[PATCH] atomic: cmpxchg
[sfrench/cifs-2.6.git] / Documentation / atomic_ops.txt
1                 Semantics and Behavior of Atomic and
2                          Bitmask Operations
3
4                           David S. Miller        
5
6         This document is intended to serve as a guide to Linux port
7 maintainers on how to implement atomic counter, bitops, and spinlock
8 interfaces properly.
9
10         The atomic_t type should be defined as a signed integer.
11 Also, it should be made opaque such that any kind of cast to a normal
12 C integer type will fail.  Something like the following should
13 suffice:
14
15         typedef struct { volatile int counter; } atomic_t;
16
17         The first operations to implement for atomic_t's are the
18 initializers and plain reads.
19
20         #define ATOMIC_INIT(i)          { (i) }
21         #define atomic_set(v, i)        ((v)->counter = (i))
22
23 The first macro is used in definitions, such as:
24
25 static atomic_t my_counter = ATOMIC_INIT(1);
26
27 The second interface can be used at runtime, as in:
28
29         struct foo { atomic_t counter; };
30         ...
31
32         struct foo *k;
33
34         k = kmalloc(sizeof(*k), GFP_KERNEL);
35         if (!k)
36                 return -ENOMEM;
37         atomic_set(&k->counter, 0);
38
39 Next, we have:
40
41         #define atomic_read(v)  ((v)->counter)
42
43 which simply reads the current value of the counter.
44
45 Now, we move onto the actual atomic operation interfaces.
46
47         void atomic_add(int i, atomic_t *v);
48         void atomic_sub(int i, atomic_t *v);
49         void atomic_inc(atomic_t *v);
50         void atomic_dec(atomic_t *v);
51
52 These four routines add and subtract integral values to/from the given
53 atomic_t value.  The first two routines pass explicit integers by
54 which to make the adjustment, whereas the latter two use an implicit
55 adjustment value of "1".
56
57 One very important aspect of these two routines is that they DO NOT
58 require any explicit memory barriers.  They need only perform the
59 atomic_t counter update in an SMP safe manner.
60
61 Next, we have:
62
63         int atomic_inc_return(atomic_t *v);
64         int atomic_dec_return(atomic_t *v);
65
66 These routines add 1 and subtract 1, respectively, from the given
67 atomic_t and return the new counter value after the operation is
68 performed.
69
70 Unlike the above routines, it is required that explicit memory
71 barriers are performed before and after the operation.  It must be
72 done such that all memory operations before and after the atomic
73 operation calls are strongly ordered with respect to the atomic
74 operation itself.
75
76 For example, it should behave as if a smp_mb() call existed both
77 before and after the atomic operation.
78
79 If the atomic instructions used in an implementation provide explicit
80 memory barrier semantics which satisfy the above requirements, that is
81 fine as well.
82
83 Let's move on:
84
85         int atomic_add_return(int i, atomic_t *v);
86         int atomic_sub_return(int i, atomic_t *v);
87
88 These behave just like atomic_{inc,dec}_return() except that an
89 explicit counter adjustment is given instead of the implicit "1".
90 This means that like atomic_{inc,dec}_return(), the memory barrier
91 semantics are required.
92
93 Next:
94
95         int atomic_inc_and_test(atomic_t *v);
96         int atomic_dec_and_test(atomic_t *v);
97
98 These two routines increment and decrement by 1, respectively, the
99 given atomic counter.  They return a boolean indicating whether the
100 resulting counter value was zero or not.
101
102 It requires explicit memory barrier semantics around the operation as
103 above.
104
105         int atomic_sub_and_test(int i, atomic_t *v);
106
107 This is identical to atomic_dec_and_test() except that an explicit
108 decrement is given instead of the implicit "1".  It requires explicit
109 memory barrier semantics around the operation.
110
111         int atomic_add_negative(int i, atomic_t *v);
112
113 The given increment is added to the given atomic counter value.  A
114 boolean is return which indicates whether the resulting counter value
115 is negative.  It requires explicit memory barrier semantics around the
116 operation.
117
118 Finally:
119
120         int atomic_cmpxchg(atomic_t *v, int old, int new);
121
122 This performs an atomic compare exchange operation on the atomic value v,
123 with the given old and new values. Like all atomic_xxx operations,
124 atomic_cmpxchg will only satisfy its atomicity semantics as long as all
125 other accesses of *v are performed through atomic_xxx operations.
126
127 atomic_cmpxchg requires explicit memory barriers around the operation.
128
129 The semantics for atomic_cmpxchg are the same as those defined for 'cas'
130 below.
131
132
133 If a caller requires memory barrier semantics around an atomic_t
134 operation which does not return a value, a set of interfaces are
135 defined which accomplish this:
136
137         void smp_mb__before_atomic_dec(void);
138         void smp_mb__after_atomic_dec(void);
139         void smp_mb__before_atomic_inc(void);
140         void smp_mb__after_atomic_dec(void);
141
142 For example, smp_mb__before_atomic_dec() can be used like so:
143
144         obj->dead = 1;
145         smp_mb__before_atomic_dec();
146         atomic_dec(&obj->ref_count);
147
148 It makes sure that all memory operations preceeding the atomic_dec()
149 call are strongly ordered with respect to the atomic counter
150 operation.  In the above example, it guarentees that the assignment of
151 "1" to obj->dead will be globally visible to other cpus before the
152 atomic counter decrement.
153
154 Without the explicitl smp_mb__before_atomic_dec() call, the
155 implementation could legally allow the atomic counter update visible
156 to other cpus before the "obj->dead = 1;" assignment.
157
158 The other three interfaces listed are used to provide explicit
159 ordering with respect to memory operations after an atomic_dec() call
160 (smp_mb__after_atomic_dec()) and around atomic_inc() calls
161 (smp_mb__{before,after}_atomic_inc()).
162
163 A missing memory barrier in the cases where they are required by the
164 atomic_t implementation above can have disasterous results.  Here is
165 an example, which follows a pattern occuring frequently in the Linux
166 kernel.  It is the use of atomic counters to implement reference
167 counting, and it works such that once the counter falls to zero it can
168 be guarenteed that no other entity can be accessing the object:
169
170 static void obj_list_add(struct obj *obj)
171 {
172         obj->active = 1;
173         list_add(&obj->list);
174 }
175
176 static void obj_list_del(struct obj *obj)
177 {
178         list_del(&obj->list);
179         obj->active = 0;
180 }
181
182 static void obj_destroy(struct obj *obj)
183 {
184         BUG_ON(obj->active);
185         kfree(obj);
186 }
187
188 struct obj *obj_list_peek(struct list_head *head)
189 {
190         if (!list_empty(head)) {
191                 struct obj *obj;
192
193                 obj = list_entry(head->next, struct obj, list);
194                 atomic_inc(&obj->refcnt);
195                 return obj;
196         }
197         return NULL;
198 }
199
200 void obj_poke(void)
201 {
202         struct obj *obj;
203
204         spin_lock(&global_list_lock);
205         obj = obj_list_peek(&global_list);
206         spin_unlock(&global_list_lock);
207
208         if (obj) {
209                 obj->ops->poke(obj);
210                 if (atomic_dec_and_test(&obj->refcnt))
211                         obj_destroy(obj);
212         }
213 }
214
215 void obj_timeout(struct obj *obj)
216 {
217         spin_lock(&global_list_lock);
218         obj_list_del(obj);
219         spin_unlock(&global_list_lock);
220
221         if (atomic_dec_and_test(&obj->refcnt))
222                 obj_destroy(obj);
223 }
224
225 (This is a simplification of the ARP queue management in the
226  generic neighbour discover code of the networking.  Olaf Kirch
227  found a bug wrt. memory barriers in kfree_skb() that exposed
228  the atomic_t memory barrier requirements quite clearly.)
229
230 Given the above scheme, it must be the case that the obj->active
231 update done by the obj list deletion be visible to other processors
232 before the atomic counter decrement is performed.
233
234 Otherwise, the counter could fall to zero, yet obj->active would still
235 be set, thus triggering the assertion in obj_destroy().  The error
236 sequence looks like this:
237
238         cpu 0                           cpu 1
239         obj_poke()                      obj_timeout()
240         obj = obj_list_peek();
241         ... gains ref to obj, refcnt=2
242                                         obj_list_del(obj);
243                                         obj->active = 0 ...
244                                         ... visibility delayed ...
245                                         atomic_dec_and_test()
246                                         ... refcnt drops to 1 ...
247         atomic_dec_and_test()
248         ... refcount drops to 0 ...
249         obj_destroy()
250         BUG() triggers since obj->active
251         still seen as one
252                                         obj->active update visibility occurs
253
254 With the memory barrier semantics required of the atomic_t operations
255 which return values, the above sequence of memory visibility can never
256 happen.  Specifically, in the above case the atomic_dec_and_test()
257 counter decrement would not become globally visible until the
258 obj->active update does.
259
260 As a historical note, 32-bit Sparc used to only allow usage of
261 24-bits of it's atomic_t type.  This was because it used 8 bits
262 as a spinlock for SMP safety.  Sparc32 lacked a "compare and swap"
263 type instruction.  However, 32-bit Sparc has since been moved over
264 to a "hash table of spinlocks" scheme, that allows the full 32-bit
265 counter to be realized.  Essentially, an array of spinlocks are
266 indexed into based upon the address of the atomic_t being operated
267 on, and that lock protects the atomic operation.  Parisc uses the
268 same scheme.
269
270 Another note is that the atomic_t operations returning values are
271 extremely slow on an old 386.
272
273 We will now cover the atomic bitmask operations.  You will find that
274 their SMP and memory barrier semantics are similar in shape and scope
275 to the atomic_t ops above.
276
277 Native atomic bit operations are defined to operate on objects aligned
278 to the size of an "unsigned long" C data type, and are least of that
279 size.  The endianness of the bits within each "unsigned long" are the
280 native endianness of the cpu.
281
282         void set_bit(unsigned long nr, volatils unsigned long *addr);
283         void clear_bit(unsigned long nr, volatils unsigned long *addr);
284         void change_bit(unsigned long nr, volatils unsigned long *addr);
285
286 These routines set, clear, and change, respectively, the bit number
287 indicated by "nr" on the bit mask pointed to by "ADDR".
288
289 They must execute atomically, yet there are no implicit memory barrier
290 semantics required of these interfaces.
291
292         int test_and_set_bit(unsigned long nr, volatils unsigned long *addr);
293         int test_and_clear_bit(unsigned long nr, volatils unsigned long *addr);
294         int test_and_change_bit(unsigned long nr, volatils unsigned long *addr);
295
296 Like the above, except that these routines return a boolean which
297 indicates whether the changed bit was set _BEFORE_ the atomic bit
298 operation.
299
300 WARNING! It is incredibly important that the value be a boolean,
301 ie. "0" or "1".  Do not try to be fancy and save a few instructions by
302 declaring the above to return "long" and just returning something like
303 "old_val & mask" because that will not work.
304
305 For one thing, this return value gets truncated to int in many code
306 paths using these interfaces, so on 64-bit if the bit is set in the
307 upper 32-bits then testers will never see that.
308
309 One great example of where this problem crops up are the thread_info
310 flag operations.  Routines such as test_and_set_ti_thread_flag() chop
311 the return value into an int.  There are other places where things
312 like this occur as well.
313
314 These routines, like the atomic_t counter operations returning values,
315 require explicit memory barrier semantics around their execution.  All
316 memory operations before the atomic bit operation call must be made
317 visible globally before the atomic bit operation is made visible.
318 Likewise, the atomic bit operation must be visible globally before any
319 subsequent memory operation is made visible.  For example:
320
321         obj->dead = 1;
322         if (test_and_set_bit(0, &obj->flags))
323                 /* ... */;
324         obj->killed = 1;
325
326 The implementation of test_and_set_bit() must guarentee that
327 "obj->dead = 1;" is visible to cpus before the atomic memory operation
328 done by test_and_set_bit() becomes visible.  Likewise, the atomic
329 memory operation done by test_and_set_bit() must become visible before
330 "obj->killed = 1;" is visible.
331
332 Finally there is the basic operation:
333
334         int test_bit(unsigned long nr, __const__ volatile unsigned long *addr);
335
336 Which returns a boolean indicating if bit "nr" is set in the bitmask
337 pointed to by "addr".
338
339 If explicit memory barriers are required around clear_bit() (which
340 does not return a value, and thus does not need to provide memory
341 barrier semantics), two interfaces are provided:
342
343         void smp_mb__before_clear_bit(void);
344         void smp_mb__after_clear_bit(void);
345
346 They are used as follows, and are akin to their atomic_t operation
347 brothers:
348
349         /* All memory operations before this call will
350          * be globally visible before the clear_bit().
351          */
352         smp_mb__before_clear_bit();
353         clear_bit( ... );
354
355         /* The clear_bit() will be visible before all
356          * subsequent memory operations.
357          */
358          smp_mb__after_clear_bit();
359
360 Finally, there are non-atomic versions of the bitmask operations
361 provided.  They are used in contexts where some other higher-level SMP
362 locking scheme is being used to protect the bitmask, and thus less
363 expensive non-atomic operations may be used in the implementation.
364 They have names similar to the above bitmask operation interfaces,
365 except that two underscores are prefixed to the interface name.
366
367         void __set_bit(unsigned long nr, volatile unsigned long *addr);
368         void __clear_bit(unsigned long nr, volatile unsigned long *addr);
369         void __change_bit(unsigned long nr, volatile unsigned long *addr);
370         int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
371         int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
372         int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
373
374 These non-atomic variants also do not require any special memory
375 barrier semantics.
376
377 The routines xchg() and cmpxchg() need the same exact memory barriers
378 as the atomic and bit operations returning values.
379
380 Spinlocks and rwlocks have memory barrier expectations as well.
381 The rule to follow is simple:
382
383 1) When acquiring a lock, the implementation must make it globally
384    visible before any subsequent memory operation.
385
386 2) When releasing a lock, the implementation must make it such that
387    all previous memory operations are globally visible before the
388    lock release.
389
390 Which finally brings us to _atomic_dec_and_lock().  There is an
391 architecture-neutral version implemented in lib/dec_and_lock.c,
392 but most platforms will wish to optimize this in assembler.
393
394         int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock);
395
396 Atomically decrement the given counter, and if will drop to zero
397 atomically acquire the given spinlock and perform the decrement
398 of the counter to zero.  If it does not drop to zero, do nothing
399 with the spinlock.
400
401 It is actually pretty simple to get the memory barrier correct.
402 Simply satisfy the spinlock grab requirements, which is make
403 sure the spinlock operation is globally visible before any
404 subsequent memory operation.
405
406 We can demonstrate this operation more clearly if we define
407 an abstract atomic operation:
408
409         long cas(long *mem, long old, long new);
410
411 "cas" stands for "compare and swap".  It atomically:
412
413 1) Compares "old" with the value currently at "mem".
414 2) If they are equal, "new" is written to "mem".
415 3) Regardless, the current value at "mem" is returned.
416
417 As an example usage, here is what an atomic counter update
418 might look like:
419
420 void example_atomic_inc(long *counter)
421 {
422         long old, new, ret;
423
424         while (1) {
425                 old = *counter;
426                 new = old + 1;
427
428                 ret = cas(counter, old, new);
429                 if (ret == old)
430                         break;
431         }
432 }
433
434 Let's use cas() in order to build a pseudo-C atomic_dec_and_lock():
435
436 int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock)
437 {
438         long old, new, ret;
439         int went_to_zero;
440
441         went_to_zero = 0;
442         while (1) {
443                 old = atomic_read(atomic);
444                 new = old - 1;
445                 if (new == 0) {
446                         went_to_zero = 1;
447                         spin_lock(lock);
448                 }
449                 ret = cas(atomic, old, new);
450                 if (ret == old)
451                         break;
452                 if (went_to_zero) {
453                         spin_unlock(lock);
454                         went_to_zero = 0;
455                 }
456         }
457
458         return went_to_zero;
459 }
460
461 Now, as far as memory barriers go, as long as spin_lock()
462 strictly orders all subsequent memory operations (including
463 the cas()) with respect to itself, things will be fine.
464
465 Said another way, _atomic_dec_and_lock() must guarentee that
466 a counter dropping to zero is never made visible before the
467 spinlock being acquired.
468
469 Note that this also means that for the case where the counter
470 is not dropping to zero, there are no memory ordering
471 requirements.