ASoC: fsl_asrc_dma: use correct direction enum type
[sfrench/cifs-2.6.git] / Documentation / DocBook / crypto-API.tmpl
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3         "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5 <book id="KernelCryptoAPI">
6  <bookinfo>
7   <title>Linux Kernel Crypto API</title>
8
9   <authorgroup>
10    <author>
11     <firstname>Stephan</firstname>
12     <surname>Mueller</surname>
13     <affiliation>
14      <address>
15       <email>smueller@chronox.de</email>
16      </address>
17     </affiliation>
18    </author>
19    <author>
20     <firstname>Marek</firstname>
21     <surname>Vasut</surname>
22     <affiliation>
23      <address>
24       <email>marek@denx.de</email>
25      </address>
26     </affiliation>
27    </author>
28   </authorgroup>
29
30   <copyright>
31    <year>2014</year>
32    <holder>Stephan Mueller</holder>
33   </copyright>
34
35
36   <legalnotice>
37    <para>
38      This documentation is free software; you can redistribute
39      it and/or modify it under the terms of the GNU General Public
40      License as published by the Free Software Foundation; either
41      version 2 of the License, or (at your option) any later
42      version.
43    </para>
44
45    <para>
46      This program is distributed in the hope that it will be
47      useful, but WITHOUT ANY WARRANTY; without even the implied
48      warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
49      See the GNU General Public License for more details.
50    </para>
51
52    <para>
53      You should have received a copy of the GNU General Public
54      License along with this program; if not, write to the Free
55      Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
56      MA 02111-1307 USA
57    </para>
58
59    <para>
60      For more details see the file COPYING in the source
61      distribution of Linux.
62    </para>
63   </legalnotice>
64  </bookinfo>
65
66  <toc></toc>
67
68  <chapter id="Intro">
69   <title>Kernel Crypto API Interface Specification</title>
70
71    <sect1><title>Introduction</title>
72
73     <para>
74      The kernel crypto API offers a rich set of cryptographic ciphers as
75      well as other data transformation mechanisms and methods to invoke
76      these. This document contains a description of the API and provides
77      example code.
78     </para>
79
80     <para>
81      To understand and properly use the kernel crypto API a brief
82      explanation of its structure is given. Based on the architecture,
83      the API can be separated into different components. Following the
84      architecture specification, hints to developers of ciphers are
85      provided. Pointers to the API function call  documentation are
86      given at the end.
87     </para>
88
89     <para>
90      The kernel crypto API refers to all algorithms as "transformations".
91      Therefore, a cipher handle variable usually has the name "tfm".
92      Besides cryptographic operations, the kernel crypto API also knows
93      compression transformations and handles them the same way as ciphers.
94     </para>
95
96     <para>
97      The kernel crypto API serves the following entity types:
98
99      <itemizedlist>
100       <listitem>
101        <para>consumers requesting cryptographic services</para>
102       </listitem>
103       <listitem>
104       <para>data transformation implementations (typically ciphers)
105        that can be called by consumers using the kernel crypto
106        API</para>
107       </listitem>
108      </itemizedlist>
109     </para>
110
111     <para>
112      This specification is intended for consumers of the kernel crypto
113      API as well as for developers implementing ciphers. This API
114      specification, however, does not discuss all API calls available
115      to data transformation implementations (i.e. implementations of
116      ciphers and other transformations (such as CRC or even compression
117      algorithms) that can register with the kernel crypto API).
118     </para>
119
120     <para>
121      Note: The terms "transformation" and cipher algorithm are used
122      interchangeably.
123     </para>
124    </sect1>
125
126    <sect1><title>Terminology</title>
127     <para>
128      The transformation implementation is an actual code or interface
129      to hardware which implements a certain transformation with precisely
130      defined behavior.
131     </para>
132
133     <para>
134      The transformation object (TFM) is an instance of a transformation
135      implementation. There can be multiple transformation objects
136      associated with a single transformation implementation. Each of
137      those transformation objects is held by a crypto API consumer or
138      another transformation. Transformation object is allocated when a
139      crypto API consumer requests a transformation implementation.
140      The consumer is then provided with a structure, which contains
141      a transformation object (TFM).
142     </para>
143
144     <para>
145      The structure that contains transformation objects may also be
146      referred to as a "cipher handle". Such a cipher handle is always
147      subject to the following phases that are reflected in the API calls
148      applicable to such a cipher handle:
149     </para>
150
151     <orderedlist>
152      <listitem>
153       <para>Initialization of a cipher handle.</para>
154      </listitem>
155      <listitem>
156       <para>Execution of all intended cipher operations applicable
157       for the handle where the cipher handle must be furnished to
158       every API call.</para>
159      </listitem>
160      <listitem>
161       <para>Destruction of a cipher handle.</para>
162      </listitem>
163     </orderedlist>
164
165     <para>
166      When using the initialization API calls, a cipher handle is
167      created and returned to the consumer. Therefore, please refer
168      to all initialization API calls that refer to the data
169      structure type a consumer is expected to receive and subsequently
170      to use. The initialization API calls have all the same naming
171      conventions of crypto_alloc_*.
172     </para>
173
174     <para>
175      The transformation context is private data associated with
176      the transformation object.
177     </para>
178    </sect1>
179   </chapter>
180
181   <chapter id="Architecture"><title>Kernel Crypto API Architecture</title>
182    <sect1><title>Cipher algorithm types</title>
183     <para>
184      The kernel crypto API provides different API calls for the
185      following cipher types:
186
187      <itemizedlist>
188       <listitem><para>Symmetric ciphers</para></listitem>
189       <listitem><para>AEAD ciphers</para></listitem>
190       <listitem><para>Message digest, including keyed message digest</para></listitem>
191       <listitem><para>Random number generation</para></listitem>
192       <listitem><para>User space interface</para></listitem>
193      </itemizedlist>
194     </para>
195    </sect1>
196
197    <sect1><title>Ciphers And Templates</title>
198     <para>
199      The kernel crypto API provides implementations of single block
200      ciphers and message digests. In addition, the kernel crypto API
201      provides numerous "templates" that can be used in conjunction
202      with the single block ciphers and message digests. Templates
203      include all types of block chaining mode, the HMAC mechanism, etc.
204     </para>
205
206     <para>
207      Single block ciphers and message digests can either be directly
208      used by a caller or invoked together with a template to form
209      multi-block ciphers or keyed message digests.
210     </para>
211
212     <para>
213      A single block cipher may even be called with multiple templates.
214      However, templates cannot be used without a single cipher.
215     </para>
216
217     <para>
218      See /proc/crypto and search for "name". For example:
219
220      <itemizedlist>
221       <listitem><para>aes</para></listitem>
222       <listitem><para>ecb(aes)</para></listitem>
223       <listitem><para>cmac(aes)</para></listitem>
224       <listitem><para>ccm(aes)</para></listitem>
225       <listitem><para>rfc4106(gcm(aes))</para></listitem>
226       <listitem><para>sha1</para></listitem>
227       <listitem><para>hmac(sha1)</para></listitem>
228       <listitem><para>authenc(hmac(sha1),cbc(aes))</para></listitem>
229      </itemizedlist>
230     </para>
231
232     <para>
233      In these examples, "aes" and "sha1" are the ciphers and all
234      others are the templates.
235     </para>
236    </sect1>
237
238    <sect1><title>Synchronous And Asynchronous Operation</title>
239     <para>
240      The kernel crypto API provides synchronous and asynchronous
241      API operations.
242     </para>
243
244     <para>
245      When using the synchronous API operation, the caller invokes
246      a cipher operation which is performed synchronously by the
247      kernel crypto API. That means, the caller waits until the
248      cipher operation completes. Therefore, the kernel crypto API
249      calls work like regular function calls. For synchronous
250      operation, the set of API calls is small and conceptually
251      similar to any other crypto library.
252     </para>
253
254     <para>
255      Asynchronous operation is provided by the kernel crypto API
256      which implies that the invocation of a cipher operation will
257      complete almost instantly. That invocation triggers the
258      cipher operation but it does not signal its completion. Before
259      invoking a cipher operation, the caller must provide a callback
260      function the kernel crypto API can invoke to signal the
261      completion of the cipher operation. Furthermore, the caller
262      must ensure it can handle such asynchronous events by applying
263      appropriate locking around its data. The kernel crypto API
264      does not perform any special serialization operation to protect
265      the caller's data integrity.
266     </para>
267    </sect1>
268
269    <sect1><title>Crypto API Cipher References And Priority</title>
270     <para>
271      A cipher is referenced by the caller with a string. That string
272      has the following semantics:
273
274      <programlisting>
275         template(single block cipher)
276      </programlisting>
277
278      where "template" and "single block cipher" is the aforementioned
279      template and single block cipher, respectively. If applicable,
280      additional templates may enclose other templates, such as
281
282       <programlisting>
283         template1(template2(single block cipher)))
284       </programlisting>
285     </para>
286
287     <para>
288      The kernel crypto API may provide multiple implementations of a
289      template or a single block cipher. For example, AES on newer
290      Intel hardware has the following implementations: AES-NI,
291      assembler implementation, or straight C. Now, when using the
292      string "aes" with the kernel crypto API, which cipher
293      implementation is used? The answer to that question is the
294      priority number assigned to each cipher implementation by the
295      kernel crypto API. When a caller uses the string to refer to a
296      cipher during initialization of a cipher handle, the kernel
297      crypto API looks up all implementations providing an
298      implementation with that name and selects the implementation
299      with the highest priority.
300     </para>
301
302     <para>
303      Now, a caller may have the need to refer to a specific cipher
304      implementation and thus does not want to rely on the
305      priority-based selection. To accommodate this scenario, the
306      kernel crypto API allows the cipher implementation to register
307      a unique name in addition to common names. When using that
308      unique name, a caller is therefore always sure to refer to
309      the intended cipher implementation.
310     </para>
311
312     <para>
313      The list of available ciphers is given in /proc/crypto. However,
314      that list does not specify all possible permutations of
315      templates and ciphers. Each block listed in /proc/crypto may
316      contain the following information -- if one of the components
317      listed as follows are not applicable to a cipher, it is not
318      displayed:
319     </para>
320
321     <itemizedlist>
322      <listitem>
323       <para>name: the generic name of the cipher that is subject
324        to the priority-based selection -- this name can be used by
325        the cipher allocation API calls (all names listed above are
326        examples for such generic names)</para>
327      </listitem>
328      <listitem>
329       <para>driver: the unique name of the cipher -- this name can
330        be used by the cipher allocation API calls</para>
331      </listitem>
332      <listitem>
333       <para>module: the kernel module providing the cipher
334        implementation (or "kernel" for statically linked ciphers)</para>
335      </listitem>
336      <listitem>
337       <para>priority: the priority value of the cipher implementation</para>
338      </listitem>
339      <listitem>
340       <para>refcnt: the reference count of the respective cipher
341        (i.e. the number of current consumers of this cipher)</para>
342      </listitem>
343      <listitem>
344       <para>selftest: specification whether the self test for the
345        cipher passed</para>
346      </listitem>
347      <listitem>
348       <para>type:
349        <itemizedlist>
350         <listitem>
351          <para>skcipher for symmetric key ciphers</para>
352         </listitem>
353         <listitem>
354          <para>cipher for single block ciphers that may be used with
355           an additional template</para>
356         </listitem>
357         <listitem>
358          <para>shash for synchronous message digest</para>
359         </listitem>
360         <listitem>
361          <para>ahash for asynchronous message digest</para>
362         </listitem>
363         <listitem>
364          <para>aead for AEAD cipher type</para>
365         </listitem>
366         <listitem>
367          <para>compression for compression type transformations</para>
368         </listitem>
369         <listitem>
370          <para>rng for random number generator</para>
371         </listitem>
372         <listitem>
373          <para>givcipher for cipher with associated IV generator
374           (see the geniv entry below for the specification of the
375           IV generator type used by the cipher implementation)</para>
376         </listitem>
377        </itemizedlist>
378       </para>
379      </listitem>
380      <listitem>
381       <para>blocksize: blocksize of cipher in bytes</para>
382      </listitem>
383      <listitem>
384       <para>keysize: key size in bytes</para>
385      </listitem>
386      <listitem>
387       <para>ivsize: IV size in bytes</para>
388      </listitem>
389      <listitem>
390       <para>seedsize: required size of seed data for random number
391        generator</para>
392      </listitem>
393      <listitem>
394       <para>digestsize: output size of the message digest</para>
395      </listitem>
396      <listitem>
397       <para>geniv: IV generation type:
398        <itemizedlist>
399         <listitem>
400          <para>eseqiv for encrypted sequence number based IV
401           generation</para>
402         </listitem>
403         <listitem>
404          <para>seqiv for sequence number based IV generation</para>
405         </listitem>
406         <listitem>
407          <para>chainiv for chain iv generation</para>
408         </listitem>
409         <listitem>
410          <para>&lt;builtin&gt; is a marker that the cipher implements
411           IV generation and handling as it is specific to the given
412           cipher</para>
413         </listitem>
414        </itemizedlist>
415       </para>
416      </listitem>
417     </itemizedlist>
418    </sect1>
419
420    <sect1><title>Key Sizes</title>
421     <para>
422      When allocating a cipher handle, the caller only specifies the
423      cipher type. Symmetric ciphers, however, typically support
424      multiple key sizes (e.g. AES-128 vs. AES-192 vs. AES-256).
425      These key sizes are determined with the length of the provided
426      key. Thus, the kernel crypto API does not provide a separate
427      way to select the particular symmetric cipher key size.
428     </para>
429    </sect1>
430
431    <sect1><title>Cipher Allocation Type And Masks</title>
432     <para>
433      The different cipher handle allocation functions allow the
434      specification of a type and mask flag. Both parameters have
435      the following meaning (and are therefore not covered in the
436      subsequent sections).
437     </para>
438
439     <para>
440      The type flag specifies the type of the cipher algorithm.
441      The caller usually provides a 0 when the caller wants the
442      default handling. Otherwise, the caller may provide the
443      following selections which match the aforementioned cipher
444      types:
445     </para>
446
447     <itemizedlist>
448      <listitem>
449       <para>CRYPTO_ALG_TYPE_CIPHER Single block cipher</para>
450      </listitem>
451      <listitem>
452       <para>CRYPTO_ALG_TYPE_COMPRESS Compression</para>
453      </listitem>
454      <listitem>
455      <para>CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with
456       Associated Data (MAC)</para>
457      </listitem>
458      <listitem>
459       <para>CRYPTO_ALG_TYPE_BLKCIPHER Synchronous multi-block cipher</para>
460      </listitem>
461      <listitem>
462       <para>CRYPTO_ALG_TYPE_ABLKCIPHER Asynchronous multi-block cipher</para>
463      </listitem>
464      <listitem>
465       <para>CRYPTO_ALG_TYPE_GIVCIPHER Asynchronous multi-block
466        cipher packed together with an IV generator (see geniv field
467        in the /proc/crypto listing for the known IV generators)</para>
468      </listitem>
469      <listitem>
470       <para>CRYPTO_ALG_TYPE_DIGEST Raw message digest</para>
471      </listitem>
472      <listitem>
473       <para>CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST</para>
474      </listitem>
475      <listitem>
476       <para>CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash</para>
477      </listitem>
478      <listitem>
479       <para>CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash</para>
480      </listitem>
481      <listitem>
482       <para>CRYPTO_ALG_TYPE_RNG Random Number Generation</para>
483      </listitem>
484      <listitem>
485       <para>CRYPTO_ALG_TYPE_AKCIPHER Asymmetric cipher</para>
486      </listitem>
487      <listitem>
488       <para>CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of
489        CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression /
490        decompression instead of performing the operation on one
491        segment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace
492        CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.</para>
493      </listitem>
494     </itemizedlist>
495
496     <para>
497      The mask flag restricts the type of cipher. The only allowed
498      flag is CRYPTO_ALG_ASYNC to restrict the cipher lookup function
499      to asynchronous ciphers. Usually, a caller provides a 0 for the
500      mask flag.
501     </para>
502
503     <para>
504      When the caller provides a mask and type specification, the
505      caller limits the search the kernel crypto API can perform for
506      a suitable cipher implementation for the given cipher name.
507      That means, even when a caller uses a cipher name that exists
508      during its initialization call, the kernel crypto API may not
509      select it due to the used type and mask field.
510     </para>
511    </sect1>
512
513    <sect1><title>Internal Structure of Kernel Crypto API</title>
514
515     <para>
516      The kernel crypto API has an internal structure where a cipher
517      implementation may use many layers and indirections. This section
518      shall help to clarify how the kernel crypto API uses
519      various components to implement the complete cipher.
520     </para>
521
522     <para>
523      The following subsections explain the internal structure based
524      on existing cipher implementations. The first section addresses
525      the most complex scenario where all other scenarios form a logical
526      subset.
527     </para>
528
529     <sect2><title>Generic AEAD Cipher Structure</title>
530
531      <para>
532       The following ASCII art decomposes the kernel crypto API layers
533       when using the AEAD cipher with the automated IV generation. The
534       shown example is used by the IPSEC layer.
535      </para>
536
537      <para>
538       For other use cases of AEAD ciphers, the ASCII art applies as
539       well, but the caller may not use the AEAD cipher with a separate
540       IV generator. In this case, the caller must generate the IV.
541      </para>
542
543      <para>
544       The depicted example decomposes the AEAD cipher of GCM(AES) based
545       on the generic C implementations (gcm.c, aes-generic.c, ctr.c,
546       ghash-generic.c, seqiv.c). The generic implementation serves as an
547       example showing the complete logic of the kernel crypto API.
548      </para>
549
550      <para>
551       It is possible that some streamlined cipher implementations (like
552       AES-NI) provide implementations merging aspects which in the view
553       of the kernel crypto API cannot be decomposed into layers any more.
554       In case of the AES-NI implementation, the CTR mode, the GHASH
555       implementation and the AES cipher are all merged into one cipher
556       implementation registered with the kernel crypto API. In this case,
557       the concept described by the following ASCII art applies too. However,
558       the decomposition of GCM into the individual sub-components
559       by the kernel crypto API is not done any more.
560      </para>
561
562      <para>
563       Each block in the following ASCII art is an independent cipher
564       instance obtained from the kernel crypto API. Each block
565       is accessed by the caller or by other blocks using the API functions
566       defined by the kernel crypto API for the cipher implementation type.
567      </para>
568
569      <para>
570       The blocks below indicate the cipher type as well as the specific
571       logic implemented in the cipher.
572      </para>
573
574      <para>
575       The ASCII art picture also indicates the call structure, i.e. who
576       calls which component. The arrows point to the invoked block
577       where the caller uses the API applicable to the cipher type
578       specified for the block.
579      </para>
580
581      <programlisting>
582 <![CDATA[
583 kernel crypto API                                |   IPSEC Layer
584                                                  |
585 +-----------+                                    |
586 |           |            (1)
587 |   aead    | <-----------------------------------  esp_output
588 |  (seqiv)  | ---+
589 +-----------+    |
590                  | (2)
591 +-----------+    |
592 |           | <--+                (2)
593 |   aead    | <-----------------------------------  esp_input
594 |   (gcm)   | ------------+
595 +-----------+             |
596       | (3)               | (5)
597       v                   v
598 +-----------+       +-----------+
599 |           |       |           |
600 |  skcipher |       |   ahash   |
601 |   (ctr)   | ---+  |  (ghash)  |
602 +-----------+    |  +-----------+
603                  |
604 +-----------+    | (4)
605 |           | <--+
606 |   cipher  |
607 |   (aes)   |
608 +-----------+
609 ]]>
610      </programlisting>
611
612      <para>
613       The following call sequence is applicable when the IPSEC layer
614       triggers an encryption operation with the esp_output function. During
615       configuration, the administrator set up the use of rfc4106(gcm(aes)) as
616       the cipher for ESP. The following call sequence is now depicted in the
617       ASCII art above:
618      </para>
619
620      <orderedlist>
621       <listitem>
622        <para>
623         esp_output() invokes crypto_aead_encrypt() to trigger an encryption
624         operation of the AEAD cipher with IV generator.
625        </para>
626
627        <para>
628         In case of GCM, the SEQIV implementation is registered as GIVCIPHER
629         in crypto_rfc4106_alloc().
630        </para>
631
632        <para>
633         The SEQIV performs its operation to generate an IV where the core
634         function is seqiv_geniv().
635        </para>
636       </listitem>
637
638       <listitem>
639        <para>
640         Now, SEQIV uses the AEAD API function calls to invoke the associated
641         AEAD cipher. In our case, during the instantiation of SEQIV, the
642         cipher handle for GCM is provided to SEQIV. This means that SEQIV
643         invokes AEAD cipher operations with the GCM cipher handle.
644        </para>
645
646        <para>
647         During instantiation of the GCM handle, the CTR(AES) and GHASH
648         ciphers are instantiated. The cipher handles for CTR(AES) and GHASH
649         are retained for later use.
650        </para>
651
652        <para>
653         The GCM implementation is responsible to invoke the CTR mode AES and
654         the GHASH cipher in the right manner to implement the GCM
655         specification.
656        </para>
657       </listitem>
658
659       <listitem>
660        <para>
661         The GCM AEAD cipher type implementation now invokes the SKCIPHER API
662         with the instantiated CTR(AES) cipher handle.
663        </para>
664
665        <para>
666         During instantiation of the CTR(AES) cipher, the CIPHER type
667         implementation of AES is instantiated. The cipher handle for AES is
668         retained.
669        </para>
670
671        <para>
672         That means that the SKCIPHER implementation of CTR(AES) only
673         implements the CTR block chaining mode. After performing the block
674         chaining operation, the CIPHER implementation of AES is invoked.
675        </para>
676       </listitem>
677
678       <listitem>
679        <para>
680         The SKCIPHER of CTR(AES) now invokes the CIPHER API with the AES
681         cipher handle to encrypt one block.
682        </para>
683       </listitem>
684
685       <listitem>
686        <para>
687         The GCM AEAD implementation also invokes the GHASH cipher
688         implementation via the AHASH API.
689        </para>
690       </listitem>
691      </orderedlist>
692
693      <para>
694       When the IPSEC layer triggers the esp_input() function, the same call
695       sequence is followed with the only difference that the operation starts
696       with step (2).
697      </para>
698     </sect2>
699
700     <sect2><title>Generic Block Cipher Structure</title>
701      <para>
702       Generic block ciphers follow the same concept as depicted with the ASCII
703       art picture above.
704      </para>
705
706      <para>
707       For example, CBC(AES) is implemented with cbc.c, and aes-generic.c. The
708       ASCII art picture above applies as well with the difference that only
709       step (4) is used and the SKCIPHER block chaining mode is CBC.
710      </para>
711     </sect2>
712
713     <sect2><title>Generic Keyed Message Digest Structure</title>
714      <para>
715       Keyed message digest implementations again follow the same concept as
716       depicted in the ASCII art picture above.
717      </para>
718
719      <para>
720       For example, HMAC(SHA256) is implemented with hmac.c and
721       sha256_generic.c. The following ASCII art illustrates the
722       implementation:
723      </para>
724
725      <programlisting>
726 <![CDATA[
727 kernel crypto API            |       Caller
728                              |
729 +-----------+         (1)    |
730 |           | <------------------  some_function
731 |   ahash   |
732 |   (hmac)  | ---+
733 +-----------+    |
734                  | (2)
735 +-----------+    |
736 |           | <--+
737 |   shash   |
738 |  (sha256) |
739 +-----------+
740 ]]>
741      </programlisting>
742
743      <para>
744       The following call sequence is applicable when a caller triggers
745       an HMAC operation:
746      </para>
747
748      <orderedlist>
749       <listitem>
750        <para>
751         The AHASH API functions are invoked by the caller. The HMAC
752         implementation performs its operation as needed.
753        </para>
754
755        <para>
756         During initialization of the HMAC cipher, the SHASH cipher type of
757         SHA256 is instantiated. The cipher handle for the SHA256 instance is
758         retained.
759        </para>
760
761        <para>
762         At one time, the HMAC implementation requires a SHA256 operation
763         where the SHA256 cipher handle is used.
764        </para>
765       </listitem>
766
767       <listitem>
768        <para>
769         The HMAC instance now invokes the SHASH API with the SHA256
770         cipher handle to calculate the message digest.
771        </para>
772       </listitem>
773      </orderedlist>
774     </sect2>
775    </sect1>
776   </chapter>
777
778   <chapter id="Development"><title>Developing Cipher Algorithms</title>
779    <sect1><title>Registering And Unregistering Transformation</title>
780     <para>
781      There are three distinct types of registration functions in
782      the Crypto API. One is used to register a generic cryptographic
783      transformation, while the other two are specific to HASH
784      transformations and COMPRESSion. We will discuss the latter
785      two in a separate chapter, here we will only look at the
786      generic ones.
787     </para>
788
789     <para>
790      Before discussing the register functions, the data structure
791      to be filled with each, struct crypto_alg, must be considered
792      -- see below for a description of this data structure.
793     </para>
794
795     <para>
796      The generic registration functions can be found in
797      include/linux/crypto.h and their definition can be seen below.
798      The former function registers a single transformation, while
799      the latter works on an array of transformation descriptions.
800      The latter is useful when registering transformations in bulk,
801      for example when a driver implements multiple transformations.
802     </para>
803
804     <programlisting>
805    int crypto_register_alg(struct crypto_alg *alg);
806    int crypto_register_algs(struct crypto_alg *algs, int count);
807     </programlisting>
808
809     <para>
810      The counterparts to those functions are listed below.
811     </para>
812
813     <programlisting>
814    int crypto_unregister_alg(struct crypto_alg *alg);
815    int crypto_unregister_algs(struct crypto_alg *algs, int count);
816     </programlisting>
817
818     <para>
819      Notice that both registration and unregistration functions
820      do return a value, so make sure to handle errors. A return
821      code of zero implies success. Any return code &lt; 0 implies
822      an error.
823     </para>
824
825     <para>
826      The bulk registration/unregistration functions
827      register/unregister each transformation in the given array of
828      length count.  They handle errors as follows:
829     </para>
830     <itemizedlist>
831      <listitem>
832       <para>
833        crypto_register_algs() succeeds if and only if it
834        successfully registers all the given transformations. If an
835        error occurs partway through, then it rolls back successful
836        registrations before returning the error code. Note that if
837        a driver needs to handle registration errors for individual
838        transformations, then it will need to use the non-bulk
839        function crypto_register_alg() instead.
840       </para>
841      </listitem>
842      <listitem>
843       <para>
844        crypto_unregister_algs() tries to unregister all the given
845        transformations, continuing on error. It logs errors and
846        always returns zero.
847       </para>
848      </listitem>
849     </itemizedlist>
850
851    </sect1>
852
853    <sect1><title>Single-Block Symmetric Ciphers [CIPHER]</title>
854     <para>
855      Example of transformations: aes, arc4, ...
856     </para>
857
858     <para>
859      This section describes the simplest of all transformation
860      implementations, that being the CIPHER type used for symmetric
861      ciphers. The CIPHER type is used for transformations which
862      operate on exactly one block at a time and there are no
863      dependencies between blocks at all.
864     </para>
865
866     <sect2><title>Registration specifics</title>
867      <para>
868       The registration of [CIPHER] algorithm is specific in that
869       struct crypto_alg field .cra_type is empty. The .cra_u.cipher
870       has to be filled in with proper callbacks to implement this
871       transformation.
872      </para>
873
874      <para>
875       See struct cipher_alg below.
876      </para>
877     </sect2>
878
879     <sect2><title>Cipher Definition With struct cipher_alg</title>
880      <para>
881       Struct cipher_alg defines a single block cipher.
882      </para>
883
884      <para>
885       Here are schematics of how these functions are called when
886       operated from other part of the kernel. Note that the
887       .cia_setkey() call might happen before or after any of these
888       schematics happen, but must not happen during any of these
889       are in-flight.
890      </para>
891
892      <para>
893       <programlisting>
894          KEY ---.    PLAINTEXT ---.
895                 v                 v
896           .cia_setkey() -&gt; .cia_encrypt()
897                                   |
898                                   '-----&gt; CIPHERTEXT
899       </programlisting>
900      </para>
901
902      <para>
903       Please note that a pattern where .cia_setkey() is called
904       multiple times is also valid:
905      </para>
906
907      <para>
908       <programlisting>
909
910   KEY1 --.    PLAINTEXT1 --.         KEY2 --.    PLAINTEXT2 --.
911          v                 v                v                 v
912    .cia_setkey() -&gt; .cia_encrypt() -&gt; .cia_setkey() -&gt; .cia_encrypt()
913                            |                                  |
914                            '---&gt; CIPHERTEXT1                  '---&gt; CIPHERTEXT2
915       </programlisting>
916      </para>
917
918     </sect2>
919    </sect1>
920
921    <sect1><title>Multi-Block Ciphers</title>
922     <para>
923      Example of transformations: cbc(aes), ecb(arc4), ...
924     </para>
925
926     <para>
927      This section describes the multi-block cipher transformation
928      implementations. The multi-block ciphers are
929      used for transformations which operate on scatterlists of
930      data supplied to the transformation functions. They output
931      the result into a scatterlist of data as well.
932     </para>
933
934     <sect2><title>Registration Specifics</title>
935
936      <para>
937       The registration of multi-block cipher algorithms
938       is one of the most standard procedures throughout the crypto API.
939      </para>
940
941      <para>
942       Note, if a cipher implementation requires a proper alignment
943       of data, the caller should use the functions of
944       crypto_skcipher_alignmask() to identify a memory alignment mask.
945       The kernel crypto API is able to process requests that are unaligned.
946       This implies, however, additional overhead as the kernel
947       crypto API needs to perform the realignment of the data which
948       may imply moving of data.
949      </para>
950     </sect2>
951
952     <sect2><title>Cipher Definition With struct blkcipher_alg and ablkcipher_alg</title>
953      <para>
954       Struct blkcipher_alg defines a synchronous block cipher whereas
955       struct ablkcipher_alg defines an asynchronous block cipher.
956      </para>
957
958      <para>
959       Please refer to the single block cipher description for schematics
960       of the block cipher usage.
961      </para>
962     </sect2>
963
964     <sect2><title>Specifics Of Asynchronous Multi-Block Cipher</title>
965      <para>
966       There are a couple of specifics to the asynchronous interface.
967      </para>
968
969      <para>
970       First of all, some of the drivers will want to use the
971       Generic ScatterWalk in case the hardware needs to be fed
972       separate chunks of the scatterlist which contains the
973       plaintext and will contain the ciphertext. Please refer
974       to the ScatterWalk interface offered by the Linux kernel
975       scatter / gather list implementation.
976      </para>
977     </sect2>
978    </sect1>
979
980    <sect1><title>Hashing [HASH]</title>
981
982     <para>
983      Example of transformations: crc32, md5, sha1, sha256,...
984     </para>
985
986     <sect2><title>Registering And Unregistering The Transformation</title>
987
988      <para>
989       There are multiple ways to register a HASH transformation,
990       depending on whether the transformation is synchronous [SHASH]
991       or asynchronous [AHASH] and the amount of HASH transformations
992       we are registering. You can find the prototypes defined in
993       include/crypto/internal/hash.h:
994      </para>
995
996      <programlisting>
997    int crypto_register_ahash(struct ahash_alg *alg);
998
999    int crypto_register_shash(struct shash_alg *alg);
1000    int crypto_register_shashes(struct shash_alg *algs, int count);
1001      </programlisting>
1002
1003      <para>
1004       The respective counterparts for unregistering the HASH
1005       transformation are as follows:
1006      </para>
1007
1008      <programlisting>
1009    int crypto_unregister_ahash(struct ahash_alg *alg);
1010
1011    int crypto_unregister_shash(struct shash_alg *alg);
1012    int crypto_unregister_shashes(struct shash_alg *algs, int count);
1013      </programlisting>
1014     </sect2>
1015
1016     <sect2><title>Cipher Definition With struct shash_alg and ahash_alg</title>
1017      <para>
1018       Here are schematics of how these functions are called when
1019       operated from other part of the kernel. Note that the .setkey()
1020       call might happen before or after any of these schematics happen,
1021       but must not happen during any of these are in-flight. Please note
1022       that calling .init() followed immediately by .finish() is also a
1023       perfectly valid transformation.
1024      </para>
1025
1026      <programlisting>
1027    I)   DATA -----------.
1028                         v
1029          .init() -&gt; .update() -&gt; .final()      ! .update() might not be called
1030                      ^    |         |            at all in this scenario.
1031                      '----'         '---&gt; HASH
1032
1033    II)  DATA -----------.-----------.
1034                         v           v
1035          .init() -&gt; .update() -&gt; .finup()      ! .update() may not be called
1036                      ^    |         |            at all in this scenario.
1037                      '----'         '---&gt; HASH
1038
1039    III) DATA -----------.
1040                         v
1041                     .digest()                  ! The entire process is handled
1042                         |                        by the .digest() call.
1043                         '---------------&gt; HASH
1044      </programlisting>
1045
1046      <para>
1047       Here is a schematic of how the .export()/.import() functions are
1048       called when used from another part of the kernel.
1049      </para>
1050
1051      <programlisting>
1052    KEY--.                 DATA--.
1053         v                       v                  ! .update() may not be called
1054     .setkey() -&gt; .init() -&gt; .update() -&gt; .export()   at all in this scenario.
1055                              ^     |         |
1056                              '-----'         '--&gt; PARTIAL_HASH
1057
1058    ----------- other transformations happen here -----------
1059
1060    PARTIAL_HASH--.   DATA1--.
1061                  v          v
1062              .import -&gt; .update() -&gt; .final()     ! .update() may not be called
1063                          ^    |         |           at all in this scenario.
1064                          '----'         '--&gt; HASH1
1065
1066    PARTIAL_HASH--.   DATA2-.
1067                  v         v
1068              .import -&gt; .finup()
1069                            |
1070                            '---------------&gt; HASH2
1071      </programlisting>
1072     </sect2>
1073
1074     <sect2><title>Specifics Of Asynchronous HASH Transformation</title>
1075      <para>
1076       Some of the drivers will want to use the Generic ScatterWalk
1077       in case the implementation needs to be fed separate chunks of the
1078       scatterlist which contains the input data. The buffer containing
1079       the resulting hash will always be properly aligned to
1080       .cra_alignmask so there is no need to worry about this.
1081      </para>
1082     </sect2>
1083    </sect1>
1084   </chapter>
1085
1086   <chapter id="User"><title>User Space Interface</title>
1087    <sect1><title>Introduction</title>
1088     <para>
1089      The concepts of the kernel crypto API visible to kernel space is fully
1090      applicable to the user space interface as well. Therefore, the kernel
1091      crypto API high level discussion for the in-kernel use cases applies
1092      here as well.
1093     </para>
1094
1095     <para>
1096      The major difference, however, is that user space can only act as a
1097      consumer and never as a provider of a transformation or cipher algorithm.
1098     </para>
1099
1100     <para>
1101      The following covers the user space interface exported by the kernel
1102      crypto API. A working example of this description is libkcapi that
1103      can be obtained from [1]. That library can be used by user space
1104      applications that require cryptographic services from the kernel.
1105     </para>
1106
1107     <para>
1108      Some details of the in-kernel kernel crypto API aspects do not
1109      apply to user space, however. This includes the difference between
1110      synchronous and asynchronous invocations. The user space API call
1111      is fully synchronous.
1112     </para>
1113
1114     <para>
1115      [1] <ulink url="http://www.chronox.de/libkcapi.html">http://www.chronox.de/libkcapi.html</ulink>
1116     </para>
1117
1118    </sect1>
1119
1120    <sect1><title>User Space API General Remarks</title>
1121     <para>
1122      The kernel crypto API is accessible from user space. Currently,
1123      the following ciphers are accessible:
1124     </para>
1125
1126     <itemizedlist>
1127      <listitem>
1128       <para>Message digest including keyed message digest (HMAC, CMAC)</para>
1129      </listitem>
1130
1131      <listitem>
1132       <para>Symmetric ciphers</para>
1133      </listitem>
1134
1135      <listitem>
1136       <para>AEAD ciphers</para>
1137      </listitem>
1138
1139      <listitem>
1140       <para>Random Number Generators</para>
1141      </listitem>
1142     </itemizedlist>
1143
1144     <para>
1145      The interface is provided via socket type using the type AF_ALG.
1146      In addition, the setsockopt option type is SOL_ALG. In case the
1147      user space header files do not export these flags yet, use the
1148      following macros:
1149     </para>
1150
1151     <programlisting>
1152 #ifndef AF_ALG
1153 #define AF_ALG 38
1154 #endif
1155 #ifndef SOL_ALG
1156 #define SOL_ALG 279
1157 #endif
1158     </programlisting>
1159
1160     <para>
1161      A cipher is accessed with the same name as done for the in-kernel
1162      API calls. This includes the generic vs. unique naming schema for
1163      ciphers as well as the enforcement of priorities for generic names.
1164     </para>
1165
1166     <para>
1167      To interact with the kernel crypto API, a socket must be
1168      created by the user space application. User space invokes the cipher
1169      operation with the send()/write() system call family. The result of the
1170      cipher operation is obtained with the read()/recv() system call family.
1171     </para>
1172
1173     <para>
1174      The following API calls assume that the socket descriptor
1175      is already opened by the user space application and discusses only
1176      the kernel crypto API specific invocations.
1177     </para>
1178
1179     <para>
1180      To initialize the socket interface, the following sequence has to
1181      be performed by the consumer:
1182     </para>
1183
1184     <orderedlist>
1185      <listitem>
1186       <para>
1187        Create a socket of type AF_ALG with the struct sockaddr_alg
1188        parameter specified below for the different cipher types.
1189       </para>
1190      </listitem>
1191
1192      <listitem>
1193       <para>
1194        Invoke bind with the socket descriptor
1195       </para>
1196      </listitem>
1197
1198      <listitem>
1199       <para>
1200        Invoke accept with the socket descriptor. The accept system call
1201        returns a new file descriptor that is to be used to interact with
1202        the particular cipher instance. When invoking send/write or recv/read
1203        system calls to send data to the kernel or obtain data from the
1204        kernel, the file descriptor returned by accept must be used.
1205       </para>
1206      </listitem>
1207     </orderedlist>
1208    </sect1>
1209
1210    <sect1><title>In-place Cipher operation</title>
1211     <para>
1212      Just like the in-kernel operation of the kernel crypto API, the user
1213      space interface allows the cipher operation in-place. That means that
1214      the input buffer used for the send/write system call and the output
1215      buffer used by the read/recv system call may be one and the same.
1216      This is of particular interest for symmetric cipher operations where a
1217      copying of the output data to its final destination can be avoided.
1218     </para>
1219
1220     <para>
1221      If a consumer on the other hand wants to maintain the plaintext and
1222      the ciphertext in different memory locations, all a consumer needs
1223      to do is to provide different memory pointers for the encryption and
1224      decryption operation.
1225     </para>
1226    </sect1>
1227
1228    <sect1><title>Message Digest API</title>
1229     <para>
1230      The message digest type to be used for the cipher operation is
1231      selected when invoking the bind syscall. bind requires the caller
1232      to provide a filled struct sockaddr data structure. This data
1233      structure must be filled as follows:
1234     </para>
1235
1236     <programlisting>
1237 struct sockaddr_alg sa = {
1238         .salg_family = AF_ALG,
1239         .salg_type = "hash", /* this selects the hash logic in the kernel */
1240         .salg_name = "sha1" /* this is the cipher name */
1241 };
1242     </programlisting>
1243
1244     <para>
1245      The salg_type value "hash" applies to message digests and keyed
1246      message digests. Though, a keyed message digest is referenced by
1247      the appropriate salg_name. Please see below for the setsockopt
1248      interface that explains how the key can be set for a keyed message
1249      digest.
1250     </para>
1251
1252     <para>
1253      Using the send() system call, the application provides the data that
1254      should be processed with the message digest. The send system call
1255      allows the following flags to be specified:
1256     </para>
1257
1258     <itemizedlist>
1259      <listitem>
1260       <para>
1261        MSG_MORE: If this flag is set, the send system call acts like a
1262        message digest update function where the final hash is not
1263        yet calculated. If the flag is not set, the send system call
1264        calculates the final message digest immediately.
1265       </para>
1266      </listitem>
1267     </itemizedlist>
1268
1269     <para>
1270      With the recv() system call, the application can read the message
1271      digest from the kernel crypto API. If the buffer is too small for the
1272      message digest, the flag MSG_TRUNC is set by the kernel.
1273     </para>
1274
1275     <para>
1276      In order to set a message digest key, the calling application must use
1277      the setsockopt() option of ALG_SET_KEY. If the key is not set the HMAC
1278      operation is performed without the initial HMAC state change caused by
1279      the key.
1280     </para>
1281    </sect1>
1282
1283    <sect1><title>Symmetric Cipher API</title>
1284     <para>
1285      The operation is very similar to the message digest discussion.
1286      During initialization, the struct sockaddr data structure must be
1287      filled as follows:
1288     </para>
1289
1290     <programlisting>
1291 struct sockaddr_alg sa = {
1292         .salg_family = AF_ALG,
1293         .salg_type = "skcipher", /* this selects the symmetric cipher */
1294         .salg_name = "cbc(aes)" /* this is the cipher name */
1295 };
1296     </programlisting>
1297
1298     <para>
1299      Before data can be sent to the kernel using the write/send system
1300      call family, the consumer must set the key. The key setting is
1301      described with the setsockopt invocation below.
1302     </para>
1303
1304     <para>
1305      Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is
1306      specified with the data structure provided by the sendmsg() system call.
1307     </para>
1308
1309     <para>
1310      The sendmsg system call parameter of struct msghdr is embedded into the
1311      struct cmsghdr data structure. See recv(2) and cmsg(3) for more
1312      information on how the cmsghdr data structure is used together with the
1313      send/recv system call family. That cmsghdr data structure holds the
1314      following information specified with a separate header instances:
1315     </para>
1316
1317     <itemizedlist>
1318      <listitem>
1319       <para>
1320        specification of the cipher operation type with one of these flags:
1321       </para>
1322       <itemizedlist>
1323        <listitem>
1324         <para>ALG_OP_ENCRYPT - encryption of data</para>
1325        </listitem>
1326        <listitem>
1327         <para>ALG_OP_DECRYPT - decryption of data</para>
1328        </listitem>
1329       </itemizedlist>
1330      </listitem>
1331
1332      <listitem>
1333       <para>
1334        specification of the IV information marked with the flag ALG_SET_IV
1335       </para>
1336      </listitem>
1337     </itemizedlist>
1338
1339     <para>
1340      The send system call family allows the following flag to be specified:
1341     </para>
1342
1343     <itemizedlist>
1344      <listitem>
1345       <para>
1346        MSG_MORE: If this flag is set, the send system call acts like a
1347        cipher update function where more input data is expected
1348        with a subsequent invocation of the send system call.
1349       </para>
1350      </listitem>
1351     </itemizedlist>
1352
1353     <para>
1354      Note: The kernel reports -EINVAL for any unexpected data. The caller
1355      must make sure that all data matches the constraints given in
1356      /proc/crypto for the selected cipher.
1357     </para>
1358
1359     <para>
1360      With the recv() system call, the application can read the result of
1361      the cipher operation from the kernel crypto API. The output buffer
1362      must be at least as large as to hold all blocks of the encrypted or
1363      decrypted data. If the output data size is smaller, only as many
1364      blocks are returned that fit into that output buffer size.
1365     </para>
1366    </sect1>
1367
1368    <sect1><title>AEAD Cipher API</title>
1369     <para>
1370      The operation is very similar to the symmetric cipher discussion.
1371      During initialization, the struct sockaddr data structure must be
1372      filled as follows:
1373     </para>
1374
1375     <programlisting>
1376 struct sockaddr_alg sa = {
1377         .salg_family = AF_ALG,
1378         .salg_type = "aead", /* this selects the symmetric cipher */
1379         .salg_name = "gcm(aes)" /* this is the cipher name */
1380 };
1381     </programlisting>
1382
1383     <para>
1384      Before data can be sent to the kernel using the write/send system
1385      call family, the consumer must set the key. The key setting is
1386      described with the setsockopt invocation below.
1387     </para>
1388
1389     <para>
1390      In addition, before data can be sent to the kernel using the
1391      write/send system call family, the consumer must set the authentication
1392      tag size. To set the authentication tag size, the caller must use the
1393      setsockopt invocation described below.
1394     </para>
1395
1396     <para>
1397      Using the sendmsg() system call, the application provides the data that should be processed for encryption or decryption. In addition, the IV is
1398      specified with the data structure provided by the sendmsg() system call.
1399     </para>
1400
1401     <para>
1402      The sendmsg system call parameter of struct msghdr is embedded into the
1403      struct cmsghdr data structure. See recv(2) and cmsg(3) for more
1404      information on how the cmsghdr data structure is used together with the
1405      send/recv system call family. That cmsghdr data structure holds the
1406      following information specified with a separate header instances:
1407     </para>
1408
1409     <itemizedlist>
1410      <listitem>
1411       <para>
1412        specification of the cipher operation type with one of these flags:
1413       </para>
1414       <itemizedlist>
1415        <listitem>
1416         <para>ALG_OP_ENCRYPT - encryption of data</para>
1417        </listitem>
1418        <listitem>
1419         <para>ALG_OP_DECRYPT - decryption of data</para>
1420        </listitem>
1421       </itemizedlist>
1422      </listitem>
1423
1424      <listitem>
1425       <para>
1426        specification of the IV information marked with the flag ALG_SET_IV
1427       </para>
1428      </listitem>
1429
1430      <listitem>
1431       <para>
1432        specification of the associated authentication data (AAD) with the
1433        flag ALG_SET_AEAD_ASSOCLEN. The AAD is sent to the kernel together
1434        with the plaintext / ciphertext. See below for the memory structure.
1435       </para>
1436      </listitem>
1437     </itemizedlist>
1438
1439     <para>
1440      The send system call family allows the following flag to be specified:
1441     </para>
1442
1443     <itemizedlist>
1444      <listitem>
1445       <para>
1446        MSG_MORE: If this flag is set, the send system call acts like a
1447        cipher update function where more input data is expected
1448        with a subsequent invocation of the send system call.
1449       </para>
1450      </listitem>
1451     </itemizedlist>
1452
1453     <para>
1454      Note: The kernel reports -EINVAL for any unexpected data. The caller
1455      must make sure that all data matches the constraints given in
1456      /proc/crypto for the selected cipher.
1457     </para>
1458
1459     <para>
1460      With the recv() system call, the application can read the result of
1461      the cipher operation from the kernel crypto API. The output buffer
1462      must be at least as large as defined with the memory structure below.
1463      If the output data size is smaller, the cipher operation is not performed.
1464     </para>
1465
1466     <para>
1467      The authenticated decryption operation may indicate an integrity error.
1468      Such breach in integrity is marked with the -EBADMSG error code.
1469     </para>
1470
1471     <sect2><title>AEAD Memory Structure</title>
1472      <para>
1473       The AEAD cipher operates with the following information that
1474       is communicated between user and kernel space as one data stream:
1475      </para>
1476
1477      <itemizedlist>
1478       <listitem>
1479        <para>plaintext or ciphertext</para>
1480       </listitem>
1481
1482       <listitem>
1483        <para>associated authentication data (AAD)</para>
1484       </listitem>
1485
1486       <listitem>
1487        <para>authentication tag</para>
1488       </listitem>
1489      </itemizedlist>
1490
1491      <para>
1492       The sizes of the AAD and the authentication tag are provided with
1493       the sendmsg and setsockopt calls (see there). As the kernel knows
1494       the size of the entire data stream, the kernel is now able to
1495       calculate the right offsets of the data components in the data
1496       stream.
1497      </para>
1498
1499      <para>
1500       The user space caller must arrange the aforementioned information
1501       in the following order:
1502      </para>
1503
1504      <itemizedlist>
1505       <listitem>
1506        <para>
1507         AEAD encryption input: AAD || plaintext
1508        </para>
1509       </listitem>
1510
1511       <listitem>
1512        <para>
1513         AEAD decryption input: AAD || ciphertext || authentication tag
1514        </para>
1515       </listitem>
1516      </itemizedlist>
1517
1518      <para>
1519       The output buffer the user space caller provides must be at least as
1520       large to hold the following data:
1521      </para>
1522
1523      <itemizedlist>
1524       <listitem>
1525        <para>
1526         AEAD encryption output: ciphertext || authentication tag
1527        </para>
1528       </listitem>
1529
1530       <listitem>
1531        <para>
1532         AEAD decryption output: plaintext
1533        </para>
1534       </listitem>
1535      </itemizedlist>
1536     </sect2>
1537    </sect1>
1538
1539    <sect1><title>Random Number Generator API</title>
1540     <para>
1541      Again, the operation is very similar to the other APIs.
1542      During initialization, the struct sockaddr data structure must be
1543      filled as follows:
1544     </para>
1545
1546     <programlisting>
1547 struct sockaddr_alg sa = {
1548         .salg_family = AF_ALG,
1549         .salg_type = "rng", /* this selects the symmetric cipher */
1550         .salg_name = "drbg_nopr_sha256" /* this is the cipher name */
1551 };
1552     </programlisting>
1553
1554     <para>
1555      Depending on the RNG type, the RNG must be seeded. The seed is provided
1556      using the setsockopt interface to set the key. For example, the
1557      ansi_cprng requires a seed. The DRBGs do not require a seed, but
1558      may be seeded.
1559     </para>
1560
1561     <para>
1562      Using the read()/recvmsg() system calls, random numbers can be obtained.
1563      The kernel generates at most 128 bytes in one call. If user space
1564      requires more data, multiple calls to read()/recvmsg() must be made.
1565     </para>
1566
1567     <para>
1568      WARNING: The user space caller may invoke the initially mentioned
1569      accept system call multiple times. In this case, the returned file
1570      descriptors have the same state.
1571     </para>
1572
1573    </sect1>
1574
1575    <sect1><title>Zero-Copy Interface</title>
1576     <para>
1577      In addition to the send/write/read/recv system call family, the AF_ALG
1578      interface can be accessed with the zero-copy interface of splice/vmsplice.
1579      As the name indicates, the kernel tries to avoid a copy operation into
1580      kernel space.
1581     </para>
1582
1583     <para>
1584      The zero-copy operation requires data to be aligned at the page boundary.
1585      Non-aligned data can be used as well, but may require more operations of
1586      the kernel which would defeat the speed gains obtained from the zero-copy
1587      interface.
1588     </para>
1589
1590     <para>
1591      The system-interent limit for the size of one zero-copy operation is
1592      16 pages. If more data is to be sent to AF_ALG, user space must slice
1593      the input into segments with a maximum size of 16 pages.
1594     </para>
1595
1596     <para>
1597      Zero-copy can be used with the following code example (a complete working
1598      example is provided with libkcapi):
1599     </para>
1600
1601     <programlisting>
1602 int pipes[2];
1603
1604 pipe(pipes);
1605 /* input data in iov */
1606 vmsplice(pipes[1], iov, iovlen, SPLICE_F_GIFT);
1607 /* opfd is the file descriptor returned from accept() system call */
1608 splice(pipes[0], NULL, opfd, NULL, ret, 0);
1609 read(opfd, out, outlen);
1610     </programlisting>
1611
1612    </sect1>
1613
1614    <sect1><title>Setsockopt Interface</title>
1615     <para>
1616      In addition to the read/recv and send/write system call handling
1617      to send and retrieve data subject to the cipher operation, a consumer
1618      also needs to set the additional information for the cipher operation.
1619      This additional information is set using the setsockopt system call
1620      that must be invoked with the file descriptor of the open cipher
1621      (i.e. the file descriptor returned by the accept system call).
1622     </para>
1623
1624     <para>
1625      Each setsockopt invocation must use the level SOL_ALG.
1626     </para>
1627
1628     <para>
1629      The setsockopt interface allows setting the following data using
1630      the mentioned optname:
1631     </para>
1632
1633     <itemizedlist>
1634      <listitem>
1635       <para>
1636        ALG_SET_KEY -- Setting the key. Key setting is applicable to:
1637       </para>
1638       <itemizedlist>
1639        <listitem>
1640         <para>the skcipher cipher type (symmetric ciphers)</para>
1641        </listitem>
1642        <listitem>
1643         <para>the hash cipher type (keyed message digests)</para>
1644        </listitem>
1645        <listitem>
1646         <para>the AEAD cipher type</para>
1647        </listitem>
1648        <listitem>
1649         <para>the RNG cipher type to provide the seed</para>
1650        </listitem>
1651       </itemizedlist>
1652      </listitem>
1653
1654      <listitem>
1655       <para>
1656        ALG_SET_AEAD_AUTHSIZE -- Setting the authentication tag size
1657        for AEAD ciphers. For a encryption operation, the authentication
1658        tag of the given size will be generated. For a decryption operation,
1659        the provided ciphertext is assumed to contain an authentication tag
1660        of the given size (see section about AEAD memory layout below).
1661       </para>
1662      </listitem>
1663     </itemizedlist>
1664
1665    </sect1>
1666
1667    <sect1><title>User space API example</title>
1668     <para>
1669      Please see [1] for libkcapi which provides an easy-to-use wrapper
1670      around the aforementioned Netlink kernel interface. [1] also contains
1671      a test application that invokes all libkcapi API calls.
1672     </para>
1673
1674     <para>
1675      [1] <ulink url="http://www.chronox.de/libkcapi.html">http://www.chronox.de/libkcapi.html</ulink>
1676     </para>
1677
1678    </sect1>
1679
1680   </chapter>
1681
1682   <chapter id="API"><title>Programming Interface</title>
1683    <para>
1684     Please note that the kernel crypto API contains the AEAD givcrypt
1685     API (crypto_aead_giv* and aead_givcrypt_* function calls in
1686     include/crypto/aead.h). This API is obsolete and will be removed
1687     in the future. To obtain the functionality of an AEAD cipher with
1688     internal IV generation, use the IV generator as a regular cipher.
1689     For example, rfc4106(gcm(aes)) is the AEAD cipher with external
1690     IV generation and seqniv(rfc4106(gcm(aes))) implies that the kernel
1691     crypto API generates the IV. Different IV generators are available.
1692    </para>
1693    <sect1><title>Block Cipher Context Data Structures</title>
1694 !Pinclude/linux/crypto.h Block Cipher Context Data Structures
1695 !Finclude/crypto/aead.h aead_request
1696    </sect1>
1697    <sect1><title>Block Cipher Algorithm Definitions</title>
1698 !Pinclude/linux/crypto.h Block Cipher Algorithm Definitions
1699 !Finclude/linux/crypto.h crypto_alg
1700 !Finclude/linux/crypto.h ablkcipher_alg
1701 !Finclude/crypto/aead.h aead_alg
1702 !Finclude/linux/crypto.h blkcipher_alg
1703 !Finclude/linux/crypto.h cipher_alg
1704 !Finclude/crypto/rng.h rng_alg
1705    </sect1>
1706    <sect1><title>Symmetric Key Cipher API</title>
1707 !Pinclude/crypto/skcipher.h Symmetric Key Cipher API
1708 !Finclude/crypto/skcipher.h crypto_alloc_skcipher
1709 !Finclude/crypto/skcipher.h crypto_free_skcipher
1710 !Finclude/crypto/skcipher.h crypto_has_skcipher
1711 !Finclude/crypto/skcipher.h crypto_skcipher_ivsize
1712 !Finclude/crypto/skcipher.h crypto_skcipher_blocksize
1713 !Finclude/crypto/skcipher.h crypto_skcipher_setkey
1714 !Finclude/crypto/skcipher.h crypto_skcipher_reqtfm
1715 !Finclude/crypto/skcipher.h crypto_skcipher_encrypt
1716 !Finclude/crypto/skcipher.h crypto_skcipher_decrypt
1717    </sect1>
1718    <sect1><title>Symmetric Key Cipher Request Handle</title>
1719 !Pinclude/crypto/skcipher.h Symmetric Key Cipher Request Handle
1720 !Finclude/crypto/skcipher.h crypto_skcipher_reqsize
1721 !Finclude/crypto/skcipher.h skcipher_request_set_tfm
1722 !Finclude/crypto/skcipher.h skcipher_request_alloc
1723 !Finclude/crypto/skcipher.h skcipher_request_free
1724 !Finclude/crypto/skcipher.h skcipher_request_set_callback
1725 !Finclude/crypto/skcipher.h skcipher_request_set_crypt
1726    </sect1>
1727    <sect1><title>Asynchronous Block Cipher API - Deprecated</title>
1728 !Pinclude/linux/crypto.h Asynchronous Block Cipher API
1729 !Finclude/linux/crypto.h crypto_alloc_ablkcipher
1730 !Finclude/linux/crypto.h crypto_free_ablkcipher
1731 !Finclude/linux/crypto.h crypto_has_ablkcipher
1732 !Finclude/linux/crypto.h crypto_ablkcipher_ivsize
1733 !Finclude/linux/crypto.h crypto_ablkcipher_blocksize
1734 !Finclude/linux/crypto.h crypto_ablkcipher_setkey
1735 !Finclude/linux/crypto.h crypto_ablkcipher_reqtfm
1736 !Finclude/linux/crypto.h crypto_ablkcipher_encrypt
1737 !Finclude/linux/crypto.h crypto_ablkcipher_decrypt
1738    </sect1>
1739    <sect1><title>Asynchronous Cipher Request Handle - Deprecated</title>
1740 !Pinclude/linux/crypto.h Asynchronous Cipher Request Handle
1741 !Finclude/linux/crypto.h crypto_ablkcipher_reqsize
1742 !Finclude/linux/crypto.h ablkcipher_request_set_tfm
1743 !Finclude/linux/crypto.h ablkcipher_request_alloc
1744 !Finclude/linux/crypto.h ablkcipher_request_free
1745 !Finclude/linux/crypto.h ablkcipher_request_set_callback
1746 !Finclude/linux/crypto.h ablkcipher_request_set_crypt
1747    </sect1>
1748    <sect1><title>Authenticated Encryption With Associated Data (AEAD) Cipher API</title>
1749 !Pinclude/crypto/aead.h Authenticated Encryption With Associated Data (AEAD) Cipher API
1750 !Finclude/crypto/aead.h crypto_alloc_aead
1751 !Finclude/crypto/aead.h crypto_free_aead
1752 !Finclude/crypto/aead.h crypto_aead_ivsize
1753 !Finclude/crypto/aead.h crypto_aead_authsize
1754 !Finclude/crypto/aead.h crypto_aead_blocksize
1755 !Finclude/crypto/aead.h crypto_aead_setkey
1756 !Finclude/crypto/aead.h crypto_aead_setauthsize
1757 !Finclude/crypto/aead.h crypto_aead_encrypt
1758 !Finclude/crypto/aead.h crypto_aead_decrypt
1759    </sect1>
1760    <sect1><title>Asynchronous AEAD Request Handle</title>
1761 !Pinclude/crypto/aead.h Asynchronous AEAD Request Handle
1762 !Finclude/crypto/aead.h crypto_aead_reqsize
1763 !Finclude/crypto/aead.h aead_request_set_tfm
1764 !Finclude/crypto/aead.h aead_request_alloc
1765 !Finclude/crypto/aead.h aead_request_free
1766 !Finclude/crypto/aead.h aead_request_set_callback
1767 !Finclude/crypto/aead.h aead_request_set_crypt
1768 !Finclude/crypto/aead.h aead_request_set_ad
1769    </sect1>
1770    <sect1><title>Synchronous Block Cipher API - Deprecated</title>
1771 !Pinclude/linux/crypto.h Synchronous Block Cipher API
1772 !Finclude/linux/crypto.h crypto_alloc_blkcipher
1773 !Finclude/linux/crypto.h crypto_free_blkcipher
1774 !Finclude/linux/crypto.h crypto_has_blkcipher
1775 !Finclude/linux/crypto.h crypto_blkcipher_name
1776 !Finclude/linux/crypto.h crypto_blkcipher_ivsize
1777 !Finclude/linux/crypto.h crypto_blkcipher_blocksize
1778 !Finclude/linux/crypto.h crypto_blkcipher_setkey
1779 !Finclude/linux/crypto.h crypto_blkcipher_encrypt
1780 !Finclude/linux/crypto.h crypto_blkcipher_encrypt_iv
1781 !Finclude/linux/crypto.h crypto_blkcipher_decrypt
1782 !Finclude/linux/crypto.h crypto_blkcipher_decrypt_iv
1783 !Finclude/linux/crypto.h crypto_blkcipher_set_iv
1784 !Finclude/linux/crypto.h crypto_blkcipher_get_iv
1785    </sect1>
1786    <sect1><title>Single Block Cipher API</title>
1787 !Pinclude/linux/crypto.h Single Block Cipher API
1788 !Finclude/linux/crypto.h crypto_alloc_cipher
1789 !Finclude/linux/crypto.h crypto_free_cipher
1790 !Finclude/linux/crypto.h crypto_has_cipher
1791 !Finclude/linux/crypto.h crypto_cipher_blocksize
1792 !Finclude/linux/crypto.h crypto_cipher_setkey
1793 !Finclude/linux/crypto.h crypto_cipher_encrypt_one
1794 !Finclude/linux/crypto.h crypto_cipher_decrypt_one
1795    </sect1>
1796    <sect1><title>Message Digest Algorithm Definitions</title>
1797 !Pinclude/crypto/hash.h Message Digest Algorithm Definitions
1798 !Finclude/crypto/hash.h hash_alg_common
1799 !Finclude/crypto/hash.h ahash_alg
1800 !Finclude/crypto/hash.h shash_alg
1801    </sect1>
1802    <sect1><title>Asynchronous Message Digest API</title>
1803 !Pinclude/crypto/hash.h Asynchronous Message Digest API
1804 !Finclude/crypto/hash.h crypto_alloc_ahash
1805 !Finclude/crypto/hash.h crypto_free_ahash
1806 !Finclude/crypto/hash.h crypto_ahash_init
1807 !Finclude/crypto/hash.h crypto_ahash_digestsize
1808 !Finclude/crypto/hash.h crypto_ahash_reqtfm
1809 !Finclude/crypto/hash.h crypto_ahash_reqsize
1810 !Finclude/crypto/hash.h crypto_ahash_setkey
1811 !Finclude/crypto/hash.h crypto_ahash_finup
1812 !Finclude/crypto/hash.h crypto_ahash_final
1813 !Finclude/crypto/hash.h crypto_ahash_digest
1814 !Finclude/crypto/hash.h crypto_ahash_export
1815 !Finclude/crypto/hash.h crypto_ahash_import
1816    </sect1>
1817    <sect1><title>Asynchronous Hash Request Handle</title>
1818 !Pinclude/crypto/hash.h Asynchronous Hash Request Handle
1819 !Finclude/crypto/hash.h ahash_request_set_tfm
1820 !Finclude/crypto/hash.h ahash_request_alloc
1821 !Finclude/crypto/hash.h ahash_request_free
1822 !Finclude/crypto/hash.h ahash_request_set_callback
1823 !Finclude/crypto/hash.h ahash_request_set_crypt
1824    </sect1>
1825    <sect1><title>Synchronous Message Digest API</title>
1826 !Pinclude/crypto/hash.h Synchronous Message Digest API
1827 !Finclude/crypto/hash.h crypto_alloc_shash
1828 !Finclude/crypto/hash.h crypto_free_shash
1829 !Finclude/crypto/hash.h crypto_shash_blocksize
1830 !Finclude/crypto/hash.h crypto_shash_digestsize
1831 !Finclude/crypto/hash.h crypto_shash_descsize
1832 !Finclude/crypto/hash.h crypto_shash_setkey
1833 !Finclude/crypto/hash.h crypto_shash_digest
1834 !Finclude/crypto/hash.h crypto_shash_export
1835 !Finclude/crypto/hash.h crypto_shash_import
1836 !Finclude/crypto/hash.h crypto_shash_init
1837 !Finclude/crypto/hash.h crypto_shash_update
1838 !Finclude/crypto/hash.h crypto_shash_final
1839 !Finclude/crypto/hash.h crypto_shash_finup
1840    </sect1>
1841    <sect1><title>Crypto API Random Number API</title>
1842 !Pinclude/crypto/rng.h Random number generator API
1843 !Finclude/crypto/rng.h crypto_alloc_rng
1844 !Finclude/crypto/rng.h crypto_rng_alg
1845 !Finclude/crypto/rng.h crypto_free_rng
1846 !Finclude/crypto/rng.h crypto_rng_generate
1847 !Finclude/crypto/rng.h crypto_rng_get_bytes
1848 !Finclude/crypto/rng.h crypto_rng_reset
1849 !Finclude/crypto/rng.h crypto_rng_seedsize
1850 !Cinclude/crypto/rng.h
1851    </sect1>
1852    <sect1><title>Asymmetric Cipher API</title>
1853 !Pinclude/crypto/akcipher.h Generic Public Key API
1854 !Finclude/crypto/akcipher.h akcipher_alg
1855 !Finclude/crypto/akcipher.h akcipher_request
1856 !Finclude/crypto/akcipher.h crypto_alloc_akcipher
1857 !Finclude/crypto/akcipher.h crypto_free_akcipher
1858 !Finclude/crypto/akcipher.h crypto_akcipher_set_pub_key
1859 !Finclude/crypto/akcipher.h crypto_akcipher_set_priv_key
1860    </sect1>
1861    <sect1><title>Asymmetric Cipher Request Handle</title>
1862 !Finclude/crypto/akcipher.h akcipher_request_alloc
1863 !Finclude/crypto/akcipher.h akcipher_request_free
1864 !Finclude/crypto/akcipher.h akcipher_request_set_callback
1865 !Finclude/crypto/akcipher.h akcipher_request_set_crypt
1866 !Finclude/crypto/akcipher.h crypto_akcipher_maxsize
1867 !Finclude/crypto/akcipher.h crypto_akcipher_encrypt
1868 !Finclude/crypto/akcipher.h crypto_akcipher_decrypt
1869 !Finclude/crypto/akcipher.h crypto_akcipher_sign
1870 !Finclude/crypto/akcipher.h crypto_akcipher_verify
1871    </sect1>
1872   </chapter>
1873
1874   <chapter id="Code"><title>Code Examples</title>
1875    <sect1><title>Code Example For Symmetric Key Cipher Operation</title>
1876     <programlisting>
1877
1878 struct tcrypt_result {
1879         struct completion completion;
1880         int err;
1881 };
1882
1883 /* tie all data structures together */
1884 struct skcipher_def {
1885         struct scatterlist sg;
1886         struct crypto_skcipher *tfm;
1887         struct skcipher_request *req;
1888         struct tcrypt_result result;
1889 };
1890
1891 /* Callback function */
1892 static void test_skcipher_cb(struct crypto_async_request *req, int error)
1893 {
1894         struct tcrypt_result *result = req-&gt;data;
1895
1896         if (error == -EINPROGRESS)
1897                 return;
1898         result-&gt;err = error;
1899         complete(&amp;result-&gt;completion);
1900         pr_info("Encryption finished successfully\n");
1901 }
1902
1903 /* Perform cipher operation */
1904 static unsigned int test_skcipher_encdec(struct skcipher_def *sk,
1905                                          int enc)
1906 {
1907         int rc = 0;
1908
1909         if (enc)
1910                 rc = crypto_skcipher_encrypt(sk-&gt;req);
1911         else
1912                 rc = crypto_skcipher_decrypt(sk-&gt;req);
1913
1914         switch (rc) {
1915         case 0:
1916                 break;
1917         case -EINPROGRESS:
1918         case -EBUSY:
1919                 rc = wait_for_completion_interruptible(
1920                         &amp;sk-&gt;result.completion);
1921                 if (!rc &amp;&amp; !sk-&gt;result.err) {
1922                         reinit_completion(&amp;sk-&gt;result.completion);
1923                         break;
1924                 }
1925         default:
1926                 pr_info("skcipher encrypt returned with %d result %d\n",
1927                         rc, sk-&gt;result.err);
1928                 break;
1929         }
1930         init_completion(&amp;sk-&gt;result.completion);
1931
1932         return rc;
1933 }
1934
1935 /* Initialize and trigger cipher operation */
1936 static int test_skcipher(void)
1937 {
1938         struct skcipher_def sk;
1939         struct crypto_skcipher *skcipher = NULL;
1940         struct skcipher_request *req = NULL;
1941         char *scratchpad = NULL;
1942         char *ivdata = NULL;
1943         unsigned char key[32];
1944         int ret = -EFAULT;
1945
1946         skcipher = crypto_alloc_skcipher("cbc-aes-aesni", 0, 0);
1947         if (IS_ERR(skcipher)) {
1948                 pr_info("could not allocate skcipher handle\n");
1949                 return PTR_ERR(skcipher);
1950         }
1951
1952         req = skcipher_request_alloc(skcipher, GFP_KERNEL);
1953         if (!req) {
1954                 pr_info("could not allocate skcipher request\n");
1955                 ret = -ENOMEM;
1956                 goto out;
1957         }
1958
1959         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1960                                       test_skcipher_cb,
1961                                       &amp;sk.result);
1962
1963         /* AES 256 with random key */
1964         get_random_bytes(&amp;key, 32);
1965         if (crypto_skcipher_setkey(skcipher, key, 32)) {
1966                 pr_info("key could not be set\n");
1967                 ret = -EAGAIN;
1968                 goto out;
1969         }
1970
1971         /* IV will be random */
1972         ivdata = kmalloc(16, GFP_KERNEL);
1973         if (!ivdata) {
1974                 pr_info("could not allocate ivdata\n");
1975                 goto out;
1976         }
1977         get_random_bytes(ivdata, 16);
1978
1979         /* Input data will be random */
1980         scratchpad = kmalloc(16, GFP_KERNEL);
1981         if (!scratchpad) {
1982                 pr_info("could not allocate scratchpad\n");
1983                 goto out;
1984         }
1985         get_random_bytes(scratchpad, 16);
1986
1987         sk.tfm = skcipher;
1988         sk.req = req;
1989
1990         /* We encrypt one block */
1991         sg_init_one(&amp;sk.sg, scratchpad, 16);
1992         skcipher_request_set_crypt(req, &amp;sk.sg, &amp;sk.sg, 16, ivdata);
1993         init_completion(&amp;sk.result.completion);
1994
1995         /* encrypt data */
1996         ret = test_skcipher_encdec(&amp;sk, 1);
1997         if (ret)
1998                 goto out;
1999
2000         pr_info("Encryption triggered successfully\n");
2001
2002 out:
2003         if (skcipher)
2004                 crypto_free_skcipher(skcipher);
2005         if (req)
2006                 skcipher_request_free(req);
2007         if (ivdata)
2008                 kfree(ivdata);
2009         if (scratchpad)
2010                 kfree(scratchpad);
2011         return ret;
2012 }
2013     </programlisting>
2014    </sect1>
2015
2016    <sect1><title>Code Example For Use of Operational State Memory With SHASH</title>
2017     <programlisting>
2018
2019 struct sdesc {
2020         struct shash_desc shash;
2021         char ctx[];
2022 };
2023
2024 static struct sdescinit_sdesc(struct crypto_shash *alg)
2025 {
2026         struct sdescsdesc;
2027         int size;
2028
2029         size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
2030         sdesc = kmalloc(size, GFP_KERNEL);
2031         if (!sdesc)
2032                 return ERR_PTR(-ENOMEM);
2033         sdesc-&gt;shash.tfm = alg;
2034         sdesc-&gt;shash.flags = 0x0;
2035         return sdesc;
2036 }
2037
2038 static int calc_hash(struct crypto_shashalg,
2039                      const unsigned chardata, unsigned int datalen,
2040                      unsigned chardigest) {
2041         struct sdescsdesc;
2042         int ret;
2043
2044         sdesc = init_sdesc(alg);
2045         if (IS_ERR(sdesc)) {
2046                 pr_info("trusted_key: can't alloc %s\n", hash_alg);
2047                 return PTR_ERR(sdesc);
2048         }
2049
2050         ret = crypto_shash_digest(&amp;sdesc-&gt;shash, data, datalen, digest);
2051         kfree(sdesc);
2052         return ret;
2053 }
2054     </programlisting>
2055    </sect1>
2056
2057    <sect1><title>Code Example For Random Number Generator Usage</title>
2058     <programlisting>
2059
2060 static int get_random_numbers(u8 *buf, unsigned int len)
2061 {
2062         struct crypto_rngrng = NULL;
2063         chardrbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
2064         int ret;
2065
2066         if (!buf || !len) {
2067                 pr_debug("No output buffer provided\n");
2068                 return -EINVAL;
2069         }
2070
2071         rng = crypto_alloc_rng(drbg, 0, 0);
2072         if (IS_ERR(rng)) {
2073                 pr_debug("could not allocate RNG handle for %s\n", drbg);
2074                 return -PTR_ERR(rng);
2075         }
2076
2077         ret = crypto_rng_get_bytes(rng, buf, len);
2078         if (ret &lt; 0)
2079                 pr_debug("generation of random numbers failed\n");
2080         else if (ret == 0)
2081                 pr_debug("RNG returned no data");
2082         else
2083                 pr_debug("RNG returned %d bytes of data\n", ret);
2084
2085 out:
2086         crypto_free_rng(rng);
2087         return ret;
2088 }
2089     </programlisting>
2090    </sect1>
2091   </chapter>
2092  </book>