Merge tag 'drm-for-v4.15-part2-fixes' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / arch / alpha / lib / stxncpy.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * arch/alpha/lib/stxncpy.S
4  * Contributed by Richard Henderson (rth@tamu.edu)
5  *
6  * Copy no more than COUNT bytes of the null-terminated string from
7  * SRC to DST.
8  *
9  * This is an internal routine used by strncpy, stpncpy, and strncat.
10  * As such, it uses special linkage conventions to make implementation
11  * of these public functions more efficient.
12  *
13  * On input:
14  *      t9 = return address
15  *      a0 = DST
16  *      a1 = SRC
17  *      a2 = COUNT
18  *
19  * Furthermore, COUNT may not be zero.
20  *
21  * On output:
22  *      t0  = last word written
23  *      t10 = bitmask (with one bit set) indicating the byte position of
24  *            the end of the range specified by COUNT
25  *      t12 = bitmask (with one bit set) indicating the last byte written
26  *      a0  = unaligned address of the last *word* written
27  *      a2  = the number of full words left in COUNT
28  *
29  * Furthermore, v0, a3-a5, t11, and $at are untouched.
30  */
31
32 #include <asm/regdef.h>
33
34         .set noat
35         .set noreorder
36
37         .text
38
39 /* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
40    doesn't like putting the entry point for a procedure somewhere in the
41    middle of the procedure descriptor.  Work around this by putting the
42    aligned copy in its own procedure descriptor */
43
44         .ent stxncpy_aligned
45         .align 3
46 stxncpy_aligned:
47         .frame sp, 0, t9, 0
48         .prologue 0
49
50         /* On entry to this basic block:
51            t0 == the first destination word for masking back in
52            t1 == the first source word.  */
53
54         /* Create the 1st output word and detect 0's in the 1st input word.  */
55         lda     t2, -1          # e1    : build a mask against false zero
56         mskqh   t2, a1, t2      # e0    :   detection in the src word
57         mskqh   t1, a1, t3      # e0    :
58         ornot   t1, t2, t2      # .. e1 :
59         mskql   t0, a1, t0      # e0    : assemble the first output word
60         cmpbge  zero, t2, t8    # .. e1 : bits set iff null found
61         or      t0, t3, t0      # e0    :
62         beq     a2, $a_eoc      # .. e1 :
63         bne     t8, $a_eos      # .. e1 :
64
65         /* On entry to this basic block:
66            t0 == a source word not containing a null.  */
67
68 $a_loop:
69         stq_u   t0, 0(a0)       # e0    :
70         addq    a0, 8, a0       # .. e1 :
71         ldq_u   t0, 0(a1)       # e0    :
72         addq    a1, 8, a1       # .. e1 :
73         subq    a2, 1, a2       # e0    :
74         cmpbge  zero, t0, t8    # .. e1 (stall)
75         beq     a2, $a_eoc      # e1    :
76         beq     t8, $a_loop     # e1    :
77
78         /* Take care of the final (partial) word store.  At this point
79            the end-of-count bit is set in t8 iff it applies.
80
81            On entry to this basic block we have:
82            t0 == the source word containing the null
83            t8 == the cmpbge mask that found it.  */
84
85 $a_eos:
86         negq    t8, t12         # e0    : find low bit set
87         and     t8, t12, t12    # e1 (stall)
88
89         /* For the sake of the cache, don't read a destination word
90            if we're not going to need it.  */
91         and     t12, 0x80, t6   # e0    :
92         bne     t6, 1f          # .. e1 (zdb)
93
94         /* We're doing a partial word store and so need to combine
95            our source and original destination words.  */
96         ldq_u   t1, 0(a0)       # e0    :
97         subq    t12, 1, t6      # .. e1 :
98         or      t12, t6, t8     # e0    :
99         unop                    #
100         zapnot  t0, t8, t0      # e0    : clear src bytes > null
101         zap     t1, t8, t1      # .. e1 : clear dst bytes <= null
102         or      t0, t1, t0      # e1    :
103
104 1:      stq_u   t0, 0(a0)       # e0    :
105         ret     (t9)            # e1    :
106
107         /* Add the end-of-count bit to the eos detection bitmask.  */
108 $a_eoc:
109         or      t10, t8, t8
110         br      $a_eos
111
112         .end stxncpy_aligned
113
114         .align 3
115         .ent __stxncpy
116         .globl __stxncpy
117 __stxncpy:
118         .frame sp, 0, t9, 0
119         .prologue 0
120
121         /* Are source and destination co-aligned?  */
122         xor     a0, a1, t1      # e0    :
123         and     a0, 7, t0       # .. e1 : find dest misalignment
124         and     t1, 7, t1       # e0    :
125         addq    a2, t0, a2      # .. e1 : bias count by dest misalignment
126         subq    a2, 1, a2       # e0    :
127         and     a2, 7, t2       # e1    :
128         srl     a2, 3, a2       # e0    : a2 = loop counter = (count - 1)/8
129         addq    zero, 1, t10    # .. e1 :
130         sll     t10, t2, t10    # e0    : t10 = bitmask of last count byte
131         bne     t1, $unaligned  # .. e1 :
132
133         /* We are co-aligned; take care of a partial first word.  */
134
135         ldq_u   t1, 0(a1)       # e0    : load first src word
136         addq    a1, 8, a1       # .. e1 :
137
138         beq     t0, stxncpy_aligned     # avoid loading dest word if not needed
139         ldq_u   t0, 0(a0)       # e0    :
140         br      stxncpy_aligned # .. e1 :
141
142
143 /* The source and destination are not co-aligned.  Align the destination
144    and cope.  We have to be very careful about not reading too much and
145    causing a SEGV.  */
146
147         .align 3
148 $u_head:
149         /* We know just enough now to be able to assemble the first
150            full source word.  We can still find a zero at the end of it
151            that prevents us from outputting the whole thing.
152
153            On entry to this basic block:
154            t0 == the first dest word, unmasked
155            t1 == the shifted low bits of the first source word
156            t6 == bytemask that is -1 in dest word bytes */
157
158         ldq_u   t2, 8(a1)       # e0    : load second src word
159         addq    a1, 8, a1       # .. e1 :
160         mskql   t0, a0, t0      # e0    : mask trailing garbage in dst
161         extqh   t2, a1, t4      # e0    :
162         or      t1, t4, t1      # e1    : first aligned src word complete
163         mskqh   t1, a0, t1      # e0    : mask leading garbage in src
164         or      t0, t1, t0      # e0    : first output word complete
165         or      t0, t6, t6      # e1    : mask original data for zero test
166         cmpbge  zero, t6, t8    # e0    :
167         beq     a2, $u_eocfin   # .. e1 :
168         lda     t6, -1          # e0    :
169         bne     t8, $u_final    # .. e1 :
170
171         mskql   t6, a1, t6      # e0    : mask out bits already seen
172         nop                     # .. e1 :
173         stq_u   t0, 0(a0)       # e0    : store first output word
174         or      t6, t2, t2      # .. e1 :
175         cmpbge  zero, t2, t8    # e0    : find nulls in second partial
176         addq    a0, 8, a0       # .. e1 :
177         subq    a2, 1, a2       # e0    :
178         bne     t8, $u_late_head_exit   # .. e1 :
179
180         /* Finally, we've got all the stupid leading edge cases taken care
181            of and we can set up to enter the main loop.  */
182
183         extql   t2, a1, t1      # e0    : position hi-bits of lo word
184         beq     a2, $u_eoc      # .. e1 :
185         ldq_u   t2, 8(a1)       # e0    : read next high-order source word
186         addq    a1, 8, a1       # .. e1 :
187         extqh   t2, a1, t0      # e0    : position lo-bits of hi word (stall)
188         cmpbge  zero, t2, t8    # .. e1 :
189         nop                     # e0    :
190         bne     t8, $u_eos      # .. e1 :
191
192         /* Unaligned copy main loop.  In order to avoid reading too much,
193            the loop is structured to detect zeros in aligned source words.
194            This has, unfortunately, effectively pulled half of a loop
195            iteration out into the head and half into the tail, but it does
196            prevent nastiness from accumulating in the very thing we want
197            to run as fast as possible.
198
199            On entry to this basic block:
200            t0 == the shifted low-order bits from the current source word
201            t1 == the shifted high-order bits from the previous source word
202            t2 == the unshifted current source word
203
204            We further know that t2 does not contain a null terminator.  */
205
206         .align 3
207 $u_loop:
208         or      t0, t1, t0      # e0    : current dst word now complete
209         subq    a2, 1, a2       # .. e1 : decrement word count
210         stq_u   t0, 0(a0)       # e0    : save the current word
211         addq    a0, 8, a0       # .. e1 :
212         extql   t2, a1, t1      # e0    : extract high bits for next time
213         beq     a2, $u_eoc      # .. e1 :
214         ldq_u   t2, 8(a1)       # e0    : load high word for next time
215         addq    a1, 8, a1       # .. e1 :
216         nop                     # e0    :
217         cmpbge  zero, t2, t8    # e1    : test new word for eos (stall)
218         extqh   t2, a1, t0      # e0    : extract low bits for current word
219         beq     t8, $u_loop     # .. e1 :
220
221         /* We've found a zero somewhere in the source word we just read.
222            If it resides in the lower half, we have one (probably partial)
223            word to write out, and if it resides in the upper half, we
224            have one full and one partial word left to write out.
225
226            On entry to this basic block:
227            t0 == the shifted low-order bits from the current source word
228            t1 == the shifted high-order bits from the previous source word
229            t2 == the unshifted current source word.  */
230 $u_eos:
231         or      t0, t1, t0      # e0    : first (partial) source word complete
232         nop                     # .. e1 :
233         cmpbge  zero, t0, t8    # e0    : is the null in this first bit?
234         bne     t8, $u_final    # .. e1 (zdb)
235
236         stq_u   t0, 0(a0)       # e0    : the null was in the high-order bits
237         addq    a0, 8, a0       # .. e1 :
238         subq    a2, 1, a2       # e1    :
239
240 $u_late_head_exit:
241         extql   t2, a1, t0      # .. e0 :
242         cmpbge  zero, t0, t8    # e0    :
243         or      t8, t10, t6     # e1    :
244         cmoveq  a2, t6, t8      # e0    :
245         nop                     # .. e1 :
246
247         /* Take care of a final (probably partial) result word.
248            On entry to this basic block:
249            t0 == assembled source word
250            t8 == cmpbge mask that found the null.  */
251 $u_final:
252         negq    t8, t6          # e0    : isolate low bit set
253         and     t6, t8, t12     # e1    :
254
255         and     t12, 0x80, t6   # e0    : avoid dest word load if we can
256         bne     t6, 1f          # .. e1 (zdb)
257
258         ldq_u   t1, 0(a0)       # e0    :
259         subq    t12, 1, t6      # .. e1 :
260         or      t6, t12, t8     # e0    :
261         zapnot  t0, t8, t0      # .. e1 : kill source bytes > null
262         zap     t1, t8, t1      # e0    : kill dest bytes <= null
263         or      t0, t1, t0      # e1    :
264
265 1:      stq_u   t0, 0(a0)       # e0    :
266         ret     (t9)            # .. e1 :
267
268         /* Got to end-of-count before end of string.  
269            On entry to this basic block:
270            t1 == the shifted high-order bits from the previous source word  */
271 $u_eoc:
272         and     a1, 7, t6       # e1    :
273         sll     t10, t6, t6     # e0    :
274         and     t6, 0xff, t6    # e0    :
275         bne     t6, 1f          # .. e1 :
276
277         ldq_u   t2, 8(a1)       # e0    : load final src word
278         nop                     # .. e1 :
279         extqh   t2, a1, t0      # e0    : extract low bits for last word
280         or      t1, t0, t1      # e1    :
281
282 1:      cmpbge  zero, t1, t8
283         mov     t1, t0
284
285 $u_eocfin:                      # end-of-count, final word
286         or      t10, t8, t8
287         br      $u_final
288
289         /* Unaligned copy entry point.  */
290         .align 3
291 $unaligned:
292
293         ldq_u   t1, 0(a1)       # e0    : load first source word
294
295         and     a0, 7, t4       # .. e1 : find dest misalignment
296         and     a1, 7, t5       # e0    : find src misalignment
297
298         /* Conditionally load the first destination word and a bytemask
299            with 0xff indicating that the destination byte is sacrosanct.  */
300
301         mov     zero, t0        # .. e1 :
302         mov     zero, t6        # e0    :
303         beq     t4, 1f          # .. e1 :
304         ldq_u   t0, 0(a0)       # e0    :
305         lda     t6, -1          # .. e1 :
306         mskql   t6, a0, t6      # e0    :
307         subq    a1, t4, a1      # .. e1 : sub dest misalignment from src addr
308
309         /* If source misalignment is larger than dest misalignment, we need
310            extra startup checks to avoid SEGV.  */
311
312 1:      cmplt   t4, t5, t12     # e1    :
313         extql   t1, a1, t1      # .. e0 : shift src into place
314         lda     t2, -1          # e0    : for creating masks later
315         beq     t12, $u_head    # .. e1 :
316
317         extql   t2, a1, t2      # e0    :
318         cmpbge  zero, t1, t8    # .. e1 : is there a zero?
319         andnot  t2, t6, t2      # e0    : dest mask for a single word copy
320         or      t8, t10, t5     # .. e1 : test for end-of-count too
321         cmpbge  zero, t2, t3    # e0    :
322         cmoveq  a2, t5, t8      # .. e1 :
323         andnot  t8, t3, t8      # e0    :
324         beq     t8, $u_head     # .. e1 (zdb)
325
326         /* At this point we've found a zero in the first partial word of
327            the source.  We need to isolate the valid source data and mask
328            it into the original destination data.  (Incidentally, we know
329            that we'll need at least one byte of that original dest word.) */
330
331         ldq_u   t0, 0(a0)       # e0    :
332         negq    t8, t6          # .. e1 : build bitmask of bytes <= zero
333         mskqh   t1, t4, t1      # e0    :
334         and     t6, t8, t12     # .. e1 :
335         subq    t12, 1, t6      # e0    :
336         or      t6, t12, t8     # e1    :
337
338         zapnot  t2, t8, t2      # e0    : prepare source word; mirror changes
339         zapnot  t1, t8, t1      # .. e1 : to source validity mask
340
341         andnot  t0, t2, t0      # e0    : zero place for source to reside
342         or      t0, t1, t0      # e1    : and put it there
343         stq_u   t0, 0(a0)       # e0    :
344         ret     (t9)            # .. e1 :
345
346         .end __stxncpy