Merge tag 'irqchip-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm...
[sfrench/cifs-2.6.git] / arch / arc / mm / cache.c
1 /*
2  * ARC Cache Management
3  *
4  * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
23
24 #ifdef CONFIG_ISA_ARCV2
25 #define USE_RGN_FLSH    1
26 #endif
27
28 static int l2_line_sz;
29 static int ioc_exists;
30 int slc_enable = 1, ioc_enable = 1;
31 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
32 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
33
34 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
35                                unsigned long sz, const int op, const int full_page);
36
37 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
38 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
39 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
40
41 char *arc_cache_mumbojumbo(int c, char *buf, int len)
42 {
43         int n = 0;
44         struct cpuinfo_arc_cache *p;
45
46 #define PR_CACHE(p, cfg, str)                                           \
47         if (!(p)->line_len)                                             \
48                 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");     \
49         else                                                            \
50                 n += scnprintf(buf + n, len - n,                        \
51                         str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",  \
52                         (p)->sz_k, (p)->assoc, (p)->line_len,           \
53                         (p)->vipt ? "VIPT" : "PIPT",                    \
54                         (p)->alias ? " aliasing" : "",                  \
55                         IS_USED_CFG(cfg));
56
57         PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
58         PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
59
60         p = &cpuinfo_arc700[c].slc;
61         if (p->line_len)
62                 n += scnprintf(buf + n, len - n,
63                                "SLC\t\t: %uK, %uB Line%s\n",
64                                p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
65
66         n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
67                        perip_base,
68                        IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
69
70         return buf;
71 }
72
73 /*
74  * Read the Cache Build Confuration Registers, Decode them and save into
75  * the cpuinfo structure for later use.
76  * No Validation done here, simply read/convert the BCRs
77  */
78 static void read_decode_cache_bcr_arcv2(int cpu)
79 {
80         struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
81         struct bcr_generic sbcr;
82
83         struct bcr_slc_cfg {
84 #ifdef CONFIG_CPU_BIG_ENDIAN
85                 unsigned int pad:24, way:2, lsz:2, sz:4;
86 #else
87                 unsigned int sz:4, lsz:2, way:2, pad:24;
88 #endif
89         } slc_cfg;
90
91         struct bcr_clust_cfg {
92 #ifdef CONFIG_CPU_BIG_ENDIAN
93                 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
94 #else
95                 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
96 #endif
97         } cbcr;
98
99         struct bcr_volatile {
100 #ifdef CONFIG_CPU_BIG_ENDIAN
101                 unsigned int start:4, limit:4, pad:22, order:1, disable:1;
102 #else
103                 unsigned int disable:1, order:1, pad:22, limit:4, start:4;
104 #endif
105         } vol;
106
107
108         READ_BCR(ARC_REG_SLC_BCR, sbcr);
109         if (sbcr.ver) {
110                 READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
111                 p_slc->sz_k = 128 << slc_cfg.sz;
112                 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
113         }
114
115         READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
116         if (cbcr.c)
117                 ioc_exists = 1;
118         else
119                 ioc_enable = 0;
120
121         /* HS 2.0 didn't have AUX_VOL */
122         if (cpuinfo_arc700[cpu].core.family > 0x51) {
123                 READ_BCR(AUX_VOL, vol);
124                 perip_base = vol.start << 28;
125                 /* HS 3.0 has limit and strict-ordering fields */
126                 if (cpuinfo_arc700[cpu].core.family > 0x52)
127                         perip_end = (vol.limit << 28) - 1;
128         }
129 }
130
131 void read_decode_cache_bcr(void)
132 {
133         struct cpuinfo_arc_cache *p_ic, *p_dc;
134         unsigned int cpu = smp_processor_id();
135         struct bcr_cache {
136 #ifdef CONFIG_CPU_BIG_ENDIAN
137                 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
138 #else
139                 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
140 #endif
141         } ibcr, dbcr;
142
143         p_ic = &cpuinfo_arc700[cpu].icache;
144         READ_BCR(ARC_REG_IC_BCR, ibcr);
145
146         if (!ibcr.ver)
147                 goto dc_chk;
148
149         if (ibcr.ver <= 3) {
150                 BUG_ON(ibcr.config != 3);
151                 p_ic->assoc = 2;                /* Fixed to 2w set assoc */
152         } else if (ibcr.ver >= 4) {
153                 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */
154         }
155
156         p_ic->line_len = 8 << ibcr.line_len;
157         p_ic->sz_k = 1 << (ibcr.sz - 1);
158         p_ic->vipt = 1;
159         p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
160
161 dc_chk:
162         p_dc = &cpuinfo_arc700[cpu].dcache;
163         READ_BCR(ARC_REG_DC_BCR, dbcr);
164
165         if (!dbcr.ver)
166                 goto slc_chk;
167
168         if (dbcr.ver <= 3) {
169                 BUG_ON(dbcr.config != 2);
170                 p_dc->assoc = 4;                /* Fixed to 4w set assoc */
171                 p_dc->vipt = 1;
172                 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
173         } else if (dbcr.ver >= 4) {
174                 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */
175                 p_dc->vipt = 0;
176                 p_dc->alias = 0;                /* PIPT so can't VIPT alias */
177         }
178
179         p_dc->line_len = 16 << dbcr.line_len;
180         p_dc->sz_k = 1 << (dbcr.sz - 1);
181
182 slc_chk:
183         if (is_isa_arcv2())
184                 read_decode_cache_bcr_arcv2(cpu);
185 }
186
187 /*
188  * Line Operation on {I,D}-Cache
189  */
190
191 #define OP_INV          0x1
192 #define OP_FLUSH        0x2
193 #define OP_FLUSH_N_INV  0x3
194 #define OP_INV_IC       0x4
195
196 /*
197  *              I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
198  *
199  * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
200  * The orig Cache Management Module "CDU" only required paddr to invalidate a
201  * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
202  * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
203  * the exact same line.
204  *
205  * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
206  * paddr alone could not be used to correctly index the cache.
207  *
208  * ------------------
209  * MMU v1/v2 (Fixed Page Size 8k)
210  * ------------------
211  * The solution was to provide CDU with these additonal vaddr bits. These
212  * would be bits [x:13], x would depend on cache-geometry, 13 comes from
213  * standard page size of 8k.
214  * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
215  * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
216  * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
217  * represent the offset within cache-line. The adv of using this "clumsy"
218  * interface for additional info was no new reg was needed in CDU programming
219  * model.
220  *
221  * 17:13 represented the max num of bits passable, actual bits needed were
222  * fewer, based on the num-of-aliases possible.
223  * -for 2 alias possibility, only bit 13 needed (32K cache)
224  * -for 4 alias possibility, bits 14:13 needed (64K cache)
225  *
226  * ------------------
227  * MMU v3
228  * ------------------
229  * This ver of MMU supports variable page sizes (1k-16k): although Linux will
230  * only support 8k (default), 16k and 4k.
231  * However from hardware perspective, smaller page sizes aggravate aliasing
232  * meaning more vaddr bits needed to disambiguate the cache-line-op ;
233  * the existing scheme of piggybacking won't work for certain configurations.
234  * Two new registers IC_PTAG and DC_PTAG inttoduced.
235  * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
236  */
237
238 static inline
239 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
240                           unsigned long sz, const int op, const int full_page)
241 {
242         unsigned int aux_cmd;
243         int num_lines;
244
245         if (op == OP_INV_IC) {
246                 aux_cmd = ARC_REG_IC_IVIL;
247         } else {
248                 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
249                 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
250         }
251
252         /* Ensure we properly floor/ceil the non-line aligned/sized requests
253          * and have @paddr - aligned to cache line and integral @num_lines.
254          * This however can be avoided for page sized since:
255          *  -@paddr will be cache-line aligned already (being page aligned)
256          *  -@sz will be integral multiple of line size (being page sized).
257          */
258         if (!full_page) {
259                 sz += paddr & ~CACHE_LINE_MASK;
260                 paddr &= CACHE_LINE_MASK;
261                 vaddr &= CACHE_LINE_MASK;
262         }
263
264         num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
265
266         /* MMUv2 and before: paddr contains stuffed vaddrs bits */
267         paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
268
269         while (num_lines-- > 0) {
270                 write_aux_reg(aux_cmd, paddr);
271                 paddr += L1_CACHE_BYTES;
272         }
273 }
274
275 /*
276  * For ARC700 MMUv3 I-cache and D-cache flushes
277  *  - ARC700 programming model requires paddr and vaddr be passed in seperate
278  *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
279  *    caches actually alias or not.
280  * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
281  *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
282  */
283 static inline
284 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
285                           unsigned long sz, const int op, const int full_page)
286 {
287         unsigned int aux_cmd, aux_tag;
288         int num_lines;
289
290         if (op == OP_INV_IC) {
291                 aux_cmd = ARC_REG_IC_IVIL;
292                 aux_tag = ARC_REG_IC_PTAG;
293         } else {
294                 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
295                 aux_tag = ARC_REG_DC_PTAG;
296         }
297
298         /* Ensure we properly floor/ceil the non-line aligned/sized requests
299          * and have @paddr - aligned to cache line and integral @num_lines.
300          * This however can be avoided for page sized since:
301          *  -@paddr will be cache-line aligned already (being page aligned)
302          *  -@sz will be integral multiple of line size (being page sized).
303          */
304         if (!full_page) {
305                 sz += paddr & ~CACHE_LINE_MASK;
306                 paddr &= CACHE_LINE_MASK;
307                 vaddr &= CACHE_LINE_MASK;
308         }
309         num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
310
311         /*
312          * MMUv3, cache ops require paddr in PTAG reg
313          * if V-P const for loop, PTAG can be written once outside loop
314          */
315         if (full_page)
316                 write_aux_reg(aux_tag, paddr);
317
318         /*
319          * This is technically for MMU v4, using the MMU v3 programming model
320          * Special work for HS38 aliasing I-cache configuration with PAE40
321          *   - upper 8 bits of paddr need to be written into PTAG_HI
322          *   - (and needs to be written before the lower 32 bits)
323          * Note that PTAG_HI is hoisted outside the line loop
324          */
325         if (is_pae40_enabled() && op == OP_INV_IC)
326                 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
327
328         while (num_lines-- > 0) {
329                 if (!full_page) {
330                         write_aux_reg(aux_tag, paddr);
331                         paddr += L1_CACHE_BYTES;
332                 }
333
334                 write_aux_reg(aux_cmd, vaddr);
335                 vaddr += L1_CACHE_BYTES;
336         }
337 }
338
339 #ifndef USE_RGN_FLSH
340
341 /*
342  * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
343  * Here's how cache ops are implemented
344  *
345  *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
346  *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
347  *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
348  *    respectively, similar to MMU v3 programming model, hence
349  *    __cache_line_loop_v3() is used)
350  *
351  * If PAE40 is enabled, independent of aliasing considerations, the higher bits
352  * needs to be written into PTAG_HI
353  */
354 static inline
355 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
356                           unsigned long sz, const int op, const int full_page)
357 {
358         unsigned int aux_cmd;
359         int num_lines;
360
361         if (op == OP_INV_IC) {
362                 aux_cmd = ARC_REG_IC_IVIL;
363         } else {
364                 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
365                 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
366         }
367
368         /* Ensure we properly floor/ceil the non-line aligned/sized requests
369          * and have @paddr - aligned to cache line and integral @num_lines.
370          * This however can be avoided for page sized since:
371          *  -@paddr will be cache-line aligned already (being page aligned)
372          *  -@sz will be integral multiple of line size (being page sized).
373          */
374         if (!full_page) {
375                 sz += paddr & ~CACHE_LINE_MASK;
376                 paddr &= CACHE_LINE_MASK;
377         }
378
379         num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
380
381         /*
382          * For HS38 PAE40 configuration
383          *   - upper 8 bits of paddr need to be written into PTAG_HI
384          *   - (and needs to be written before the lower 32 bits)
385          */
386         if (is_pae40_enabled()) {
387                 if (op == OP_INV_IC)
388                         /*
389                          * Non aliasing I-cache in HS38,
390                          * aliasing I-cache handled in __cache_line_loop_v3()
391                          */
392                         write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
393                 else
394                         write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
395         }
396
397         while (num_lines-- > 0) {
398                 write_aux_reg(aux_cmd, paddr);
399                 paddr += L1_CACHE_BYTES;
400         }
401 }
402
403 #else
404
405 /*
406  * optimized flush operation which takes a region as opposed to iterating per line
407  */
408 static inline
409 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
410                           unsigned long sz, const int op, const int full_page)
411 {
412         unsigned int s, e;
413
414         /* Only for Non aliasing I-cache in HS38 */
415         if (op == OP_INV_IC) {
416                 s = ARC_REG_IC_IVIR;
417                 e = ARC_REG_IC_ENDR;
418         } else {
419                 s = ARC_REG_DC_STARTR;
420                 e = ARC_REG_DC_ENDR;
421         }
422
423         if (!full_page) {
424                 /* for any leading gap between @paddr and start of cache line */
425                 sz += paddr & ~CACHE_LINE_MASK;
426                 paddr &= CACHE_LINE_MASK;
427
428                 /*
429                  *  account for any trailing gap to end of cache line
430                  *  this is equivalent to DIV_ROUND_UP() in line ops above
431                  */
432                 sz += L1_CACHE_BYTES - 1;
433         }
434
435         if (is_pae40_enabled()) {
436                 /* TBD: check if crossing 4TB boundary */
437                 if (op == OP_INV_IC)
438                         write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
439                 else
440                         write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
441         }
442
443         /* ENDR needs to be set ahead of START */
444         write_aux_reg(e, paddr + sz);   /* ENDR is exclusive */
445         write_aux_reg(s, paddr);
446
447         /* caller waits on DC_CTRL.FS */
448 }
449
450 #endif
451
452 #if (CONFIG_ARC_MMU_VER < 3)
453 #define __cache_line_loop       __cache_line_loop_v2
454 #elif (CONFIG_ARC_MMU_VER == 3)
455 #define __cache_line_loop       __cache_line_loop_v3
456 #elif (CONFIG_ARC_MMU_VER > 3)
457 #define __cache_line_loop       __cache_line_loop_v4
458 #endif
459
460 #ifdef CONFIG_ARC_HAS_DCACHE
461
462 /***************************************************************
463  * Machine specific helpers for Entire D-Cache or Per Line ops
464  */
465
466 #ifndef USE_RGN_FLSH
467 /*
468  * this version avoids extra read/write of DC_CTRL for flush or invalid ops
469  * in the non region flush regime (such as for ARCompact)
470  */
471 static inline void __before_dc_op(const int op)
472 {
473         if (op == OP_FLUSH_N_INV) {
474                 /* Dcache provides 2 cmd: FLUSH or INV
475                  * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
476                  * flush-n-inv is achieved by INV cmd but with IM=1
477                  * So toggle INV sub-mode depending on op request and default
478                  */
479                 const unsigned int ctl = ARC_REG_DC_CTRL;
480                 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
481         }
482 }
483
484 #else
485
486 static inline void __before_dc_op(const int op)
487 {
488         const unsigned int ctl = ARC_REG_DC_CTRL;
489         unsigned int val = read_aux_reg(ctl);
490
491         if (op == OP_FLUSH_N_INV) {
492                 val |= DC_CTRL_INV_MODE_FLUSH;
493         }
494
495         if (op != OP_INV_IC) {
496                 /*
497                  * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
498                  * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
499                  */
500                 val &= ~DC_CTRL_RGN_OP_MSK;
501                 if (op & OP_INV)
502                         val |= DC_CTRL_RGN_OP_INV;
503         }
504         write_aux_reg(ctl, val);
505 }
506
507 #endif
508
509
510 static inline void __after_dc_op(const int op)
511 {
512         if (op & OP_FLUSH) {
513                 const unsigned int ctl = ARC_REG_DC_CTRL;
514                 unsigned int reg;
515
516                 /* flush / flush-n-inv both wait */
517                 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
518                         ;
519
520                 /* Switch back to default Invalidate mode */
521                 if (op == OP_FLUSH_N_INV)
522                         write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
523         }
524 }
525
526 /*
527  * Operation on Entire D-Cache
528  * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
529  * Note that constant propagation ensures all the checks are gone
530  * in generated code
531  */
532 static inline void __dc_entire_op(const int op)
533 {
534         int aux;
535
536         __before_dc_op(op);
537
538         if (op & OP_INV)        /* Inv or flush-n-inv use same cmd reg */
539                 aux = ARC_REG_DC_IVDC;
540         else
541                 aux = ARC_REG_DC_FLSH;
542
543         write_aux_reg(aux, 0x1);
544
545         __after_dc_op(op);
546 }
547
548 static inline void __dc_disable(void)
549 {
550         const int r = ARC_REG_DC_CTRL;
551
552         __dc_entire_op(OP_FLUSH_N_INV);
553         write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
554 }
555
556 static void __dc_enable(void)
557 {
558         const int r = ARC_REG_DC_CTRL;
559
560         write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
561 }
562
563 /* For kernel mappings cache operation: index is same as paddr */
564 #define __dc_line_op_k(p, sz, op)       __dc_line_op(p, p, sz, op)
565
566 /*
567  * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
568  */
569 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
570                                 unsigned long sz, const int op)
571 {
572         const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
573         unsigned long flags;
574
575         local_irq_save(flags);
576
577         __before_dc_op(op);
578
579         __cache_line_loop(paddr, vaddr, sz, op, full_page);
580
581         __after_dc_op(op);
582
583         local_irq_restore(flags);
584 }
585
586 #else
587
588 #define __dc_entire_op(op)
589 #define __dc_disable()
590 #define __dc_enable()
591 #define __dc_line_op(paddr, vaddr, sz, op)
592 #define __dc_line_op_k(paddr, sz, op)
593
594 #endif /* CONFIG_ARC_HAS_DCACHE */
595
596 #ifdef CONFIG_ARC_HAS_ICACHE
597
598 static inline void __ic_entire_inv(void)
599 {
600         write_aux_reg(ARC_REG_IC_IVIC, 1);
601         read_aux_reg(ARC_REG_IC_CTRL);  /* blocks */
602 }
603
604 static inline void
605 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
606                           unsigned long sz)
607 {
608         const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
609         unsigned long flags;
610
611         local_irq_save(flags);
612         (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
613         local_irq_restore(flags);
614 }
615
616 #ifndef CONFIG_SMP
617
618 #define __ic_line_inv_vaddr(p, v, s)    __ic_line_inv_vaddr_local(p, v, s)
619
620 #else
621
622 struct ic_inv_args {
623         phys_addr_t paddr, vaddr;
624         int sz;
625 };
626
627 static void __ic_line_inv_vaddr_helper(void *info)
628 {
629         struct ic_inv_args *ic_inv = info;
630
631         __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
632 }
633
634 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
635                                 unsigned long sz)
636 {
637         struct ic_inv_args ic_inv = {
638                 .paddr = paddr,
639                 .vaddr = vaddr,
640                 .sz    = sz
641         };
642
643         on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
644 }
645
646 #endif  /* CONFIG_SMP */
647
648 #else   /* !CONFIG_ARC_HAS_ICACHE */
649
650 #define __ic_entire_inv()
651 #define __ic_line_inv_vaddr(pstart, vstart, sz)
652
653 #endif /* CONFIG_ARC_HAS_ICACHE */
654
655 noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
656 {
657 #ifdef CONFIG_ISA_ARCV2
658         /*
659          * SLC is shared between all cores and concurrent aux operations from
660          * multiple cores need to be serialized using a spinlock
661          * A concurrent operation can be silently ignored and/or the old/new
662          * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
663          * below)
664          */
665         static DEFINE_SPINLOCK(lock);
666         unsigned long flags;
667         unsigned int ctrl;
668         phys_addr_t end;
669
670         spin_lock_irqsave(&lock, flags);
671
672         /*
673          * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
674          *  - b'000 (default) is Flush,
675          *  - b'001 is Invalidate if CTRL.IM == 0
676          *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
677          */
678         ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
679
680         /* Don't rely on default value of IM bit */
681         if (!(op & OP_FLUSH))           /* i.e. OP_INV */
682                 ctrl &= ~SLC_CTRL_IM;   /* clear IM: Disable flush before Inv */
683         else
684                 ctrl |= SLC_CTRL_IM;
685
686         if (op & OP_INV)
687                 ctrl |= SLC_CTRL_RGN_OP_INV;    /* Inv or flush-n-inv */
688         else
689                 ctrl &= ~SLC_CTRL_RGN_OP_INV;
690
691         write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
692
693         /*
694          * Lower bits are ignored, no need to clip
695          * END needs to be setup before START (latter triggers the operation)
696          * END can't be same as START, so add (l2_line_sz - 1) to sz
697          */
698         end = paddr + sz + l2_line_sz - 1;
699         if (is_pae40_enabled())
700                 write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
701
702         write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
703
704         if (is_pae40_enabled())
705                 write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
706
707         write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
708
709         /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
710         read_aux_reg(ARC_REG_SLC_CTRL);
711
712         while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
713
714         spin_unlock_irqrestore(&lock, flags);
715 #endif
716 }
717
718 noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
719 {
720 #ifdef CONFIG_ISA_ARCV2
721         /*
722          * SLC is shared between all cores and concurrent aux operations from
723          * multiple cores need to be serialized using a spinlock
724          * A concurrent operation can be silently ignored and/or the old/new
725          * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
726          * below)
727          */
728         static DEFINE_SPINLOCK(lock);
729
730         const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
731         unsigned int ctrl, cmd;
732         unsigned long flags;
733         int num_lines;
734
735         spin_lock_irqsave(&lock, flags);
736
737         ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
738
739         /* Don't rely on default value of IM bit */
740         if (!(op & OP_FLUSH))           /* i.e. OP_INV */
741                 ctrl &= ~SLC_CTRL_IM;   /* clear IM: Disable flush before Inv */
742         else
743                 ctrl |= SLC_CTRL_IM;
744
745         write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
746
747         cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
748
749         sz += paddr & ~SLC_LINE_MASK;
750         paddr &= SLC_LINE_MASK;
751
752         num_lines = DIV_ROUND_UP(sz, l2_line_sz);
753
754         while (num_lines-- > 0) {
755                 write_aux_reg(cmd, paddr);
756                 paddr += l2_line_sz;
757         }
758
759         /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
760         read_aux_reg(ARC_REG_SLC_CTRL);
761
762         while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
763
764         spin_unlock_irqrestore(&lock, flags);
765 #endif
766 }
767
768 #define slc_op(paddr, sz, op)   slc_op_rgn(paddr, sz, op)
769
770 noinline static void slc_entire_op(const int op)
771 {
772         unsigned int ctrl, r = ARC_REG_SLC_CTRL;
773
774         ctrl = read_aux_reg(r);
775
776         if (!(op & OP_FLUSH))           /* i.e. OP_INV */
777                 ctrl &= ~SLC_CTRL_IM;   /* clear IM: Disable flush before Inv */
778         else
779                 ctrl |= SLC_CTRL_IM;
780
781         write_aux_reg(r, ctrl);
782
783         if (op & OP_INV)        /* Inv or flush-n-inv use same cmd reg */
784                 write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
785         else
786                 write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
787
788         /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
789         read_aux_reg(r);
790
791         /* Important to wait for flush to complete */
792         while (read_aux_reg(r) & SLC_CTRL_BUSY);
793 }
794
795 static inline void arc_slc_disable(void)
796 {
797         const int r = ARC_REG_SLC_CTRL;
798
799         slc_entire_op(OP_FLUSH_N_INV);
800         write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
801 }
802
803 static inline void arc_slc_enable(void)
804 {
805         const int r = ARC_REG_SLC_CTRL;
806
807         write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
808 }
809
810 /***********************************************************
811  * Exported APIs
812  */
813
814 /*
815  * Handle cache congruency of kernel and userspace mappings of page when kernel
816  * writes-to/reads-from
817  *
818  * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
819  *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
820  *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
821  *  -In SMP, if hardware caches are coherent
822  *
823  * There's a corollary case, where kernel READs from a userspace mapped page.
824  * If the U-mapping is not congruent to to K-mapping, former needs flushing.
825  */
826 void flush_dcache_page(struct page *page)
827 {
828         struct address_space *mapping;
829
830         if (!cache_is_vipt_aliasing()) {
831                 clear_bit(PG_dc_clean, &page->flags);
832                 return;
833         }
834
835         /* don't handle anon pages here */
836         mapping = page_mapping_file(page);
837         if (!mapping)
838                 return;
839
840         /*
841          * pagecache page, file not yet mapped to userspace
842          * Make a note that K-mapping is dirty
843          */
844         if (!mapping_mapped(mapping)) {
845                 clear_bit(PG_dc_clean, &page->flags);
846         } else if (page_mapcount(page)) {
847
848                 /* kernel reading from page with U-mapping */
849                 phys_addr_t paddr = (unsigned long)page_address(page);
850                 unsigned long vaddr = page->index << PAGE_SHIFT;
851
852                 if (addr_not_cache_congruent(paddr, vaddr))
853                         __flush_dcache_page(paddr, vaddr);
854         }
855 }
856 EXPORT_SYMBOL(flush_dcache_page);
857
858 /*
859  * DMA ops for systems with L1 cache only
860  * Make memory coherent with L1 cache by flushing/invalidating L1 lines
861  */
862 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
863 {
864         __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
865 }
866
867 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
868 {
869         __dc_line_op_k(start, sz, OP_INV);
870 }
871
872 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
873 {
874         __dc_line_op_k(start, sz, OP_FLUSH);
875 }
876
877 /*
878  * DMA ops for systems with both L1 and L2 caches, but without IOC
879  * Both L1 and L2 lines need to be explicitly flushed/invalidated
880  */
881 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
882 {
883         __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
884         slc_op(start, sz, OP_FLUSH_N_INV);
885 }
886
887 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
888 {
889         __dc_line_op_k(start, sz, OP_INV);
890         slc_op(start, sz, OP_INV);
891 }
892
893 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
894 {
895         __dc_line_op_k(start, sz, OP_FLUSH);
896         slc_op(start, sz, OP_FLUSH);
897 }
898
899 /*
900  * DMA ops for systems with IOC
901  * IOC hardware snoops all DMA traffic keeping the caches consistent with
902  * memory - eliding need for any explicit cache maintenance of DMA buffers
903  */
904 static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
905 static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
906 static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
907
908 /*
909  * Exported DMA API
910  */
911 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
912 {
913         __dma_cache_wback_inv(start, sz);
914 }
915 EXPORT_SYMBOL(dma_cache_wback_inv);
916
917 void dma_cache_inv(phys_addr_t start, unsigned long sz)
918 {
919         __dma_cache_inv(start, sz);
920 }
921 EXPORT_SYMBOL(dma_cache_inv);
922
923 void dma_cache_wback(phys_addr_t start, unsigned long sz)
924 {
925         __dma_cache_wback(start, sz);
926 }
927 EXPORT_SYMBOL(dma_cache_wback);
928
929 /*
930  * This is API for making I/D Caches consistent when modifying
931  * kernel code (loadable modules, kprobes, kgdb...)
932  * This is called on insmod, with kernel virtual address for CODE of
933  * the module. ARC cache maintenance ops require PHY address thus we
934  * need to convert vmalloc addr to PHY addr
935  */
936 void flush_icache_range(unsigned long kstart, unsigned long kend)
937 {
938         unsigned int tot_sz;
939
940         WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
941
942         /* Shortcut for bigger flush ranges.
943          * Here we don't care if this was kernel virtual or phy addr
944          */
945         tot_sz = kend - kstart;
946         if (tot_sz > PAGE_SIZE) {
947                 flush_cache_all();
948                 return;
949         }
950
951         /* Case: Kernel Phy addr (0x8000_0000 onwards) */
952         if (likely(kstart > PAGE_OFFSET)) {
953                 /*
954                  * The 2nd arg despite being paddr will be used to index icache
955                  * This is OK since no alternate virtual mappings will exist
956                  * given the callers for this case: kprobe/kgdb in built-in
957                  * kernel code only.
958                  */
959                 __sync_icache_dcache(kstart, kstart, kend - kstart);
960                 return;
961         }
962
963         /*
964          * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
965          * (1) ARC Cache Maintenance ops only take Phy addr, hence special
966          *     handling of kernel vaddr.
967          *
968          * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
969          *     it still needs to handle  a 2 page scenario, where the range
970          *     straddles across 2 virtual pages and hence need for loop
971          */
972         while (tot_sz > 0) {
973                 unsigned int off, sz;
974                 unsigned long phy, pfn;
975
976                 off = kstart % PAGE_SIZE;
977                 pfn = vmalloc_to_pfn((void *)kstart);
978                 phy = (pfn << PAGE_SHIFT) + off;
979                 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
980                 __sync_icache_dcache(phy, kstart, sz);
981                 kstart += sz;
982                 tot_sz -= sz;
983         }
984 }
985 EXPORT_SYMBOL(flush_icache_range);
986
987 /*
988  * General purpose helper to make I and D cache lines consistent.
989  * @paddr is phy addr of region
990  * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
991  *    However in one instance, when called by kprobe (for a breakpt in
992  *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
993  *    use a paddr to index the cache (despite VIPT). This is fine since since a
994  *    builtin kernel page will not have any virtual mappings.
995  *    kprobe on loadable module will be kernel vaddr.
996  */
997 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
998 {
999         __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
1000         __ic_line_inv_vaddr(paddr, vaddr, len);
1001 }
1002
1003 /* wrapper to compile time eliminate alignment checks in flush loop */
1004 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
1005 {
1006         __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
1007 }
1008
1009 /*
1010  * wrapper to clearout kernel or userspace mappings of a page
1011  * For kernel mappings @vaddr == @paddr
1012  */
1013 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
1014 {
1015         __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
1016 }
1017
1018 noinline void flush_cache_all(void)
1019 {
1020         unsigned long flags;
1021
1022         local_irq_save(flags);
1023
1024         __ic_entire_inv();
1025         __dc_entire_op(OP_FLUSH_N_INV);
1026
1027         local_irq_restore(flags);
1028
1029 }
1030
1031 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1032
1033 void flush_cache_mm(struct mm_struct *mm)
1034 {
1035         flush_cache_all();
1036 }
1037
1038 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
1039                       unsigned long pfn)
1040 {
1041         phys_addr_t paddr = pfn << PAGE_SHIFT;
1042
1043         u_vaddr &= PAGE_MASK;
1044
1045         __flush_dcache_page(paddr, u_vaddr);
1046
1047         if (vma->vm_flags & VM_EXEC)
1048                 __inv_icache_page(paddr, u_vaddr);
1049 }
1050
1051 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1052                        unsigned long end)
1053 {
1054         flush_cache_all();
1055 }
1056
1057 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
1058                      unsigned long u_vaddr)
1059 {
1060         /* TBD: do we really need to clear the kernel mapping */
1061         __flush_dcache_page((phys_addr_t)page_address(page), u_vaddr);
1062         __flush_dcache_page((phys_addr_t)page_address(page),
1063                             (phys_addr_t)page_address(page));
1064
1065 }
1066
1067 #endif
1068
1069 void copy_user_highpage(struct page *to, struct page *from,
1070         unsigned long u_vaddr, struct vm_area_struct *vma)
1071 {
1072         void *kfrom = kmap_atomic(from);
1073         void *kto = kmap_atomic(to);
1074         int clean_src_k_mappings = 0;
1075
1076         /*
1077          * If SRC page was already mapped in userspace AND it's U-mapping is
1078          * not congruent with K-mapping, sync former to physical page so that
1079          * K-mapping in memcpy below, sees the right data
1080          *
1081          * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1082          * equally valid for SRC page as well
1083          *
1084          * For !VIPT cache, all of this gets compiled out as
1085          * addr_not_cache_congruent() is 0
1086          */
1087         if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1088                 __flush_dcache_page((unsigned long)kfrom, u_vaddr);
1089                 clean_src_k_mappings = 1;
1090         }
1091
1092         copy_page(kto, kfrom);
1093
1094         /*
1095          * Mark DST page K-mapping as dirty for a later finalization by
1096          * update_mmu_cache(). Although the finalization could have been done
1097          * here as well (given that both vaddr/paddr are available).
1098          * But update_mmu_cache() already has code to do that for other
1099          * non copied user pages (e.g. read faults which wire in pagecache page
1100          * directly).
1101          */
1102         clear_bit(PG_dc_clean, &to->flags);
1103
1104         /*
1105          * if SRC was already usermapped and non-congruent to kernel mapping
1106          * sync the kernel mapping back to physical page
1107          */
1108         if (clean_src_k_mappings) {
1109                 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1110                 set_bit(PG_dc_clean, &from->flags);
1111         } else {
1112                 clear_bit(PG_dc_clean, &from->flags);
1113         }
1114
1115         kunmap_atomic(kto);
1116         kunmap_atomic(kfrom);
1117 }
1118
1119 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1120 {
1121         clear_page(to);
1122         clear_bit(PG_dc_clean, &page->flags);
1123 }
1124
1125
1126 /**********************************************************************
1127  * Explicit Cache flush request from user space via syscall
1128  * Needed for JITs which generate code on the fly
1129  */
1130 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1131 {
1132         /* TBD: optimize this */
1133         flush_cache_all();
1134         return 0;
1135 }
1136
1137 /*
1138  * IO-Coherency (IOC) setup rules:
1139  *
1140  * 1. Needs to be at system level, so only once by Master core
1141  *    Non-Masters need not be accessing caches at that time
1142  *    - They are either HALT_ON_RESET and kick started much later or
1143  *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1144  *      doesn't perturb caches or coherency unit
1145  *
1146  * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1147  *    otherwise any straggler data might behave strangely post IOC enabling
1148  *
1149  * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1150  *    Coherency transactions
1151  */
1152 noinline void __init arc_ioc_setup(void)
1153 {
1154         unsigned int ioc_base, mem_sz;
1155
1156         /* Flush + invalidate + disable L1 dcache */
1157         __dc_disable();
1158
1159         /* Flush + invalidate SLC */
1160         if (read_aux_reg(ARC_REG_SLC_BCR))
1161                 slc_entire_op(OP_FLUSH_N_INV);
1162
1163         /*
1164          * currently IOC Aperture covers entire DDR
1165          * TBD: fix for PGU + 1GB of low mem
1166          * TBD: fix for PAE
1167          */
1168         mem_sz = arc_get_mem_sz();
1169
1170         if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1171                 panic("IOC Aperture size must be power of 2 larger than 4KB");
1172
1173         /*
1174          * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1175          * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1176          */
1177         write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1178
1179         /* for now assume kernel base is start of IOC aperture */
1180         ioc_base = CONFIG_LINUX_RAM_BASE;
1181
1182         if (ioc_base % mem_sz != 0)
1183                 panic("IOC Aperture start must be aligned to the size of the aperture");
1184
1185         write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1186         write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1187         write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
1188
1189         /* Re-enable L1 dcache */
1190         __dc_enable();
1191 }
1192
1193 /*
1194  * Cache related boot time checks/setups only needed on master CPU:
1195  *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1196  *    Assume SMP only, so all cores will have same cache config. A check on
1197  *    one core suffices for all
1198  *  - IOC setup / dma callbacks only need to be done once
1199  */
1200 void __init arc_cache_init_master(void)
1201 {
1202         unsigned int __maybe_unused cpu = smp_processor_id();
1203
1204         if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1205                 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1206
1207                 if (!ic->line_len)
1208                         panic("cache support enabled but non-existent cache\n");
1209
1210                 if (ic->line_len != L1_CACHE_BYTES)
1211                         panic("ICache line [%d] != kernel Config [%d]",
1212                               ic->line_len, L1_CACHE_BYTES);
1213
1214                 /*
1215                  * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1216                  * pair to provide vaddr/paddr respectively, just as in MMU v3
1217                  */
1218                 if (is_isa_arcv2() && ic->alias)
1219                         _cache_line_loop_ic_fn = __cache_line_loop_v3;
1220                 else
1221                         _cache_line_loop_ic_fn = __cache_line_loop;
1222         }
1223
1224         if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1225                 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1226
1227                 if (!dc->line_len)
1228                         panic("cache support enabled but non-existent cache\n");
1229
1230                 if (dc->line_len != L1_CACHE_BYTES)
1231                         panic("DCache line [%d] != kernel Config [%d]",
1232                               dc->line_len, L1_CACHE_BYTES);
1233
1234                 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1235                 if (is_isa_arcompact()) {
1236                         int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1237                         int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1238
1239                         if (dc->alias) {
1240                                 if (!handled)
1241                                         panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1242                                 if (CACHE_COLORS_NUM != num_colors)
1243                                         panic("CACHE_COLORS_NUM not optimized for config\n");
1244                         } else if (!dc->alias && handled) {
1245                                 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1246                         }
1247                 }
1248         }
1249
1250         /*
1251          * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1252          * or equal to any cache line length.
1253          */
1254         BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1255                          "SMP_CACHE_BYTES must be >= any cache line length");
1256         if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1257                 panic("L2 Cache line [%d] > kernel Config [%d]\n",
1258                       l2_line_sz, SMP_CACHE_BYTES);
1259
1260         /* Note that SLC disable not formally supported till HS 3.0 */
1261         if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1262                 arc_slc_disable();
1263
1264         if (is_isa_arcv2() && ioc_enable)
1265                 arc_ioc_setup();
1266
1267         if (is_isa_arcv2() && ioc_enable) {
1268                 __dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1269                 __dma_cache_inv = __dma_cache_inv_ioc;
1270                 __dma_cache_wback = __dma_cache_wback_ioc;
1271         } else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1272                 __dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1273                 __dma_cache_inv = __dma_cache_inv_slc;
1274                 __dma_cache_wback = __dma_cache_wback_slc;
1275         } else {
1276                 __dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1277                 __dma_cache_inv = __dma_cache_inv_l1;
1278                 __dma_cache_wback = __dma_cache_wback_l1;
1279         }
1280 }
1281
1282 void __ref arc_cache_init(void)
1283 {
1284         unsigned int __maybe_unused cpu = smp_processor_id();
1285         char str[256];
1286
1287         pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1288
1289         if (!cpu)
1290                 arc_cache_init_master();
1291
1292         /*
1293          * In PAE regime, TLB and cache maintenance ops take wider addresses
1294          * And even if PAE is not enabled in kernel, the upper 32-bits still need
1295          * to be zeroed to keep the ops sane.
1296          * As an optimization for more common !PAE enabled case, zero them out
1297          * once at init, rather than checking/setting to 0 for every runtime op
1298          */
1299         if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1300
1301                 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1302                         write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1303
1304                 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1305                         write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1306
1307                 if (l2_line_sz) {
1308                         write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1309                         write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1310                 }
1311         }
1312 }