Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / Documentation / networking / kcm.txt
1 Kernel Connection Multiplexor
2 -----------------------------
3
4 Kernel Connection Multiplexor (KCM) is a mechanism that provides a message based
5 interface over TCP for generic application protocols. With KCM an application
6 can efficiently send and receive application protocol messages over TCP using
7 datagram sockets.
8
9 KCM implements an NxM multiplexor in the kernel as diagrammed below:
10
11 +------------+   +------------+   +------------+   +------------+
12 | KCM socket |   | KCM socket |   | KCM socket |   | KCM socket |
13 +------------+   +------------+   +------------+   +------------+
14       |                 |               |                |
15       +-----------+     |               |     +----------+
16                   |     |               |     |
17                +----------------------------------+
18                |           Multiplexor            |
19                +----------------------------------+
20                  |   |           |           |  |
21        +---------+   |           |           |  ------------+
22        |             |           |           |              |
23 +----------+  +----------+  +----------+  +----------+ +----------+
24 |  Psock   |  |  Psock   |  |  Psock   |  |  Psock   | |  Psock   |
25 +----------+  +----------+  +----------+  +----------+ +----------+
26       |              |           |            |             |
27 +----------+  +----------+  +----------+  +----------+ +----------+
28 | TCP sock |  | TCP sock |  | TCP sock |  | TCP sock | | TCP sock |
29 +----------+  +----------+  +----------+  +----------+ +----------+
30
31 KCM sockets
32 -----------
33
34 The KCM sockets provide the user interface to the multiplexor. All the KCM sockets
35 bound to a multiplexor are considered to have equivalent function, and I/O
36 operations in different sockets may be done in parallel without the need for
37 synchronization between threads in userspace.
38
39 Multiplexor
40 -----------
41
42 The multiplexor provides the message steering. In the transmit path, messages
43 written on a KCM socket are sent atomically on an appropriate TCP socket.
44 Similarly, in the receive path, messages are constructed on each TCP socket
45 (Psock) and complete messages are steered to a KCM socket.
46
47 TCP sockets & Psocks
48 --------------------
49
50 TCP sockets may be bound to a KCM multiplexor. A Psock structure is allocated
51 for each bound TCP socket, this structure holds the state for constructing
52 messages on receive as well as other connection specific information for KCM.
53
54 Connected mode semantics
55 ------------------------
56
57 Each multiplexor assumes that all attached TCP connections are to the same
58 destination and can use the different connections for load balancing when
59 transmitting. The normal send and recv calls (include sendmmsg and recvmmsg)
60 can be used to send and receive messages from the KCM socket.
61
62 Socket types
63 ------------
64
65 KCM supports SOCK_DGRAM and SOCK_SEQPACKET socket types.
66
67 Message delineation
68 -------------------
69
70 Messages are sent over a TCP stream with some application protocol message
71 format that typically includes a header which frames the messages. The length
72 of a received message can be deduced from the application protocol header
73 (often just a simple length field).
74
75 A TCP stream must be parsed to determine message boundaries. Berkeley Packet
76 Filter (BPF) is used for this. When attaching a TCP socket to a multiplexor a
77 BPF program must be specified. The program is called at the start of receiving
78 a new message and is given an skbuff that contains the bytes received so far.
79 It parses the message header and returns the length of the message. Given this
80 information, KCM will construct the message of the stated length and deliver it
81 to a KCM socket.
82
83 TCP socket management
84 ---------------------
85
86 When a TCP socket is attached to a KCM multiplexor data ready (POLLIN) and
87 write space available (POLLOUT) events are handled by the multiplexor. If there
88 is a state change (disconnection) or other error on a TCP socket, an error is
89 posted on the TCP socket so that a POLLERR event happens and KCM discontinues
90 using the socket. When the application gets the error notification for a
91 TCP socket, it should unattach the socket from KCM and then handle the error
92 condition (the typical response is to close the socket and create a new
93 connection if necessary).
94
95 KCM limits the maximum receive message size to be the size of the receive
96 socket buffer on the attached TCP socket (the socket buffer size can be set by
97 SO_RCVBUF). If the length of a new message reported by the BPF program is
98 greater than this limit a corresponding error (EMSGSIZE) is posted on the TCP
99 socket. The BPF program may also enforce a maximum messages size and report an
100 error when it is exceeded.
101
102 A timeout may be set for assembling messages on a receive socket. The timeout
103 value is taken from the receive timeout of the attached TCP socket (this is set
104 by SO_RCVTIMEO). If the timer expires before assembly is complete an error
105 (ETIMEDOUT) is posted on the socket.
106
107 User interface
108 ==============
109
110 Creating a multiplexor
111 ----------------------
112
113 A new multiplexor and initial KCM socket is created by a socket call:
114
115   socket(AF_KCM, type, protocol)
116
117   - type is either SOCK_DGRAM or SOCK_SEQPACKET
118   - protocol is KCMPROTO_CONNECTED
119
120 Cloning KCM sockets
121 -------------------
122
123 After the first KCM socket is created using the socket call as described
124 above, additional sockets for the multiplexor can be created by cloning
125 a KCM socket. This is accomplished by an ioctl on a KCM socket:
126
127   /* From linux/kcm.h */
128   struct kcm_clone {
129         int fd;
130   };
131
132   struct kcm_clone info;
133
134   memset(&info, 0, sizeof(info));
135
136   err = ioctl(kcmfd, SIOCKCMCLONE, &info);
137
138   if (!err)
139     newkcmfd = info.fd;
140
141 Attach transport sockets
142 ------------------------
143
144 Attaching of transport sockets to a multiplexor is performed by calling an
145 ioctl on a KCM socket for the multiplexor. e.g.:
146
147   /* From linux/kcm.h */
148   struct kcm_attach {
149         int fd;
150         int bpf_fd;
151   };
152
153   struct kcm_attach info;
154
155   memset(&info, 0, sizeof(info));
156
157   info.fd = tcpfd;
158   info.bpf_fd = bpf_prog_fd;
159
160   ioctl(kcmfd, SIOCKCMATTACH, &info);
161
162 The kcm_attach structure contains:
163   fd: file descriptor for TCP socket being attached
164   bpf_prog_fd: file descriptor for compiled BPF program downloaded
165
166 Unattach transport sockets
167 --------------------------
168
169 Unattaching a transport socket from a multiplexor is straightforward. An
170 "unattach" ioctl is done with the kcm_unattach structure as the argument:
171
172   /* From linux/kcm.h */
173   struct kcm_unattach {
174         int fd;
175   };
176
177   struct kcm_unattach info;
178
179   memset(&info, 0, sizeof(info));
180
181   info.fd = cfd;
182
183   ioctl(fd, SIOCKCMUNATTACH, &info);
184
185 Disabling receive on KCM socket
186 -------------------------------
187
188 A setsockopt is used to disable or enable receiving on a KCM socket.
189 When receive is disabled, any pending messages in the socket's
190 receive buffer are moved to other sockets. This feature is useful
191 if an application thread knows that it will be doing a lot of
192 work on a request and won't be able to service new messages for a
193 while. Example use:
194
195   int val = 1;
196
197   setsockopt(kcmfd, SOL_KCM, KCM_RECV_DISABLE, &val, sizeof(val))
198
199 BFP programs for message delineation
200 ------------------------------------
201
202 BPF programs can be compiled using the BPF LLVM backend. For example,
203 the BPF program for parsing Thrift is:
204
205   #include "bpf.h" /* for __sk_buff */
206   #include "bpf_helpers.h" /* for load_word intrinsic */
207
208   SEC("socket_kcm")
209   int bpf_prog1(struct __sk_buff *skb)
210   {
211        return load_word(skb, 0) + 4;
212   }
213
214   char _license[] SEC("license") = "GPL";
215
216 Use in applications
217 ===================
218
219 KCM accelerates application layer protocols. Specifically, it allows
220 applications to use a message based interface for sending and receiving
221 messages. The kernel provides necessary assurances that messages are sent
222 and received atomically. This relieves much of the burden applications have
223 in mapping a message based protocol onto the TCP stream. KCM also make
224 application layer messages a unit of work in the kernel for the purposes of
225 steering and scheduling, which in turn allows a simpler networking model in
226 multithreaded applications.
227
228 Configurations
229 --------------
230
231 In an Nx1 configuration, KCM logically provides multiple socket handles
232 to the same TCP connection. This allows parallelism between in I/O
233 operations on the TCP socket (for instance copyin and copyout of data is
234 parallelized). In an application, a KCM socket can be opened for each
235 processing thread and inserted into the epoll (similar to how SO_REUSEPORT
236 is used to allow multiple listener sockets on the same port).
237
238 In a MxN configuration, multiple connections are established to the
239 same destination. These are used for simple load balancing.
240
241 Message batching
242 ----------------
243
244 The primary purpose of KCM is load balancing between KCM sockets and hence
245 threads in a nominal use case. Perfect load balancing, that is steering
246 each received message to a different KCM socket or steering each sent
247 message to a different TCP socket, can negatively impact performance
248 since this doesn't allow for affinities to be established. Balancing
249 based on groups, or batches of messages, can be beneficial for performance.
250
251 On transmit, there are three ways an application can batch (pipeline)
252 messages on a KCM socket.
253   1) Send multiple messages in a single sendmmsg.
254   2) Send a group of messages each with a sendmsg call, where all messages
255      except the last have MSG_BATCH in the flags of sendmsg call.
256   3) Create "super message" composed of multiple messages and send this
257      with a single sendmsg.
258
259 On receive, the KCM module attempts to queue messages received on the
260 same KCM socket during each TCP ready callback. The targeted KCM socket
261 changes at each receive ready callback on the KCM socket. The application
262 does not need to configure this.
263
264 Error handling
265 --------------
266
267 An application should include a thread to monitor errors raised on
268 the TCP connection. Normally, this will be done by placing each
269 TCP socket attached to a KCM multiplexor in epoll set for POLLERR
270 event. If an error occurs on an attached TCP socket, KCM sets an EPIPE
271 on the socket thus waking up the application thread. When the application
272 sees the error (which may just be a disconnect) it should unattach the
273 socket from KCM and then close it. It is assumed that once an error is
274 posted on the TCP socket the data stream is unrecoverable (i.e. an error
275 may have occurred in the middle of receiving a message).
276
277 TCP connection monitoring
278 -------------------------
279
280 In KCM there is no means to correlate a message to the TCP socket that
281 was used to send or receive the message (except in the case there is
282 only one attached TCP socket). However, the application does retain
283 an open file descriptor to the socket so it will be able to get statistics
284 from the socket which can be used in detecting issues (such as high
285 retransmissions on the socket).