Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[sfrench/cifs-2.6.git] / Documentation / DMA-API-HOWTO.txt
1                      Dynamic DMA mapping Guide
2                      =========================
3
4                  David S. Miller <davem@redhat.com>
5                  Richard Henderson <rth@cygnus.com>
6                   Jakub Jelinek <jakub@redhat.com>
7
8 This is a guide to device driver writers on how to use the DMA API
9 with example pseudo-code.  For a concise description of the API, see
10 DMA-API.txt.
11
12                        CPU and DMA addresses
13
14 There are several kinds of addresses involved in the DMA API, and it's
15 important to understand the differences.
16
17 The kernel normally uses virtual addresses.  Any address returned by
18 kmalloc(), vmalloc(), and similar interfaces is a virtual address and can
19 be stored in a "void *".
20
21 The virtual memory system (TLB, page tables, etc.) translates virtual
22 addresses to CPU physical addresses, which are stored as "phys_addr_t" or
23 "resource_size_t".  The kernel manages device resources like registers as
24 physical addresses.  These are the addresses in /proc/iomem.  The physical
25 address is not directly useful to a driver; it must use ioremap() to map
26 the space and produce a virtual address.
27
28 I/O devices use a third kind of address: a "bus address".  If a device has
29 registers at an MMIO address, or if it performs DMA to read or write system
30 memory, the addresses used by the device are bus addresses.  In some
31 systems, bus addresses are identical to CPU physical addresses, but in
32 general they are not.  IOMMUs and host bridges can produce arbitrary
33 mappings between physical and bus addresses.
34
35 From a device's point of view, DMA uses the bus address space, but it may
36 be restricted to a subset of that space.  For example, even if a system
37 supports 64-bit addresses for main memory and PCI BARs, it may use an IOMMU
38 so devices only need to use 32-bit DMA addresses.
39
40 Here's a picture and some examples:
41
42                CPU                  CPU                  Bus
43              Virtual              Physical             Address
44              Address              Address               Space
45               Space                Space
46
47             +-------+             +------+             +------+
48             |       |             |MMIO  |   Offset    |      |
49             |       |  Virtual    |Space |   applied   |      |
50           C +-------+ --------> B +------+ ----------> +------+ A
51             |       |  mapping    |      |   by host   |      |
52   +-----+   |       |             |      |   bridge    |      |   +--------+
53   |     |   |       |             +------+             |      |   |        |
54   | CPU |   |       |             | RAM  |             |      |   | Device |
55   |     |   |       |             |      |             |      |   |        |
56   +-----+   +-------+             +------+             +------+   +--------+
57             |       |  Virtual    |Buffer|   Mapping   |      |
58           X +-------+ --------> Y +------+ <---------- +------+ Z
59             |       |  mapping    | RAM  |   by IOMMU
60             |       |             |      |
61             |       |             |      |
62             +-------+             +------+
63
64 During the enumeration process, the kernel learns about I/O devices and
65 their MMIO space and the host bridges that connect them to the system.  For
66 example, if a PCI device has a BAR, the kernel reads the bus address (A)
67 from the BAR and converts it to a CPU physical address (B).  The address B
68 is stored in a struct resource and usually exposed via /proc/iomem.  When a
69 driver claims a device, it typically uses ioremap() to map physical address
70 B at a virtual address (C).  It can then use, e.g., ioread32(C), to access
71 the device registers at bus address A.
72
73 If the device supports DMA, the driver sets up a buffer using kmalloc() or
74 a similar interface, which returns a virtual address (X).  The virtual
75 memory system maps X to a physical address (Y) in system RAM.  The driver
76 can use virtual address X to access the buffer, but the device itself
77 cannot because DMA doesn't go through the CPU virtual memory system.
78
79 In some simple systems, the device can do DMA directly to physical address
80 Y.  But in many others, there is IOMMU hardware that translates DMA
81 addresses to physical addresses, e.g., it translates Z to Y.  This is part
82 of the reason for the DMA API: the driver can give a virtual address X to
83 an interface like dma_map_single(), which sets up any required IOMMU
84 mapping and returns the DMA address Z.  The driver then tells the device to
85 do DMA to Z, and the IOMMU maps it to the buffer at address Y in system
86 RAM.
87
88 So that Linux can use the dynamic DMA mapping, it needs some help from the
89 drivers, namely it has to take into account that DMA addresses should be
90 mapped only for the time they are actually used and unmapped after the DMA
91 transfer.
92
93 The following API will work of course even on platforms where no such
94 hardware exists.
95
96 Note that the DMA API works with any bus independent of the underlying
97 microprocessor architecture. You should use the DMA API rather than the
98 bus-specific DMA API, i.e., use the dma_map_*() interfaces rather than the
99 pci_map_*() interfaces.
100
101 First of all, you should make sure
102
103 #include <linux/dma-mapping.h>
104
105 is in your driver, which provides the definition of dma_addr_t.  This type
106 can hold any valid DMA address for the platform and should be used
107 everywhere you hold a DMA address returned from the DMA mapping functions.
108
109                          What memory is DMA'able?
110
111 The first piece of information you must know is what kernel memory can
112 be used with the DMA mapping facilities.  There has been an unwritten
113 set of rules regarding this, and this text is an attempt to finally
114 write them down.
115
116 If you acquired your memory via the page allocator
117 (i.e. __get_free_page*()) or the generic memory allocators
118 (i.e. kmalloc() or kmem_cache_alloc()) then you may DMA to/from
119 that memory using the addresses returned from those routines.
120
121 This means specifically that you may _not_ use the memory/addresses
122 returned from vmalloc() for DMA.  It is possible to DMA to the
123 _underlying_ memory mapped into a vmalloc() area, but this requires
124 walking page tables to get the physical addresses, and then
125 translating each of those pages back to a kernel address using
126 something like __va().  [ EDIT: Update this when we integrate
127 Gerd Knorr's generic code which does this. ]
128
129 This rule also means that you may use neither kernel image addresses
130 (items in data/text/bss segments), nor module image addresses, nor
131 stack addresses for DMA.  These could all be mapped somewhere entirely
132 different than the rest of physical memory.  Even if those classes of
133 memory could physically work with DMA, you'd need to ensure the I/O
134 buffers were cacheline-aligned.  Without that, you'd see cacheline
135 sharing problems (data corruption) on CPUs with DMA-incoherent caches.
136 (The CPU could write to one word, DMA would write to a different one
137 in the same cache line, and one of them could be overwritten.)
138
139 Also, this means that you cannot take the return of a kmap()
140 call and DMA to/from that.  This is similar to vmalloc().
141
142 What about block I/O and networking buffers?  The block I/O and
143 networking subsystems make sure that the buffers they use are valid
144 for you to DMA from/to.
145
146                         DMA addressing limitations
147
148 Does your device have any DMA addressing limitations?  For example, is
149 your device only capable of driving the low order 24-bits of address?
150 If so, you need to inform the kernel of this fact.
151
152 By default, the kernel assumes that your device can address the full
153 32-bits.  For a 64-bit capable device, this needs to be increased.
154 And for a device with limitations, as discussed in the previous
155 paragraph, it needs to be decreased.
156
157 Special note about PCI: PCI-X specification requires PCI-X devices to
158 support 64-bit addressing (DAC) for all transactions.  And at least
159 one platform (SGI SN2) requires 64-bit consistent allocations to
160 operate correctly when the IO bus is in PCI-X mode.
161
162 For correct operation, you must interrogate the kernel in your device
163 probe routine to see if the DMA controller on the machine can properly
164 support the DMA addressing limitation your device has.  It is good
165 style to do this even if your device holds the default setting,
166 because this shows that you did think about these issues wrt. your
167 device.
168
169 The query is performed via a call to dma_set_mask_and_coherent():
170
171         int dma_set_mask_and_coherent(struct device *dev, u64 mask);
172
173 which will query the mask for both streaming and coherent APIs together.
174 If you have some special requirements, then the following two separate
175 queries can be used instead:
176
177         The query for streaming mappings is performed via a call to
178         dma_set_mask():
179
180                 int dma_set_mask(struct device *dev, u64 mask);
181
182         The query for consistent allocations is performed via a call
183         to dma_set_coherent_mask():
184
185                 int dma_set_coherent_mask(struct device *dev, u64 mask);
186
187 Here, dev is a pointer to the device struct of your device, and mask
188 is a bit mask describing which bits of an address your device
189 supports.  It returns zero if your card can perform DMA properly on
190 the machine given the address mask you provided.  In general, the
191 device struct of your device is embedded in the bus-specific device
192 struct of your device.  For example, &pdev->dev is a pointer to the
193 device struct of a PCI device (pdev is a pointer to the PCI device
194 struct of your device).
195
196 If it returns non-zero, your device cannot perform DMA properly on
197 this platform, and attempting to do so will result in undefined
198 behavior.  You must either use a different mask, or not use DMA.
199
200 This means that in the failure case, you have three options:
201
202 1) Use another DMA mask, if possible (see below).
203 2) Use some non-DMA mode for data transfer, if possible.
204 3) Ignore this device and do not initialize it.
205
206 It is recommended that your driver print a kernel KERN_WARNING message
207 when you end up performing either #2 or #3.  In this manner, if a user
208 of your driver reports that performance is bad or that the device is not
209 even detected, you can ask them for the kernel messages to find out
210 exactly why.
211
212 The standard 32-bit addressing device would do something like this:
213
214         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
215                 dev_warn(dev, "mydev: No suitable DMA available\n");
216                 goto ignore_this_device;
217         }
218
219 Another common scenario is a 64-bit capable device.  The approach here
220 is to try for 64-bit addressing, but back down to a 32-bit mask that
221 should not fail.  The kernel may fail the 64-bit mask not because the
222 platform is not capable of 64-bit addressing.  Rather, it may fail in
223 this case simply because 32-bit addressing is done more efficiently
224 than 64-bit addressing.  For example, Sparc64 PCI SAC addressing is
225 more efficient than DAC addressing.
226
227 Here is how you would handle a 64-bit capable device which can drive
228 all 64-bits when accessing streaming DMA:
229
230         int using_dac;
231
232         if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
233                 using_dac = 1;
234         } else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
235                 using_dac = 0;
236         } else {
237                 dev_warn(dev, "mydev: No suitable DMA available\n");
238                 goto ignore_this_device;
239         }
240
241 If a card is capable of using 64-bit consistent allocations as well,
242 the case would look like this:
243
244         int using_dac, consistent_using_dac;
245
246         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) {
247                 using_dac = 1;
248                 consistent_using_dac = 1;
249         } else if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) {
250                 using_dac = 0;
251                 consistent_using_dac = 0;
252         } else {
253                 dev_warn(dev, "mydev: No suitable DMA available\n");
254                 goto ignore_this_device;
255         }
256
257 The coherent mask will always be able to set the same or a smaller mask as
258 the streaming mask. However for the rare case that a device driver only
259 uses consistent allocations, one would have to check the return value from
260 dma_set_coherent_mask().
261
262 Finally, if your device can only drive the low 24-bits of
263 address you might do something like:
264
265         if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
266                 dev_warn(dev, "mydev: 24-bit DMA addressing not available\n");
267                 goto ignore_this_device;
268         }
269
270 When dma_set_mask() or dma_set_mask_and_coherent() is successful, and
271 returns zero, the kernel saves away this mask you have provided.  The
272 kernel will use this information later when you make DMA mappings.
273
274 There is a case which we are aware of at this time, which is worth
275 mentioning in this documentation.  If your device supports multiple
276 functions (for example a sound card provides playback and record
277 functions) and the various different functions have _different_
278 DMA addressing limitations, you may wish to probe each mask and
279 only provide the functionality which the machine can handle.  It
280 is important that the last call to dma_set_mask() be for the
281 most specific mask.
282
283 Here is pseudo-code showing how this might be done:
284
285         #define PLAYBACK_ADDRESS_BITS   DMA_BIT_MASK(32)
286         #define RECORD_ADDRESS_BITS     DMA_BIT_MASK(24)
287
288         struct my_sound_card *card;
289         struct device *dev;
290
291         ...
292         if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
293                 card->playback_enabled = 1;
294         } else {
295                 card->playback_enabled = 0;
296                 dev_warn(dev, "%s: Playback disabled due to DMA limitations\n",
297                        card->name);
298         }
299         if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
300                 card->record_enabled = 1;
301         } else {
302                 card->record_enabled = 0;
303                 dev_warn(dev, "%s: Record disabled due to DMA limitations\n",
304                        card->name);
305         }
306
307 A sound card was used as an example here because this genre of PCI
308 devices seems to be littered with ISA chips given a PCI front end,
309 and thus retaining the 16MB DMA addressing limitations of ISA.
310
311                         Types of DMA mappings
312
313 There are two types of DMA mappings:
314
315 - Consistent DMA mappings which are usually mapped at driver
316   initialization, unmapped at the end and for which the hardware should
317   guarantee that the device and the CPU can access the data
318   in parallel and will see updates made by each other without any
319   explicit software flushing.
320
321   Think of "consistent" as "synchronous" or "coherent".
322
323   The current default is to return consistent memory in the low 32
324   bits of the DMA space.  However, for future compatibility you should
325   set the consistent mask even if this default is fine for your
326   driver.
327
328   Good examples of what to use consistent mappings for are:
329
330         - Network card DMA ring descriptors.
331         - SCSI adapter mailbox command data structures.
332         - Device firmware microcode executed out of
333           main memory.
334
335   The invariant these examples all require is that any CPU store
336   to memory is immediately visible to the device, and vice
337   versa.  Consistent mappings guarantee this.
338
339   IMPORTANT: Consistent DMA memory does not preclude the usage of
340              proper memory barriers.  The CPU may reorder stores to
341              consistent memory just as it may normal memory.  Example:
342              if it is important for the device to see the first word
343              of a descriptor updated before the second, you must do
344              something like:
345
346                 desc->word0 = address;
347                 wmb();
348                 desc->word1 = DESC_VALID;
349
350              in order to get correct behavior on all platforms.
351
352              Also, on some platforms your driver may need to flush CPU write
353              buffers in much the same way as it needs to flush write buffers
354              found in PCI bridges (such as by reading a register's value
355              after writing it).
356
357 - Streaming DMA mappings which are usually mapped for one DMA
358   transfer, unmapped right after it (unless you use dma_sync_* below)
359   and for which hardware can optimize for sequential accesses.
360
361   Think of "streaming" as "asynchronous" or "outside the coherency
362   domain".
363
364   Good examples of what to use streaming mappings for are:
365
366         - Networking buffers transmitted/received by a device.
367         - Filesystem buffers written/read by a SCSI device.
368
369   The interfaces for using this type of mapping were designed in
370   such a way that an implementation can make whatever performance
371   optimizations the hardware allows.  To this end, when using
372   such mappings you must be explicit about what you want to happen.
373
374 Neither type of DMA mapping has alignment restrictions that come from
375 the underlying bus, although some devices may have such restrictions.
376 Also, systems with caches that aren't DMA-coherent will work better
377 when the underlying buffers don't share cache lines with other data.
378
379
380                  Using Consistent DMA mappings.
381
382 To allocate and map large (PAGE_SIZE or so) consistent DMA regions,
383 you should do:
384
385         dma_addr_t dma_handle;
386
387         cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
388
389 where device is a struct device *. This may be called in interrupt
390 context with the GFP_ATOMIC flag.
391
392 Size is the length of the region you want to allocate, in bytes.
393
394 This routine will allocate RAM for that region, so it acts similarly to
395 __get_free_pages() (but takes size instead of a page order).  If your
396 driver needs regions sized smaller than a page, you may prefer using
397 the dma_pool interface, described below.
398
399 The consistent DMA mapping interfaces, for non-NULL dev, will by
400 default return a DMA address which is 32-bit addressable.  Even if the
401 device indicates (via DMA mask) that it may address the upper 32-bits,
402 consistent allocation will only return > 32-bit addresses for DMA if
403 the consistent DMA mask has been explicitly changed via
404 dma_set_coherent_mask().  This is true of the dma_pool interface as
405 well.
406
407 dma_alloc_coherent() returns two values: the virtual address which you
408 can use to access it from the CPU and dma_handle which you pass to the
409 card.
410
411 The CPU virtual address and the DMA address are both
412 guaranteed to be aligned to the smallest PAGE_SIZE order which
413 is greater than or equal to the requested size.  This invariant
414 exists (for example) to guarantee that if you allocate a chunk
415 which is smaller than or equal to 64 kilobytes, the extent of the
416 buffer you receive will not cross a 64K boundary.
417
418 To unmap and free such a DMA region, you call:
419
420         dma_free_coherent(dev, size, cpu_addr, dma_handle);
421
422 where dev, size are the same as in the above call and cpu_addr and
423 dma_handle are the values dma_alloc_coherent() returned to you.
424 This function may not be called in interrupt context.
425
426 If your driver needs lots of smaller memory regions, you can write
427 custom code to subdivide pages returned by dma_alloc_coherent(),
428 or you can use the dma_pool API to do that.  A dma_pool is like
429 a kmem_cache, but it uses dma_alloc_coherent(), not __get_free_pages().
430 Also, it understands common hardware constraints for alignment,
431 like queue heads needing to be aligned on N byte boundaries.
432
433 Create a dma_pool like this:
434
435         struct dma_pool *pool;
436
437         pool = dma_pool_create(name, dev, size, align, boundary);
438
439 The "name" is for diagnostics (like a kmem_cache name); dev and size
440 are as above.  The device's hardware alignment requirement for this
441 type of data is "align" (which is expressed in bytes, and must be a
442 power of two).  If your device has no boundary crossing restrictions,
443 pass 0 for boundary; passing 4096 says memory allocated from this pool
444 must not cross 4KByte boundaries (but at that time it may be better to
445 use dma_alloc_coherent() directly instead).
446
447 Allocate memory from a DMA pool like this:
448
449         cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
450
451 flags are GFP_KERNEL if blocking is permitted (not in_interrupt nor
452 holding SMP locks), GFP_ATOMIC otherwise.  Like dma_alloc_coherent(),
453 this returns two values, cpu_addr and dma_handle.
454
455 Free memory that was allocated from a dma_pool like this:
456
457         dma_pool_free(pool, cpu_addr, dma_handle);
458
459 where pool is what you passed to dma_pool_alloc(), and cpu_addr and
460 dma_handle are the values dma_pool_alloc() returned. This function
461 may be called in interrupt context.
462
463 Destroy a dma_pool by calling:
464
465         dma_pool_destroy(pool);
466
467 Make sure you've called dma_pool_free() for all memory allocated
468 from a pool before you destroy the pool. This function may not
469 be called in interrupt context.
470
471                         DMA Direction
472
473 The interfaces described in subsequent portions of this document
474 take a DMA direction argument, which is an integer and takes on
475 one of the following values:
476
477  DMA_BIDIRECTIONAL
478  DMA_TO_DEVICE
479  DMA_FROM_DEVICE
480  DMA_NONE
481
482 You should provide the exact DMA direction if you know it.
483
484 DMA_TO_DEVICE means "from main memory to the device"
485 DMA_FROM_DEVICE means "from the device to main memory"
486 It is the direction in which the data moves during the DMA
487 transfer.
488
489 You are _strongly_ encouraged to specify this as precisely
490 as you possibly can.
491
492 If you absolutely cannot know the direction of the DMA transfer,
493 specify DMA_BIDIRECTIONAL.  It means that the DMA can go in
494 either direction.  The platform guarantees that you may legally
495 specify this, and that it will work, but this may be at the
496 cost of performance for example.
497
498 The value DMA_NONE is to be used for debugging.  One can
499 hold this in a data structure before you come to know the
500 precise direction, and this will help catch cases where your
501 direction tracking logic has failed to set things up properly.
502
503 Another advantage of specifying this value precisely (outside of
504 potential platform-specific optimizations of such) is for debugging.
505 Some platforms actually have a write permission boolean which DMA
506 mappings can be marked with, much like page protections in the user
507 program address space.  Such platforms can and do report errors in the
508 kernel logs when the DMA controller hardware detects violation of the
509 permission setting.
510
511 Only streaming mappings specify a direction, consistent mappings
512 implicitly have a direction attribute setting of
513 DMA_BIDIRECTIONAL.
514
515 The SCSI subsystem tells you the direction to use in the
516 'sc_data_direction' member of the SCSI command your driver is
517 working on.
518
519 For Networking drivers, it's a rather simple affair.  For transmit
520 packets, map/unmap them with the DMA_TO_DEVICE direction
521 specifier.  For receive packets, just the opposite, map/unmap them
522 with the DMA_FROM_DEVICE direction specifier.
523
524                   Using Streaming DMA mappings
525
526 The streaming DMA mapping routines can be called from interrupt
527 context.  There are two versions of each map/unmap, one which will
528 map/unmap a single memory region, and one which will map/unmap a
529 scatterlist.
530
531 To map a single region, you do:
532
533         struct device *dev = &my_dev->dev;
534         dma_addr_t dma_handle;
535         void *addr = buffer->ptr;
536         size_t size = buffer->len;
537
538         dma_handle = dma_map_single(dev, addr, size, direction);
539         if (dma_mapping_error(dev, dma_handle)) {
540                 /*
541                  * reduce current DMA mapping usage,
542                  * delay and try again later or
543                  * reset driver.
544                  */
545                 goto map_error_handling;
546         }
547
548 and to unmap it:
549
550         dma_unmap_single(dev, dma_handle, size, direction);
551
552 You should call dma_mapping_error() as dma_map_single() could fail and return
553 error.  Doing so will ensure that the mapping code will work correctly on all
554 DMA implementations without any dependency on the specifics of the underlying
555 implementation. Using the returned address without checking for errors could
556 result in failures ranging from panics to silent data corruption.  The same
557 applies to dma_map_page() as well.
558
559 You should call dma_unmap_single() when the DMA activity is finished, e.g.,
560 from the interrupt which told you that the DMA transfer is done.
561
562 Using CPU pointers like this for single mappings has a disadvantage:
563 you cannot reference HIGHMEM memory in this way.  Thus, there is a
564 map/unmap interface pair akin to dma_{map,unmap}_single().  These
565 interfaces deal with page/offset pairs instead of CPU pointers.
566 Specifically:
567
568         struct device *dev = &my_dev->dev;
569         dma_addr_t dma_handle;
570         struct page *page = buffer->page;
571         unsigned long offset = buffer->offset;
572         size_t size = buffer->len;
573
574         dma_handle = dma_map_page(dev, page, offset, size, direction);
575         if (dma_mapping_error(dev, dma_handle)) {
576                 /*
577                  * reduce current DMA mapping usage,
578                  * delay and try again later or
579                  * reset driver.
580                  */
581                 goto map_error_handling;
582         }
583
584         ...
585
586         dma_unmap_page(dev, dma_handle, size, direction);
587
588 Here, "offset" means byte offset within the given page.
589
590 You should call dma_mapping_error() as dma_map_page() could fail and return
591 error as outlined under the dma_map_single() discussion.
592
593 You should call dma_unmap_page() when the DMA activity is finished, e.g.,
594 from the interrupt which told you that the DMA transfer is done.
595
596 With scatterlists, you map a region gathered from several regions by:
597
598         int i, count = dma_map_sg(dev, sglist, nents, direction);
599         struct scatterlist *sg;
600
601         for_each_sg(sglist, sg, count, i) {
602                 hw_address[i] = sg_dma_address(sg);
603                 hw_len[i] = sg_dma_len(sg);
604         }
605
606 where nents is the number of entries in the sglist.
607
608 The implementation is free to merge several consecutive sglist entries
609 into one (e.g. if DMA mapping is done with PAGE_SIZE granularity, any
610 consecutive sglist entries can be merged into one provided the first one
611 ends and the second one starts on a page boundary - in fact this is a huge
612 advantage for cards which either cannot do scatter-gather or have very
613 limited number of scatter-gather entries) and returns the actual number
614 of sg entries it mapped them to. On failure 0 is returned.
615
616 Then you should loop count times (note: this can be less than nents times)
617 and use sg_dma_address() and sg_dma_len() macros where you previously
618 accessed sg->address and sg->length as shown above.
619
620 To unmap a scatterlist, just call:
621
622         dma_unmap_sg(dev, sglist, nents, direction);
623
624 Again, make sure DMA activity has already finished.
625
626 PLEASE NOTE:  The 'nents' argument to the dma_unmap_sg call must be
627               the _same_ one you passed into the dma_map_sg call,
628               it should _NOT_ be the 'count' value _returned_ from the
629               dma_map_sg call.
630
631 Every dma_map_{single,sg}() call should have its dma_unmap_{single,sg}()
632 counterpart, because the DMA address space is a shared resource and
633 you could render the machine unusable by consuming all DMA addresses.
634
635 If you need to use the same streaming DMA region multiple times and touch
636 the data in between the DMA transfers, the buffer needs to be synced
637 properly in order for the CPU and device to see the most up-to-date and
638 correct copy of the DMA buffer.
639
640 So, firstly, just map it with dma_map_{single,sg}(), and after each DMA
641 transfer call either:
642
643         dma_sync_single_for_cpu(dev, dma_handle, size, direction);
644
645 or:
646
647         dma_sync_sg_for_cpu(dev, sglist, nents, direction);
648
649 as appropriate.
650
651 Then, if you wish to let the device get at the DMA area again,
652 finish accessing the data with the CPU, and then before actually
653 giving the buffer to the hardware call either:
654
655         dma_sync_single_for_device(dev, dma_handle, size, direction);
656
657 or:
658
659         dma_sync_sg_for_device(dev, sglist, nents, direction);
660
661 as appropriate.
662
663 PLEASE NOTE:  The 'nents' argument to dma_sync_sg_for_cpu() and
664               dma_sync_sg_for_device() must be the same passed to
665               dma_map_sg(). It is _NOT_ the count returned by
666               dma_map_sg().
667
668 After the last DMA transfer call one of the DMA unmap routines
669 dma_unmap_{single,sg}(). If you don't touch the data from the first
670 dma_map_*() call till dma_unmap_*(), then you don't have to call the
671 dma_sync_*() routines at all.
672
673 Here is pseudo code which shows a situation in which you would need
674 to use the dma_sync_*() interfaces.
675
676         my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
677         {
678                 dma_addr_t mapping;
679
680                 mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
681                 if (dma_mapping_error(cp->dev, mapping)) {
682                         /*
683                          * reduce current DMA mapping usage,
684                          * delay and try again later or
685                          * reset driver.
686                          */
687                         goto map_error_handling;
688                 }
689
690                 cp->rx_buf = buffer;
691                 cp->rx_len = len;
692                 cp->rx_dma = mapping;
693
694                 give_rx_buf_to_card(cp);
695         }
696
697         ...
698
699         my_card_interrupt_handler(int irq, void *devid, struct pt_regs *regs)
700         {
701                 struct my_card *cp = devid;
702
703                 ...
704                 if (read_card_status(cp) == RX_BUF_TRANSFERRED) {
705                         struct my_card_header *hp;
706
707                         /* Examine the header to see if we wish
708                          * to accept the data.  But synchronize
709                          * the DMA transfer with the CPU first
710                          * so that we see updated contents.
711                          */
712                         dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
713                                                 cp->rx_len,
714                                                 DMA_FROM_DEVICE);
715
716                         /* Now it is safe to examine the buffer. */
717                         hp = (struct my_card_header *) cp->rx_buf;
718                         if (header_is_ok(hp)) {
719                                 dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
720                                                  DMA_FROM_DEVICE);
721                                 pass_to_upper_layers(cp->rx_buf);
722                                 make_and_setup_new_rx_buf(cp);
723                         } else {
724                                 /* CPU should not write to
725                                  * DMA_FROM_DEVICE-mapped area,
726                                  * so dma_sync_single_for_device() is
727                                  * not needed here. It would be required
728                                  * for DMA_BIDIRECTIONAL mapping if
729                                  * the memory was modified.
730                                  */
731                                 give_rx_buf_to_card(cp);
732                         }
733                 }
734         }
735
736 Drivers converted fully to this interface should not use virt_to_bus() any
737 longer, nor should they use bus_to_virt(). Some drivers have to be changed a
738 little bit, because there is no longer an equivalent to bus_to_virt() in the
739 dynamic DMA mapping scheme - you have to always store the DMA addresses
740 returned by the dma_alloc_coherent(), dma_pool_alloc(), and dma_map_single()
741 calls (dma_map_sg() stores them in the scatterlist itself if the platform
742 supports dynamic DMA mapping in hardware) in your driver structures and/or
743 in the card registers.
744
745 All drivers should be using these interfaces with no exceptions.  It
746 is planned to completely remove virt_to_bus() and bus_to_virt() as
747 they are entirely deprecated.  Some ports already do not provide these
748 as it is impossible to correctly support them.
749
750                         Handling Errors
751
752 DMA address space is limited on some architectures and an allocation
753 failure can be determined by:
754
755 - checking if dma_alloc_coherent() returns NULL or dma_map_sg returns 0
756
757 - checking the dma_addr_t returned from dma_map_single() and dma_map_page()
758   by using dma_mapping_error():
759
760         dma_addr_t dma_handle;
761
762         dma_handle = dma_map_single(dev, addr, size, direction);
763         if (dma_mapping_error(dev, dma_handle)) {
764                 /*
765                  * reduce current DMA mapping usage,
766                  * delay and try again later or
767                  * reset driver.
768                  */
769                 goto map_error_handling;
770         }
771
772 - unmap pages that are already mapped, when mapping error occurs in the middle
773   of a multiple page mapping attempt. These example are applicable to
774   dma_map_page() as well.
775
776 Example 1:
777         dma_addr_t dma_handle1;
778         dma_addr_t dma_handle2;
779
780         dma_handle1 = dma_map_single(dev, addr, size, direction);
781         if (dma_mapping_error(dev, dma_handle1)) {
782                 /*
783                  * reduce current DMA mapping usage,
784                  * delay and try again later or
785                  * reset driver.
786                  */
787                 goto map_error_handling1;
788         }
789         dma_handle2 = dma_map_single(dev, addr, size, direction);
790         if (dma_mapping_error(dev, dma_handle2)) {
791                 /*
792                  * reduce current DMA mapping usage,
793                  * delay and try again later or
794                  * reset driver.
795                  */
796                 goto map_error_handling2;
797         }
798
799         ...
800
801         map_error_handling2:
802                 dma_unmap_single(dma_handle1);
803         map_error_handling1:
804
805 Example 2: (if buffers are allocated in a loop, unmap all mapped buffers when
806             mapping error is detected in the middle)
807
808         dma_addr_t dma_addr;
809         dma_addr_t array[DMA_BUFFERS];
810         int save_index = 0;
811
812         for (i = 0; i < DMA_BUFFERS; i++) {
813
814                 ...
815
816                 dma_addr = dma_map_single(dev, addr, size, direction);
817                 if (dma_mapping_error(dev, dma_addr)) {
818                         /*
819                          * reduce current DMA mapping usage,
820                          * delay and try again later or
821                          * reset driver.
822                          */
823                         goto map_error_handling;
824                 }
825                 array[i].dma_addr = dma_addr;
826                 save_index++;
827         }
828
829         ...
830
831         map_error_handling:
832
833         for (i = 0; i < save_index; i++) {
834
835                 ...
836
837                 dma_unmap_single(array[i].dma_addr);
838         }
839
840 Networking drivers must call dev_kfree_skb() to free the socket buffer
841 and return NETDEV_TX_OK if the DMA mapping fails on the transmit hook
842 (ndo_start_xmit). This means that the socket buffer is just dropped in
843 the failure case.
844
845 SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping
846 fails in the queuecommand hook. This means that the SCSI subsystem
847 passes the command to the driver again later.
848
849                 Optimizing Unmap State Space Consumption
850
851 On many platforms, dma_unmap_{single,page}() is simply a nop.
852 Therefore, keeping track of the mapping address and length is a waste
853 of space.  Instead of filling your drivers up with ifdefs and the like
854 to "work around" this (which would defeat the whole purpose of a
855 portable API) the following facilities are provided.
856
857 Actually, instead of describing the macros one by one, we'll
858 transform some example code.
859
860 1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
861    Example, before:
862
863         struct ring_state {
864                 struct sk_buff *skb;
865                 dma_addr_t mapping;
866                 __u32 len;
867         };
868
869    after:
870
871         struct ring_state {
872                 struct sk_buff *skb;
873                 DEFINE_DMA_UNMAP_ADDR(mapping);
874                 DEFINE_DMA_UNMAP_LEN(len);
875         };
876
877 2) Use dma_unmap_{addr,len}_set() to set these values.
878    Example, before:
879
880         ringp->mapping = FOO;
881         ringp->len = BAR;
882
883    after:
884
885         dma_unmap_addr_set(ringp, mapping, FOO);
886         dma_unmap_len_set(ringp, len, BAR);
887
888 3) Use dma_unmap_{addr,len}() to access these values.
889    Example, before:
890
891         dma_unmap_single(dev, ringp->mapping, ringp->len,
892                          DMA_FROM_DEVICE);
893
894    after:
895
896         dma_unmap_single(dev,
897                          dma_unmap_addr(ringp, mapping),
898                          dma_unmap_len(ringp, len),
899                          DMA_FROM_DEVICE);
900
901 It really should be self-explanatory.  We treat the ADDR and LEN
902 separately, because it is possible for an implementation to only
903 need the address in order to perform the unmap operation.
904
905                         Platform Issues
906
907 If you are just writing drivers for Linux and do not maintain
908 an architecture port for the kernel, you can safely skip down
909 to "Closing".
910
911 1) Struct scatterlist requirements.
912
913    You need to enable CONFIG_NEED_SG_DMA_LENGTH if the architecture
914    supports IOMMUs (including software IOMMU).
915
916 2) ARCH_DMA_MINALIGN
917
918    Architectures must ensure that kmalloc'ed buffer is
919    DMA-safe. Drivers and subsystems depend on it. If an architecture
920    isn't fully DMA-coherent (i.e. hardware doesn't ensure that data in
921    the CPU cache is identical to data in main memory),
922    ARCH_DMA_MINALIGN must be set so that the memory allocator
923    makes sure that kmalloc'ed buffer doesn't share a cache line with
924    the others. See arch/arm/include/asm/cache.h as an example.
925
926    Note that ARCH_DMA_MINALIGN is about DMA memory alignment
927    constraints. You don't need to worry about the architecture data
928    alignment constraints (e.g. the alignment constraints about 64-bit
929    objects).
930
931                            Closing
932
933 This document, and the API itself, would not be in its current
934 form without the feedback and suggestions from numerous individuals.
935 We would like to specifically mention, in no particular order, the
936 following people:
937
938         Russell King <rmk@arm.linux.org.uk>
939         Leo Dagum <dagum@barrel.engr.sgi.com>
940         Ralf Baechle <ralf@oss.sgi.com>
941         Grant Grundler <grundler@cup.hp.com>
942         Jay Estabrook <Jay.Estabrook@compaq.com>
943         Thomas Sailer <sailer@ife.ee.ethz.ch>
944         Andrea Arcangeli <andrea@suse.de>
945         Jens Axboe <jens.axboe@oracle.com>
946         David Mosberger-Tang <davidm@hpl.hp.com>