Merge branch 'work.whack-a-mole' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / alpha / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/alpha/kernel/time.c
4  *
5  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
6  *
7  * This file contains the clocksource time handling.
8  * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
9  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
10  * 1997-01-09    Adrian Sun
11  *      use interval timer if CONFIG_RTC=y
12  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
13  *      fixed tick loss calculation in timer_interrupt
14  *      (round system clock to nearest tick instead of truncating)
15  *      fixed algorithm in time_init for getting time from CMOS clock
16  * 1999-04-16   Thorsten Kranzkowski (dl8bcu@gmx.net)
17  *      fixed algorithm in do_gettimeofday() for calculating the precise time
18  *      from processor cycle counter (now taking lost_ticks into account)
19  * 2003-06-03   R. Scott Bailey <scott.bailey@eds.com>
20  *      Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
21  */
22 #include <linux/errno.h>
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/param.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/irq.h>
32 #include <linux/interrupt.h>
33 #include <linux/init.h>
34 #include <linux/bcd.h>
35 #include <linux/profile.h>
36 #include <linux/irq_work.h>
37
38 #include <linux/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/hwrpb.h>
41
42 #include <linux/mc146818rtc.h>
43 #include <linux/time.h>
44 #include <linux/timex.h>
45 #include <linux/clocksource.h>
46 #include <linux/clockchips.h>
47
48 #include "proto.h"
49 #include "irq_impl.h"
50
51 DEFINE_SPINLOCK(rtc_lock);
52 EXPORT_SYMBOL(rtc_lock);
53
54 unsigned long est_cycle_freq;
55
56 #ifdef CONFIG_IRQ_WORK
57
58 DEFINE_PER_CPU(u8, irq_work_pending);
59
60 #define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
61 #define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
62 #define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
63
64 void arch_irq_work_raise(void)
65 {
66         set_irq_work_pending_flag();
67 }
68
69 #else  /* CONFIG_IRQ_WORK */
70
71 #define test_irq_work_pending()      0
72 #define clear_irq_work_pending()
73
74 #endif /* CONFIG_IRQ_WORK */
75
76
77 static inline __u32 rpcc(void)
78 {
79         return __builtin_alpha_rpcc();
80 }
81
82
83 \f
84 /*
85  * The RTC as a clock_event_device primitive.
86  */
87
88 static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
89
90 irqreturn_t
91 rtc_timer_interrupt(int irq, void *dev)
92 {
93         int cpu = smp_processor_id();
94         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
95
96         /* Don't run the hook for UNUSED or SHUTDOWN.  */
97         if (likely(clockevent_state_periodic(ce)))
98                 ce->event_handler(ce);
99
100         if (test_irq_work_pending()) {
101                 clear_irq_work_pending();
102                 irq_work_run();
103         }
104
105         return IRQ_HANDLED;
106 }
107
108 static int
109 rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
110 {
111         /* This hook is for oneshot mode, which we don't support.  */
112         return -EINVAL;
113 }
114
115 static void __init
116 init_rtc_clockevent(void)
117 {
118         int cpu = smp_processor_id();
119         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
120
121         *ce = (struct clock_event_device){
122                 .name = "rtc",
123                 .features = CLOCK_EVT_FEAT_PERIODIC,
124                 .rating = 100,
125                 .cpumask = cpumask_of(cpu),
126                 .set_next_event = rtc_ce_set_next_event,
127         };
128
129         clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
130 }
131
132 \f
133 /*
134  * The QEMU clock as a clocksource primitive.
135  */
136
137 static u64
138 qemu_cs_read(struct clocksource *cs)
139 {
140         return qemu_get_vmtime();
141 }
142
143 static struct clocksource qemu_cs = {
144         .name                   = "qemu",
145         .rating                 = 400,
146         .read                   = qemu_cs_read,
147         .mask                   = CLOCKSOURCE_MASK(64),
148         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
149         .max_idle_ns            = LONG_MAX
150 };
151
152
153 /*
154  * The QEMU alarm as a clock_event_device primitive.
155  */
156
157 static int qemu_ce_shutdown(struct clock_event_device *ce)
158 {
159         /* The mode member of CE is updated for us in generic code.
160            Just make sure that the event is disabled.  */
161         qemu_set_alarm_abs(0);
162         return 0;
163 }
164
165 static int
166 qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
167 {
168         qemu_set_alarm_rel(evt);
169         return 0;
170 }
171
172 static irqreturn_t
173 qemu_timer_interrupt(int irq, void *dev)
174 {
175         int cpu = smp_processor_id();
176         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
177
178         ce->event_handler(ce);
179         return IRQ_HANDLED;
180 }
181
182 static void __init
183 init_qemu_clockevent(void)
184 {
185         int cpu = smp_processor_id();
186         struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
187
188         *ce = (struct clock_event_device){
189                 .name = "qemu",
190                 .features = CLOCK_EVT_FEAT_ONESHOT,
191                 .rating = 400,
192                 .cpumask = cpumask_of(cpu),
193                 .set_state_shutdown = qemu_ce_shutdown,
194                 .set_state_oneshot = qemu_ce_shutdown,
195                 .tick_resume = qemu_ce_shutdown,
196                 .set_next_event = qemu_ce_set_next_event,
197         };
198
199         clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
200 }
201
202 \f
203 void __init
204 common_init_rtc(void)
205 {
206         unsigned char x, sel = 0;
207
208         /* Reset periodic interrupt frequency.  */
209 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
210         x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
211         /* Test includes known working values on various platforms
212            where 0x26 is wrong; we refuse to change those. */
213         if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
214                 sel = RTC_REF_CLCK_32KHZ + 6;
215         }
216 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
217         sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
218 #else
219 # error "Unknown HZ from arch/alpha/Kconfig"
220 #endif
221         if (sel) {
222                 printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
223                        CONFIG_HZ, sel);
224                 CMOS_WRITE(sel, RTC_FREQ_SELECT);
225         }
226
227         /* Turn on periodic interrupts.  */
228         x = CMOS_READ(RTC_CONTROL);
229         if (!(x & RTC_PIE)) {
230                 printk("Turning on RTC interrupts.\n");
231                 x |= RTC_PIE;
232                 x &= ~(RTC_AIE | RTC_UIE);
233                 CMOS_WRITE(x, RTC_CONTROL);
234         }
235         (void) CMOS_READ(RTC_INTR_FLAGS);
236
237         outb(0x36, 0x43);       /* pit counter 0: system timer */
238         outb(0x00, 0x40);
239         outb(0x00, 0x40);
240
241         outb(0xb6, 0x43);       /* pit counter 2: speaker */
242         outb(0x31, 0x42);
243         outb(0x13, 0x42);
244
245         init_rtc_irq();
246 }
247
248 \f
249 #ifndef CONFIG_ALPHA_WTINT
250 /*
251  * The RPCC as a clocksource primitive.
252  *
253  * While we have free-running timecounters running on all CPUs, and we make
254  * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
255  * with the wall clock, that initialization isn't kept up-to-date across
256  * different time counters in SMP mode.  Therefore we can only use this
257  * method when there's only one CPU enabled.
258  *
259  * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
260  * or stop altogether, while waiting for the interrupt.  Therefore we cannot
261  * use this method when WTINT is in use.
262  */
263
264 static u64 read_rpcc(struct clocksource *cs)
265 {
266         return rpcc();
267 }
268
269 static struct clocksource clocksource_rpcc = {
270         .name                   = "rpcc",
271         .rating                 = 300,
272         .read                   = read_rpcc,
273         .mask                   = CLOCKSOURCE_MASK(32),
274         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS
275 };
276 #endif /* ALPHA_WTINT */
277
278 \f
279 /* Validate a computed cycle counter result against the known bounds for
280    the given processor core.  There's too much brokenness in the way of
281    timing hardware for any one method to work everywhere.  :-(
282
283    Return 0 if the result cannot be trusted, otherwise return the argument.  */
284
285 static unsigned long __init
286 validate_cc_value(unsigned long cc)
287 {
288         static struct bounds {
289                 unsigned int min, max;
290         } cpu_hz[] __initdata = {
291                 [EV3_CPU]    = {   50000000,  200000000 },      /* guess */
292                 [EV4_CPU]    = {  100000000,  300000000 },
293                 [LCA4_CPU]   = {  100000000,  300000000 },      /* guess */
294                 [EV45_CPU]   = {  200000000,  300000000 },
295                 [EV5_CPU]    = {  250000000,  433000000 },
296                 [EV56_CPU]   = {  333000000,  667000000 },
297                 [PCA56_CPU]  = {  400000000,  600000000 },      /* guess */
298                 [PCA57_CPU]  = {  500000000,  600000000 },      /* guess */
299                 [EV6_CPU]    = {  466000000,  600000000 },
300                 [EV67_CPU]   = {  600000000,  750000000 },
301                 [EV68AL_CPU] = {  750000000,  940000000 },
302                 [EV68CB_CPU] = { 1000000000, 1333333333 },
303                 /* None of the following are shipping as of 2001-11-01.  */
304                 [EV68CX_CPU] = { 1000000000, 1700000000 },      /* guess */
305                 [EV69_CPU]   = { 1000000000, 1700000000 },      /* guess */
306                 [EV7_CPU]    = {  800000000, 1400000000 },      /* guess */
307                 [EV79_CPU]   = { 1000000000, 2000000000 },      /* guess */
308         };
309
310         /* Allow for some drift in the crystal.  10MHz is more than enough.  */
311         const unsigned int deviation = 10000000;
312
313         struct percpu_struct *cpu;
314         unsigned int index;
315
316         cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
317         index = cpu->type & 0xffffffff;
318
319         /* If index out of bounds, no way to validate.  */
320         if (index >= ARRAY_SIZE(cpu_hz))
321                 return cc;
322
323         /* If index contains no data, no way to validate.  */
324         if (cpu_hz[index].max == 0)
325                 return cc;
326
327         if (cc < cpu_hz[index].min - deviation
328             || cc > cpu_hz[index].max + deviation)
329                 return 0;
330
331         return cc;
332 }
333
334
335 /*
336  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
337  * arch/i386/time.c.
338  */
339
340 #define CALIBRATE_LATCH 0xffff
341 #define TIMEOUT_COUNT   0x100000
342
343 static unsigned long __init
344 calibrate_cc_with_pit(void)
345 {
346         int cc, count = 0;
347
348         /* Set the Gate high, disable speaker */
349         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
350
351         /*
352          * Now let's take care of CTC channel 2
353          *
354          * Set the Gate high, program CTC channel 2 for mode 0,
355          * (interrupt on terminal count mode), binary count,
356          * load 5 * LATCH count, (LSB and MSB) to begin countdown.
357          */
358         outb(0xb0, 0x43);               /* binary, mode 0, LSB/MSB, Ch 2 */
359         outb(CALIBRATE_LATCH & 0xff, 0x42);     /* LSB of count */
360         outb(CALIBRATE_LATCH >> 8, 0x42);       /* MSB of count */
361
362         cc = rpcc();
363         do {
364                 count++;
365         } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
366         cc = rpcc() - cc;
367
368         /* Error: ECTCNEVERSET or ECPUTOOFAST.  */
369         if (count <= 1 || count == TIMEOUT_COUNT)
370                 return 0;
371
372         return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
373 }
374
375 /* The Linux interpretation of the CMOS clock register contents:
376    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
377    RTC registers show the second which has precisely just started.
378    Let's hope other operating systems interpret the RTC the same way.  */
379
380 static unsigned long __init
381 rpcc_after_update_in_progress(void)
382 {
383         do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
384         do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
385
386         return rpcc();
387 }
388
389 void __init
390 time_init(void)
391 {
392         unsigned int cc1, cc2;
393         unsigned long cycle_freq, tolerance;
394         long diff;
395
396         if (alpha_using_qemu) {
397                 clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
398                 init_qemu_clockevent();
399
400                 timer_irqaction.handler = qemu_timer_interrupt;
401                 init_rtc_irq();
402                 return;
403         }
404
405         /* Calibrate CPU clock -- attempt #1.  */
406         if (!est_cycle_freq)
407                 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
408
409         cc1 = rpcc();
410
411         /* Calibrate CPU clock -- attempt #2.  */
412         if (!est_cycle_freq) {
413                 cc1 = rpcc_after_update_in_progress();
414                 cc2 = rpcc_after_update_in_progress();
415                 est_cycle_freq = validate_cc_value(cc2 - cc1);
416                 cc1 = cc2;
417         }
418
419         cycle_freq = hwrpb->cycle_freq;
420         if (est_cycle_freq) {
421                 /* If the given value is within 250 PPM of what we calculated,
422                    accept it.  Otherwise, use what we found.  */
423                 tolerance = cycle_freq / 4000;
424                 diff = cycle_freq - est_cycle_freq;
425                 if (diff < 0)
426                         diff = -diff;
427                 if ((unsigned long)diff > tolerance) {
428                         cycle_freq = est_cycle_freq;
429                         printk("HWRPB cycle frequency bogus.  "
430                                "Estimated %lu Hz\n", cycle_freq);
431                 } else {
432                         est_cycle_freq = 0;
433                 }
434         } else if (! validate_cc_value (cycle_freq)) {
435                 printk("HWRPB cycle frequency bogus, "
436                        "and unable to estimate a proper value!\n");
437         }
438
439         /* See above for restrictions on using clocksource_rpcc.  */
440 #ifndef CONFIG_ALPHA_WTINT
441         if (hwrpb->nr_processors == 1)
442                 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
443 #endif
444
445         /* Startup the timer source. */
446         alpha_mv.init_rtc();
447         init_rtc_clockevent();
448 }
449
450 /* Initialize the clock_event_device for secondary cpus.  */
451 #ifdef CONFIG_SMP
452 void __init
453 init_clockevent(void)
454 {
455         if (alpha_using_qemu)
456                 init_qemu_clockevent();
457         else
458                 init_rtc_clockevent();
459 }
460 #endif