Merge remote-tracking branches 'asoc/topic/wm8960', 'asoc/topic/wm8978' and 'asoc...
[sfrench/cifs-2.6.git] / Documentation / fpga / fpga-mgr.txt
1 FPGA Manager Core
2
3 Alan Tull 2015
4
5 Overview
6 ========
7
8 The FPGA manager core exports a set of functions for programming an FPGA with
9 an image.  The API is manufacturer agnostic.  All manufacturer specifics are
10 hidden away in a low level driver which registers a set of ops with the core.
11 The FPGA image data itself is very manufacturer specific, but for our purposes
12 it's just binary data.  The FPGA manager core won't parse it.
13
14
15 API Functions:
16 ==============
17
18 To program the FPGA from a file or from a buffer:
19 -------------------------------------------------
20
21         int fpga_mgr_buf_load(struct fpga_manager *mgr,
22                               struct fpga_image_info *info,
23                               const char *buf, size_t count);
24
25 Load the FPGA from an image which exists as a contiguous buffer in
26 memory. Allocating contiguous kernel memory for the buffer should be avoided,
27 users are encouraged to use the _sg interface instead of this.
28
29         int fpga_mgr_buf_load_sg(struct fpga_manager *mgr,
30                                  struct fpga_image_info *info,
31                                  struct sg_table *sgt);
32
33 Load the FPGA from an image from non-contiguous in memory. Callers can
34 construct a sg_table using alloc_page backed memory.
35
36         int fpga_mgr_firmware_load(struct fpga_manager *mgr,
37                                    struct fpga_image_info *info,
38                                    const char *image_name);
39
40 Load the FPGA from an image which exists as a file.  The image file must be on
41 the firmware search path (see the firmware class documentation).  If successful,
42 the FPGA ends up in operating mode.  Return 0 on success or a negative error
43 code.
44
45 A FPGA design contained in a FPGA image file will likely have particulars that
46 affect how the image is programmed to the FPGA.  These are contained in struct
47 fpga_image_info.  Currently the only such particular is a single flag bit
48 indicating whether the image is for full or partial reconfiguration.
49
50 To get/put a reference to a FPGA manager:
51 -----------------------------------------
52
53         struct fpga_manager *of_fpga_mgr_get(struct device_node *node);
54         struct fpga_manager *fpga_mgr_get(struct device *dev);
55
56 Given a DT node or device, get an exclusive reference to a FPGA manager.
57
58         void fpga_mgr_put(struct fpga_manager *mgr);
59
60 Release the reference.
61
62
63 To register or unregister the low level FPGA-specific driver:
64 -------------------------------------------------------------
65
66         int fpga_mgr_register(struct device *dev, const char *name,
67                               const struct fpga_manager_ops *mops,
68                               void *priv);
69
70         void fpga_mgr_unregister(struct device *dev);
71
72 Use of these two functions is described below in "How To Support a new FPGA
73 device."
74
75
76 How to write an image buffer to a supported FPGA
77 ================================================
78 /* Include to get the API */
79 #include <linux/fpga/fpga-mgr.h>
80
81 /* device node that specifies the FPGA manager to use */
82 struct device_node *mgr_node = ...
83
84 /* FPGA image is in this buffer.  count is size of the buffer. */
85 char *buf = ...
86 int count = ...
87
88 /* struct with information about the FPGA image to program. */
89 struct fpga_image_info info;
90
91 /* flags indicates whether to do full or partial reconfiguration */
92 info.flags = 0;
93
94 int ret;
95
96 /* Get exclusive control of FPGA manager */
97 struct fpga_manager *mgr = of_fpga_mgr_get(mgr_node);
98
99 /* Load the buffer to the FPGA */
100 ret = fpga_mgr_buf_load(mgr, &info, buf, count);
101
102 /* Release the FPGA manager */
103 fpga_mgr_put(mgr);
104
105
106 How to write an image file to a supported FPGA
107 ==============================================
108 /* Include to get the API */
109 #include <linux/fpga/fpga-mgr.h>
110
111 /* device node that specifies the FPGA manager to use */
112 struct device_node *mgr_node = ...
113
114 /* FPGA image is in this file which is in the firmware search path */
115 const char *path = "fpga-image-9.rbf"
116
117 /* struct with information about the FPGA image to program. */
118 struct fpga_image_info info;
119
120 /* flags indicates whether to do full or partial reconfiguration */
121 info.flags = 0;
122
123 int ret;
124
125 /* Get exclusive control of FPGA manager */
126 struct fpga_manager *mgr = of_fpga_mgr_get(mgr_node);
127
128 /* Get the firmware image (path) and load it to the FPGA */
129 ret = fpga_mgr_firmware_load(mgr, &info, path);
130
131 /* Release the FPGA manager */
132 fpga_mgr_put(mgr);
133
134
135 How to support a new FPGA device
136 ================================
137 To add another FPGA manager, write a driver that implements a set of ops.  The
138 probe function calls fpga_mgr_register(), such as:
139
140 static const struct fpga_manager_ops socfpga_fpga_ops = {
141        .write_init = socfpga_fpga_ops_configure_init,
142        .write = socfpga_fpga_ops_configure_write,
143        .write_complete = socfpga_fpga_ops_configure_complete,
144        .state = socfpga_fpga_ops_state,
145 };
146
147 static int socfpga_fpga_probe(struct platform_device *pdev)
148 {
149         struct device *dev = &pdev->dev;
150         struct socfpga_fpga_priv *priv;
151         int ret;
152
153         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
154         if (!priv)
155                 return -ENOMEM;
156
157         /* ... do ioremaps, get interrupts, etc. and save
158            them in priv... */
159
160         return fpga_mgr_register(dev, "Altera SOCFPGA FPGA Manager",
161                                  &socfpga_fpga_ops, priv);
162 }
163
164 static int socfpga_fpga_remove(struct platform_device *pdev)
165 {
166         fpga_mgr_unregister(&pdev->dev);
167
168         return 0;
169 }
170
171
172 The ops will implement whatever device specific register writes are needed to
173 do the programming sequence for this particular FPGA.  These ops return 0 for
174 success or negative error codes otherwise.
175
176 The programming sequence is:
177  1. .write_init
178  2. .write or .write_sg (may be called once or multiple times)
179  3. .write_complete
180
181 The .write_init function will prepare the FPGA to receive the image data.  The
182 buffer passed into .write_init will be atmost .initial_header_size bytes long,
183 if the whole bitstream is not immediately available then the core code will
184 buffer up at least this much before starting.
185
186 The .write function writes a buffer to the FPGA. The buffer may be contain the
187 whole FPGA image or may be a smaller chunk of an FPGA image.  In the latter
188 case, this function is called multiple times for successive chunks. This interface
189 is suitable for drivers which use PIO.
190
191 The .write_sg version behaves the same as .write except the input is a sg_table
192 scatter list. This interface is suitable for drivers which use DMA.
193
194 The .write_complete function is called after all the image has been written
195 to put the FPGA into operating mode.
196
197 The ops include a .state function which will read the hardware FPGA manager and
198 return a code of type enum fpga_mgr_states.  It doesn't result in a change in
199 hardware state.