Merge remote-tracking branch 'asoc/fix/dapm' into asoc-linus
[sfrench/cifs-2.6.git] / Documentation / crypto / asymmetric-keys.txt
1                 =============================================
2                 ASYMMETRIC / PUBLIC-KEY CRYPTOGRAPHY KEY TYPE
3                 =============================================
4
5 Contents:
6
7   - Overview.
8   - Key identification.
9   - Accessing asymmetric keys.
10     - Signature verification.
11   - Asymmetric key subtypes.
12   - Instantiation data parsers.
13
14
15 ========
16 OVERVIEW
17 ========
18
19 The "asymmetric" key type is designed to be a container for the keys used in
20 public-key cryptography, without imposing any particular restrictions on the
21 form or mechanism of the cryptography or form of the key.
22
23 The asymmetric key is given a subtype that defines what sort of data is
24 associated with the key and provides operations to describe and destroy it.
25 However, no requirement is made that the key data actually be stored in the
26 key.
27
28 A completely in-kernel key retention and operation subtype can be defined, but
29 it would also be possible to provide access to cryptographic hardware (such as
30 a TPM) that might be used to both retain the relevant key and perform
31 operations using that key.  In such a case, the asymmetric key would then
32 merely be an interface to the TPM driver.
33
34 Also provided is the concept of a data parser.  Data parsers are responsible
35 for extracting information from the blobs of data passed to the instantiation
36 function.  The first data parser that recognises the blob gets to set the
37 subtype of the key and define the operations that can be done on that key.
38
39 A data parser may interpret the data blob as containing the bits representing a
40 key, or it may interpret it as a reference to a key held somewhere else in the
41 system (for example, a TPM).
42
43
44 ==================
45 KEY IDENTIFICATION
46 ==================
47
48 If a key is added with an empty name, the instantiation data parsers are given
49 the opportunity to pre-parse a key and to determine the description the key
50 should be given from the content of the key.
51
52 This can then be used to refer to the key, either by complete match or by
53 partial match.  The key type may also use other criteria to refer to a key.
54
55 The asymmetric key type's match function can then perform a wider range of
56 comparisons than just the straightforward comparison of the description with
57 the criterion string:
58
59  (1) If the criterion string is of the form "id:<hexdigits>" then the match
60      function will examine a key's fingerprint to see if the hex digits given
61      after the "id:" match the tail.  For instance:
62
63         keyctl search @s asymmetric id:5acc2142
64
65      will match a key with fingerprint:
66
67         1A00 2040 7601 7889 DE11  882C 3823 04AD 5ACC 2142
68
69  (2) If the criterion string is of the form "<subtype>:<hexdigits>" then the
70      match will match the ID as in (1), but with the added restriction that
71      only keys of the specified subtype (e.g. tpm) will be matched.  For
72      instance:
73
74         keyctl search @s asymmetric tpm:5acc2142
75
76 Looking in /proc/keys, the last 8 hex digits of the key fingerprint are
77 displayed, along with the subtype:
78
79         1a39e171 I-----     1 perm 3f010000     0     0 asymmetric modsign.0: DSA 5acc2142 []
80
81
82 =========================
83 ACCESSING ASYMMETRIC KEYS
84 =========================
85
86 For general access to asymmetric keys from within the kernel, the following
87 inclusion is required:
88
89         #include <crypto/public_key.h>
90
91 This gives access to functions for dealing with asymmetric / public keys.
92 Three enums are defined there for representing public-key cryptography
93 algorithms:
94
95         enum pkey_algo
96
97 digest algorithms used by those:
98
99         enum pkey_hash_algo
100
101 and key identifier representations:
102
103         enum pkey_id_type
104
105 Note that the key type representation types are required because key
106 identifiers from different standards aren't necessarily compatible.  For
107 instance, PGP generates key identifiers by hashing the key data plus some
108 PGP-specific metadata, whereas X.509 has arbitrary certificate identifiers.
109
110 The operations defined upon a key are:
111
112  (1) Signature verification.
113
114 Other operations are possible (such as encryption) with the same key data
115 required for verification, but not currently supported, and others
116 (eg. decryption and signature generation) require extra key data.
117
118
119 SIGNATURE VERIFICATION
120 ----------------------
121
122 An operation is provided to perform cryptographic signature verification, using
123 an asymmetric key to provide or to provide access to the public key.
124
125         int verify_signature(const struct key *key,
126                              const struct public_key_signature *sig);
127
128 The caller must have already obtained the key from some source and can then use
129 it to check the signature.  The caller must have parsed the signature and
130 transferred the relevant bits to the structure pointed to by sig.
131
132         struct public_key_signature {
133                 u8 *digest;
134                 u8 digest_size;
135                 enum pkey_hash_algo pkey_hash_algo : 8;
136                 u8 nr_mpi;
137                 union {
138                         MPI mpi[2];
139                         ...
140                 };
141         };
142
143 The algorithm used must be noted in sig->pkey_hash_algo, and all the MPIs that
144 make up the actual signature must be stored in sig->mpi[] and the count of MPIs
145 placed in sig->nr_mpi.
146
147 In addition, the data must have been digested by the caller and the resulting
148 hash must be pointed to by sig->digest and the size of the hash be placed in
149 sig->digest_size.
150
151 The function will return 0 upon success or -EKEYREJECTED if the signature
152 doesn't match.
153
154 The function may also return -ENOTSUPP if an unsupported public-key algorithm
155 or public-key/hash algorithm combination is specified or the key doesn't
156 support the operation; -EBADMSG or -ERANGE if some of the parameters have weird
157 data; or -ENOMEM if an allocation can't be performed.  -EINVAL can be returned
158 if the key argument is the wrong type or is incompletely set up.
159
160
161 =======================
162 ASYMMETRIC KEY SUBTYPES
163 =======================
164
165 Asymmetric keys have a subtype that defines the set of operations that can be
166 performed on that key and that determines what data is attached as the key
167 payload.  The payload format is entirely at the whim of the subtype.
168
169 The subtype is selected by the key data parser and the parser must initialise
170 the data required for it.  The asymmetric key retains a reference on the
171 subtype module.
172
173 The subtype definition structure can be found in:
174
175         #include <keys/asymmetric-subtype.h>
176
177 and looks like the following:
178
179         struct asymmetric_key_subtype {
180                 struct module           *owner;
181                 const char              *name;
182
183                 void (*describe)(const struct key *key, struct seq_file *m);
184                 void (*destroy)(void *payload);
185                 int (*verify_signature)(const struct key *key,
186                                         const struct public_key_signature *sig);
187         };
188
189 Asymmetric keys point to this with their payload[asym_subtype] member.
190
191 The owner and name fields should be set to the owning module and the name of
192 the subtype.  Currently, the name is only used for print statements.
193
194 There are a number of operations defined by the subtype:
195
196  (1) describe().
197
198      Mandatory.  This allows the subtype to display something in /proc/keys
199      against the key.  For instance the name of the public key algorithm type
200      could be displayed.  The key type will display the tail of the key
201      identity string after this.
202
203  (2) destroy().
204
205      Mandatory.  This should free the memory associated with the key.  The
206      asymmetric key will look after freeing the fingerprint and releasing the
207      reference on the subtype module.
208
209  (3) verify_signature().
210
211      Optional.  These are the entry points for the key usage operations.
212      Currently there is only the one defined.  If not set, the caller will be
213      given -ENOTSUPP.  The subtype may do anything it likes to implement an
214      operation, including offloading to hardware.
215
216
217 ==========================
218 INSTANTIATION DATA PARSERS
219 ==========================
220
221 The asymmetric key type doesn't generally want to store or to deal with a raw
222 blob of data that holds the key data.  It would have to parse it and error
223 check it each time it wanted to use it.  Further, the contents of the blob may
224 have various checks that can be performed on it (eg. self-signatures, validity
225 dates) and may contain useful data about the key (identifiers, capabilities).
226
227 Also, the blob may represent a pointer to some hardware containing the key
228 rather than the key itself.
229
230 Examples of blob formats for which parsers could be implemented include:
231
232  - OpenPGP packet stream [RFC 4880].
233  - X.509 ASN.1 stream.
234  - Pointer to TPM key.
235  - Pointer to UEFI key.
236
237 During key instantiation each parser in the list is tried until one doesn't
238 return -EBADMSG.
239
240 The parser definition structure can be found in:
241
242         #include <keys/asymmetric-parser.h>
243
244 and looks like the following:
245
246         struct asymmetric_key_parser {
247                 struct module   *owner;
248                 const char      *name;
249
250                 int (*parse)(struct key_preparsed_payload *prep);
251         };
252
253 The owner and name fields should be set to the owning module and the name of
254 the parser.
255
256 There is currently only a single operation defined by the parser, and it is
257 mandatory:
258
259  (1) parse().
260
261      This is called to preparse the key from the key creation and update paths.
262      In particular, it is called during the key creation _before_ a key is
263      allocated, and as such, is permitted to provide the key's description in
264      the case that the caller declines to do so.
265
266      The caller passes a pointer to the following struct with all of the fields
267      cleared, except for data, datalen and quotalen [see
268      Documentation/security/keys.txt].
269
270         struct key_preparsed_payload {
271                 char            *description;
272                 void            *payload[4];
273                 const void      *data;
274                 size_t          datalen;
275                 size_t          quotalen;
276         };
277
278      The instantiation data is in a blob pointed to by data and is datalen in
279      size.  The parse() function is not permitted to change these two values at
280      all, and shouldn't change any of the other values _unless_ they are
281      recognise the blob format and will not return -EBADMSG to indicate it is
282      not theirs.
283
284      If the parser is happy with the blob, it should propose a description for
285      the key and attach it to ->description, ->payload[asym_subtype] should be
286      set to point to the subtype to be used, ->payload[asym_crypto] should be
287      set to point to the initialised data for that subtype,
288      ->payload[asym_key_ids] should point to one or more hex fingerprints and
289      quotalen should be updated to indicate how much quota this key should
290      account for.
291
292      When clearing up, the data attached to ->payload[asym_key_ids] and
293      ->description will be kfree()'d and the data attached to
294      ->payload[asm_crypto] will be passed to the subtype's ->destroy() method
295      to be disposed of.  A module reference for the subtype pointed to by
296      ->payload[asym_subtype] will be put.
297
298
299      If the data format is not recognised, -EBADMSG should be returned.  If it
300      is recognised, but the key cannot for some reason be set up, some other
301      negative error code should be returned.  On success, 0 should be returned.
302
303      The key's fingerprint string may be partially matched upon.  For a
304      public-key algorithm such as RSA and DSA this will likely be a printable
305      hex version of the key's fingerprint.
306
307 Functions are provided to register and unregister parsers:
308
309         int register_asymmetric_key_parser(struct asymmetric_key_parser *parser);
310         void unregister_asymmetric_key_parser(struct asymmetric_key_parser *subtype);
311
312 Parsers may not have the same name.  The names are otherwise only used for
313 displaying in debugging messages.