize            = AES_MAX_KEY_SIZE,
669         .ivsize                 = AES_BLOCK_SIZE,
670         .chunksize              = AES_BLOCK_SIZE,
671         .setkey                 = ce_aes_setkey,
672         .encrypt                = ctr_encrypt_sync,
673         .decrypt                = ctr_encrypt_sync,
674 }, {
675         .base.cra_name          = "__xts(aes)",
676         .base.cra_driver_name   = "__xts-aes-ce",
677         .base.cra_priority      = 300,
678         .base.cra_flags         = CRYPTO_ALG_INTERNAL,
679         .base.cra_blocksize     = AES_BLOCK_SIZE,
680         .base.cra_ctxsize       = sizeof(struct crypto_aes_xts_ctx),
681         .base.cra_module        = THIS_MODULE,
682
683         .min_keysize            = 2 * AES_MIN_KEY_SIZE,
684         .max_keysize            = 2 * AES_MAX_KEY_SIZE,
685         .ivsize                 = AES_BLOCK_SIZE,
686         .walksize               = 2 * AES_BLOCK_SIZE,
687         .setkey                 = xts_set_key,
688         .encrypt                = xts_encrypt,
689         .decrypt                = xts_decrypt,
690 } };
691
692 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
693
694 static void aes_exit(void)
695 {
696         int i;
697
698         for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++)
699                 simd_skcipher_free(aes_simd_algs[i]);
700
701         crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
702 }
703
704 static int __init aes_init(void)
705 {
706         struct simd_skcipher_alg *simd;
707         const char *basename;
708         const char *algname;
709         const char *drvname;
710         int err;
711         int i;
712
713         err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
714         if (err)
715                 return err;
716
717         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
718                 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
719                         continue;
720
721                 algname = aes_algs[i].base.cra_name + 2;
722                 drvname = aes_algs[i].base.cra_driver_name + 2;
723                 basename = aes_algs[i].base.cra_driver_name;
724                 simd = simd_skcipher_create_compat(algname, drvname, basename);
725                 err = PTR_ERR(simd);
726                 if (IS_ERR(simd))
727                         goto unregister_simds;
728
729                 aes_simd_algs[i] = simd;
730         }
731
732         return 0;
733
734 unregister_simds:
735         aes_exit();
736         return err;
737 }
738
739 module_cpu_feature_match(AES, aes_init);
740 module_exit(aes_exit);