5fceaf0e1dd2be5621499eba7087896c63eafd23
[obnox/wireshark/wip.git] / doc / tshark.pod
1 ic
2 =head1 NAME
3
4 tshark - Dump and analyze network traffic
5
6 =head1 SYNOPSIS
7
8 B<tshark>
9 S<[ B<-2> ]>
10 S<[ B<-a> E<lt>capture autostop conditionE<gt> ] ...>
11 S<[ B<-b> E<lt>capture ring buffer optionE<gt>] ...>
12 S<[ B<-B> E<lt>capture buffer sizeE<gt> ] >
13 S<[ B<-c> E<lt>capture packet countE<gt> ]>
14 S<[ B<-C> E<lt>configuration profileE<gt> ]>
15 S<[ B<-d> E<lt>layer typeE<gt>==E<lt>selectorE<gt>,E<lt>decode-as protocolE<gt> ]>
16 S<[ B<-D> ]>
17 S<[ B<-e> E<lt>fieldE<gt> ]>
18 S<[ B<-E> E<lt>field print optionE<gt> ]>
19 S<[ B<-f> E<lt>capture filterE<gt> ]>
20 S<[ B<-F> E<lt>file formatE<gt> ]>
21 S<[ B<-h> ]>
22 S<[ B<-H> E<lt>input hosts fileE<gt> ]>
23 S<[ B<-i> E<lt>capture interfaceE<gt>|- ]>
24 S<[ B<-I> ]>
25 S<[ B<-K> E<lt>keytabE<gt> ]>
26 S<[ B<-l> ]>
27 S<[ B<-L> ]>
28 S<[ B<-n> ]>
29 S<[ B<-N> E<lt>name resolving flagsE<gt> ]>
30 S<[ B<-o> E<lt>preference settingE<gt> ] ...>
31 S<[ B<-O> E<lt>protocolsE<gt> ]>
32 S<[ B<-p> ]>
33 S<[ B<-P> ]>
34 S<[ B<-q> ]>
35 S<[ B<-r> E<lt>infileE<gt> ]>
36 S<[ B<-R> E<lt>read (display) filterE<gt> ]>
37 S<[ B<-s> E<lt>capture snaplenE<gt> ]>
38 S<[ B<-S> E<lt>separatorE<gt> ]>
39 S<[ B<-t> ad|a|r|d|dd|e ]>
40 S<[ B<-T> pdml|psml|ps|text|fields ]>
41 S<[ B<-v> ]>
42 S<[ B<-V> ]>
43 S<[ B<-w> E<lt>outfileE<gt>|- ]>
44 S<[ B<-W> E<lt>file format optionE<gt>]>
45 S<[ B<-x> ]>
46 S<[ B<-X> E<lt>eXtension optionE<gt>]>
47 S<[ B<-y> E<lt>capture link typeE<gt> ]>
48 S<[ B<-z> E<lt>statisticsE<gt> ]>
49 S<[ E<lt>capture filterE<gt> ]>
50
51 B<tshark>
52 B<-G> [fields|fields2|fields3|protocols|values|decodes|defaultprefs|currentprefs]
53
54 =head1 DESCRIPTION
55
56 B<TShark> is a network protocol analyzer.  It lets you capture packet
57 data from a live network, or read packets from a previously saved
58 capture file, either printing a decoded form of those packets to the
59 standard output or writing the packets to a file.  B<TShark>'s native
60 capture file format is B<libpcap> format, which is also the format used
61 by B<tcpdump> and various other tools.
62
63 Without any options set, B<TShark> will work much like B<tcpdump>.  It will
64 use the pcap library to capture traffic from the first available network
65 interface and displays a summary line on stdout for each received packet.
66
67 B<TShark> is able to detect, read and write the same capture files that
68 are supported by B<Wireshark>.
69 The input file doesn't need a specific filename extension; the file
70 format and an optional gzip compression will be automatically detected.
71 Near the beginning of the DESCRIPTION section of wireshark(1) or
72 L<http://www.wireshark.org/docs/man-pages/wireshark.html>
73 is a detailed description of the way B<Wireshark> handles this, which is
74 the same way B<Tshark> handles this.
75
76 Compressed file support uses (and therefore requires) the zlib library.
77 If the zlib library is not present, B<TShark> will compile, but will
78 be unable to read compressed files.
79
80 If the B<-w> option is not specified, B<TShark> writes to the standard
81 output the text of a decoded form of the packets it captures or reads.
82 If the B<-w> option is specified, B<TShark> writes to the file
83 specified by that option the raw data of the packets, along with the
84 packets' time stamps.
85
86 When writing a decoded form of packets, B<TShark> writes, by
87 default, a summary line containing the fields specified by the
88 preferences file (which are also the fields displayed in the packet list
89 pane in B<Wireshark>), although if it's writing packets as it captures
90 them, rather than writing packets from a saved capture file, it won't
91 show the "frame number" field.  If the B<-V> option is specified, it
92 writes instead a view of the details of the packet, showing all the
93 fields of all protocols in the packet.  If the B<-O> option is specified,
94 it will only show the full protocols specified.  Use the output of
95 "B<tshark -G protocols>" to find the abbreviations of the protocols you can
96 specify.
97
98 If you want to write the decoded form of packets to a file, run
99 B<TShark> without the B<-w> option, and redirect its standard output to
100 the file (do I<not> use the B<-w> option).
101
102 When writing packets to a file, B<TShark>, by default, writes the
103 file in B<libpcap> format, and writes all of the packets it sees to the
104 output file.  The B<-F> option can be used to specify the format in which
105 to write the file.  This list of available file formats is displayed by
106 the B<-F> flag without a value.  However, you can't specify a file format
107 for a live capture.
108
109 Read filters in B<TShark>, which allow you to select which packets
110 are to be decoded or written to a file, are very powerful; more fields
111 are filterable in B<TShark> than in other protocol analyzers, and the
112 syntax you can use to create your filters is richer.  As B<TShark>
113 progresses, expect more and more protocol fields to be allowed in read
114 filters.
115
116 Packet capturing is performed with the pcap library.  The capture filter
117 syntax follows the rules of the pcap library.  This syntax is different
118 from the read filter syntax.  A read filter can also be specified when
119 capturing, and only packets that pass the read filter will be displayed
120 or saved to the output file; note, however, that capture filters are much
121 more efficient than read filters, and it may be more difficult for
122 B<TShark> to keep up with a busy network if a read filter is
123 specified for a live capture.
124
125 A capture or read filter can either be specified with the B<-f> or B<-R>
126 option, respectively, in which case the entire filter expression must be
127 specified as a single argument (which means that if it contains spaces,
128 it must be quoted), or can be specified with command-line arguments
129 after the option arguments, in which case all the arguments after the
130 filter arguments are treated as a filter expression.  Capture filters
131 are supported only when doing a live capture; read filters are supported
132 when doing a live capture and when reading a capture file, but require
133 TShark to do more work when filtering, so you might be more likely to
134 lose packets under heavy load if you're using a read filter.  If the
135 filter is specified with command-line arguments after the option
136 arguments, it's a capture filter if a capture is being done (i.e., if no
137 B<-r> option was specified) and a read filter if a capture file is being
138 read (i.e., if a B<-r> option was specified).
139
140 The B<-G> option is a special mode that simply causes B<Tshark>
141 to dump one of several types of internal glossaries and then exit.
142
143 =head1 OPTIONS
144
145 =over 4
146
147 =item -2
148
149 Perform a two-pass analysis.
150
151 =item -a  E<lt>capture autostop conditionE<gt>
152
153 Specify a criterion that specifies when B<TShark> is to stop writing
154 to a capture file.  The criterion is of the form I<test>B<:>I<value>,
155 where I<test> is one of:
156
157 B<duration>:I<value> Stop writing to a capture file after I<value> seconds
158 have elapsed.
159
160 B<filesize>:I<value> Stop writing to a capture file after it reaches a size of
161 I<value> kilobytes (where a kilobyte is 1024 bytes).  If this option is used
162 together with the -b option, B<TShark> will stop writing to the current
163 capture file and switch to the next one if filesize is reached.  When reading a
164 capture file, B<TShark> will stop reading the file after the number of bytes
165 read exceeds this number (the complete packet will be read, so more bytes than
166 this number may be read).
167
168 B<files>:I<value> Stop writing to capture files after I<value> number of files
169 were written.
170
171 =item -b  E<lt>capture ring buffer optionE<gt>
172
173 Cause B<TShark> to run in "multiple files" mode.  In "multiple files" mode,
174 B<TShark> will write to several capture files.  When the first capture file
175 fills up, B<TShark> will switch writing to the next file and so on.
176
177 The created filenames are based on the filename given with the B<-w> option,
178 the number of the file and on the creation date and time,
179 e.g. outfile_00001_20050604120117.pcap, outfile_00002_20050604120523.pcap, ...
180
181 With the I<files> option it's also possible to form a "ring buffer".
182 This will fill up new files until the number of files specified,
183 at which point B<TShark> will discard the data in the first file and start
184 writing to that file and so on.  If the I<files> option is not set,
185 new files filled up until one of the capture stop conditions match (or
186 until the disk is full).
187
188 The criterion is of the form I<key>B<:>I<value>,
189 where I<key> is one of:
190
191 B<duration>:I<value> switch to the next file after I<value> seconds have
192 elapsed, even if the current file is not completely filled up.
193
194 B<filesize>:I<value> switch to the next file after it reaches a size of
195 I<value> kilobytes (where a kilobyte is 1024 bytes).
196
197 B<files>:I<value> begin again with the first file after I<value> number of
198 files were written (form a ring buffer).  This value must be less than 100000.
199 Caution should be used when using large numbers of files: some filesystems do
200 not handle many files in a single directory well.  The B<files> criterion
201 requires either B<duration> or B<filesize> to be specified to control when to
202 go to the next file.  It should be noted that each B<-b> parameter takes exactly
203 one criterion; to specify two criterion, each must be preceded by the B<-b>
204 option.
205
206 Example: B<-b filesize:1024 -b files:5> results in a ring buffer of five files
207 of size one megabyte.
208
209 =item -B  E<lt>capture buffer sizeE<gt>
210
211 Set capture buffer size (in MB, default is 1MB).  This is used by the
212 the capture driver to buffer packet data until that data can be written
213 to disk.  If you encounter packet drops while capturing, try to increase
214 this size.  Note that, while B<Tshark> attempts to set the buffer size
215 to 1MB by default, and can be told to set it to a larger value, the
216 system or interface on which you're capturing might silently limit the
217 capture buffer size to a lower value or raise it to a higher value.
218
219 This is available on UNIX systems with libpcap 1.0.0 or later and on
220 Windows.  It is not available on UNIX systems with earlier versions of
221 libpcap.
222
223 This option can occur multiple times.  If used before the first
224 occurrence of the B<-i> option, it sets the default capture buffer size.
225 If used after an B<-i> option, it sets the capture buffer size for
226 the interface specified by the last B<-i> option occurring before
227 this option.  If the capture buffer size is not set specifically,
228 the default capture buffer size is used if provided.
229
230 =item -c  E<lt>capture packet countE<gt>
231
232 Set the maximum number of packets to read when capturing live
233 data.  If reading a capture file, set the maximum number of packets to read.
234
235 =item -C  E<lt>configuration profileE<gt>
236
237 Run with the given configuration profile.
238
239 =item -d  E<lt>layer typeE<gt>==E<lt>selectorE<gt>,E<lt>decode-as protocolE<gt>
240
241 Like Wireshark's B<Decode As...> feature, this lets you specify how a
242 layer type should be dissected.  If the layer type in question (for example,
243 B<tcp.port> or B<udp.port> for a TCP or UDP port number) has the specified
244 selector value, packets should be dissected as the specified protocol.
245
246 Example: B<-d tcp.port==8888,http> will decode any traffic running over
247 TCP port 8888 as HTTP.
248
249 Using an invalid selector or protocol will print out a list of valid selectors
250 and protocol names, respectively.
251
252 Example: B<-d .> is a quick way to get a list of valid selectors.
253
254 Example: B<-d ethertype==0x0800.> is a quick way to get a list of protocols that can be
255 selected with an ethertype.
256
257 =item -D
258
259 Print a list of the interfaces on which B<TShark> can capture, and
260 exit.  For each network interface, a number and an
261 interface name, possibly followed by a text description of the
262 interface, is printed.  The interface name or the number can be supplied
263 to the B<-i> option to specify an interface on which to capture.
264
265 This can be useful on systems that don't have a command to list them
266 (e.g., Windows systems, or UNIX systems lacking B<ifconfig -a>);
267 the number can be useful on Windows 2000 and later systems, where the
268 interface name is a somewhat complex string.
269
270 Note that "can capture" means that B<TShark> was able to open that
271 device to do a live capture.  Depending on your system you may need to
272 run tshark from an account with special privileges (for example, as
273 root) to be able to capture network traffic.  If B<TShark -D> is not run
274 from such an account, it will not list any interfaces.
275
276 =item -e  E<lt>fieldE<gt>
277
278 Add a field to the list of fields to display if B<-T fields> is
279 selected.  This option can be used multiple times on the command line.
280 At least one field must be provided if the B<-T fields> option is
281 selected.
282
283 Example: B<-e frame.number -e ip.addr -e udp>
284
285 Giving a protocol rather than a single field will print multiple items
286 of data about the protocol as a single field.  Fields are separated by
287 tab characters by default.  B<-E> controls the format of the printed
288 fields.
289
290 =item -E  E<lt>field print optionE<gt>
291
292 Set an option controlling the printing of fields when B<-T fields> is
293 selected.
294
295 Options are:
296
297 B<header=y|n> If B<y>, print a list of the field names given using B<-e>
298 as the first line of the output; the field name will be separated using
299 the same character as the field values.  Defaults to B<n>.
300
301 B<separator=/t|/s|>E<lt>characterE<gt> Set the separator character to
302 use for fields.  If B</t> tab will be used (this is the default), if
303 B</s>, a single space will be used.  Otherwise any character that can be
304 accepted by the command line as part of the option may be used.
305
306 B<occurrence=f|l|a> Select which occurrence to use for fields that have
307 multiple occurrences.  If B<f> the first occurrence will be used, if B<l>
308 the last occurrence will be used and if B<a> all occurrences will be used
309 (this is the default).
310
311 B<aggregator=,|/s|>E<lt>characterE<gt> Set the aggregator character to
312 use for fields that have multiple occurrences.  If B<,> a comma will be used
313 (this is the default), if B</s>, a single space will be used.  Otherwise
314 any character that can be accepted by the command line as part of the
315 option may be used.
316
317 B<quote=d|s|n> Set the quote character to use to surround fields.  B<d>
318 uses double-quotes, B<s> single-quotes, B<n> no quotes (the default).
319
320 =item -f  E<lt>capture filterE<gt>
321
322 Set the capture filter expression.
323
324 This option can occur multiple times.  If used before the first
325 occurrence of the B<-i> option, it sets the default capture filter expression.
326 If used after an B<-i> option, it sets the capture filter expression for
327 the interface specified by the last B<-i> option occurring before
328 this option.  If the capture filter expression is not set specifically,
329 the default capture filter expression is used if provided.
330
331 =item -F  E<lt>file formatE<gt>
332
333 Set the file format of the output capture file written using the B<-w>
334 option.  The output written with the B<-w> option is raw packet data, not
335 text, so there is no B<-F> option to request text output.  The option B<-F>
336 without a value will list the available formats.
337
338 =item -G  [fields|fields2|fields3|protocols|values|decodes|defaultprefs|currentprefs]
339
340 The B<-G> option will cause B<Tshark> to dump one of several types of glossaries
341 and then exit.  If no specific glossary type is specified, then the B<fields> report will be generated by default.
342
343 The available report types include:
344
345 B<fields>  Dumps the contents of the registration database to
346 stdout.  An independent program can take this output and format it into nice
347 tables or HTML or whatever.  There is one record per line.  Each record is
348 either a protocol or a header field, differentiated by the first field.
349 The fields are tab-delimited.
350
351  * Protocols
352  * ---------
353  * Field 1 = 'P'
354  * Field 2 = descriptive protocol name
355  * Field 3 = protocol abbreviation
356  *
357  * Header Fields
358  * -------------
359  * Field 1 = 'F'
360  * Field 2 = descriptive field name
361  * Field 3 = field abbreviation
362  * Field 4 = type ( textual representation of the ftenum type )
363  * Field 5 = parent protocol abbreviation
364  * Field 6 = blurb describing field
365
366 B<fields2>  Same as the B<fields> report but includes two additional columns.
367
368  * Field 7 = base for display (for integer types); "parent bitfield width" for FT_BOOLEAN
369  * Field 8 = blurb describing field (yes, apparently we repeated this accidentally)
370
371 B<fields3>  Same as the B<fields> report but includes two additional columns.
372
373  * Field 7 = base for display (for integer types); "parent bitfield width" for FT_BOOLEAN
374  * Field 8 = bitmask: format: hex: 0x....
375
376 B<protocols> Dumps the protocols in the registration database to stdout.
377 An independent program can take this output and format it into nice tables
378 or HTML or whatever.  There is one record per line.  The fields are tab-delimited.
379
380  * Field 1 = protocol name
381  * Field 2 = protocol short name
382  * Field 3 = protocol filter name
383
384 B<values> Dumps the value_strings, range_strings or true/false strings
385 for fields that have them.  There is one record per line.  Fields are
386 tab-delimited.  There are three types of records: Value String, Range
387 String and True/False String.  The first field, 'V', 'R' or 'T', indicates
388 the type of record.
389
390  * Value Strings
391  * -------------
392  * Field 1 = 'V'
393  * Field 2 = field abbreviation to which this value string corresponds
394  * Field 3 = Integer value
395  * Field 4 = String
396  *
397  * Range Strings
398  * -------------
399  * Field 1 = 'R'
400  * Field 2 = field abbreviation to which this range string corresponds
401  * Field 3 = Integer value: lower bound
402  * Field 4 = Integer value: upper bound
403  * Field 5 = String
404  *
405  * True/False Strings
406  * ------------------
407  * Field 1 = 'T'
408  * Field 2 = field abbreviation to which this true/false string corresponds
409  * Field 3 = True String
410  * Field 4 = False String
411
412 B<decodes> Dumps the "layer type"/"decode as" associations to stdout.
413 There is one record per line.  The fields are tab-delimited.
414
415  * Field 1 = layer type, e.g. "tcp.port"
416  * Field 2 = selector in decimal
417  * Field 3 = "decode as" name, e.g. "http"
418
419 B<defaultprefs>  Dumps a default preferences file to stdout.
420
421 B<currentprefs>  Dumps a copy of the current preferences file to stdout.
422
423 =item -h
424
425 Print the version and options and exits.
426
427 =item -H  E<lt>input hosts fileE<gt>
428
429 Read a list of entries from a "hosts" file, which will then be written
430 to a capture file.  Implies B<-W n>.
431
432 The "hosts" file format is documented at
433 L<http://en.wikipedia.org/wiki/Hosts_(file)>.
434
435 =item -i  E<lt>capture interfaceE<gt> | -
436
437 Set the name of the network interface or pipe to use for live packet
438 capture.
439
440 Network interface names should match one of the names listed in
441 "B<tshark -D>" (described above); a number, as reported by
442 "B<tshark -D>", can also be used.  If you're using UNIX, "B<netstat
443 -i>" or "B<ifconfig -a>" might also work to list interface names,
444 although not all versions of UNIX support the B<-a> option to B<ifconfig>.
445
446 If no interface is specified, B<TShark> searches the list of
447 interfaces, choosing the first non-loopback interface if there are any
448 non-loopback interfaces, and choosing the first loopback interface if
449 there are no non-loopback interfaces.  If there are no interfaces at all,
450 B<TShark> reports an error and doesn't start the capture.
451
452 Pipe names should be either the name of a FIFO (named pipe) or ``-'' to
453 read data from the standard input.  Data read from pipes must be in
454 standard libpcap format.
455
456 This option can occur multiple times.  When capturing from multiple
457 interfaces, the capture file will be saved in pcap-ng format.
458
459 Note: the Win32 version of B<TShark> doesn't support capturing from
460 pipes!
461
462 =item -I
463
464 Put the interface in "monitor mode"; this is supported only on IEEE
465 802.11 Wi-Fi interfaces, and supported only on some operating systems.
466
467 Note that in monitor mode the adapter might disassociate from the
468 network with which it's associated, so that you will not be able to use
469 any wireless networks with that adapter.  This could prevent accessing
470 files on a network server, or resolving host names or network addresses,
471 if you are capturing in monitor mode and are not connected to another
472 network with another adapter.
473
474 This option can occur multiple times.  If used before the first
475 occurrence of the B<-i> option, it enables the monitor mode for all interfaces.
476 If used after an B<-i> option, it enables the monitor mode for
477 the interface specified by the last B<-i> option occurring before
478 this option.
479
480 =item -K  E<lt>keytabE<gt>
481
482 Load kerberos crypto keys from the specified keytab file.
483 This option can be used multiple times to load keys from several files.
484
485 Example: B<-K krb5.keytab>
486
487 =item -l
488
489 Flush the standard output after the information for each packet is
490 printed.  (This is not, strictly speaking, line-buffered if B<-V>
491 was specified; however, it is the same as line-buffered if B<-V> wasn't
492 specified, as only one line is printed for each packet, and, as B<-l> is
493 normally used when piping a live capture to a program or script, so that
494 output for a packet shows up as soon as the packet is seen and
495 dissected, it should work just as well as true line-buffering.  We do
496 this as a workaround for a deficiency in the Microsoft Visual C++ C
497 library.)
498
499 This may be useful when piping the output of B<TShark> to another
500 program, as it means that the program to which the output is piped will
501 see the dissected data for a packet as soon as B<TShark> sees the
502 packet and generates that output, rather than seeing it only when the
503 standard output buffer containing that data fills up.
504
505 =item -L
506
507 List the data link types supported by the interface and exit.  The reported
508 link types can be used for the B<-y> option.
509
510 =item -n
511
512 Disable network object name resolution (such as hostname, TCP and UDP port
513 names); the B<-N> flag might override this one.
514
515 =item -N  E<lt>name resolving flagsE<gt>
516
517 Turn on name resolving only for particular types of addresses and port
518 numbers, with name resolving for other types of addresses and port
519 numbers turned off.  This flag overrides B<-n> if both B<-N> and B<-n> are
520 present.  If both B<-N> and B<-n> flags are not present, all name resolutions
521 are turned on.
522
523 The argument is a string that may contain the letters:
524
525 B<m> to enable MAC address resolution
526
527 B<n> to enable network address resolution
528
529 B<t> to enable transport-layer port number resolution
530
531 B<C> to enable concurrent (asynchronous) DNS lookups
532
533 =item -o  E<lt>preferenceE<gt>:E<lt>valueE<gt>
534
535 Set a preference value, overriding the default value and any value read
536 from a preference file.  The argument to the option is a string of the
537 form I<prefname>B<:>I<value>, where I<prefname> is the name of the
538 preference (which is the same name that would appear in the preference
539 file), and I<value> is the value to which it should be set.
540
541 =item -O  E<lt>protocolsE<gt>
542
543 Similar to the B<-V> option, but causes B<TShark> to only show a detailed view
544 of the comma-separated list of I<protocols> specified, rather than a detailed
545 view of all protocols.  Use the output of "B<tshark -G protocols>" to find the
546 abbreviations of the protocols you can specify.
547
548 =item -p
549
550 I<Don't> put the interface into promiscuous mode.  Note that the
551 interface might be in promiscuous mode for some other reason; hence,
552 B<-p> cannot be used to ensure that the only traffic that is captured is
553 traffic sent to or from the machine on which B<TShark> is running,
554 broadcast traffic, and multicast traffic to addresses received by that
555 machine.
556
557 This option can occur multiple times.  If used before the first
558 occurrence of the B<-i> option, no interface will be put into the
559 promiscuous mode.
560 If used after an B<-i> option, the interface specified by the last B<-i>
561 option occurring before this option will not be put into the
562 promiscuous mode.
563
564 =item -P
565
566 Decode and display packets even while writing raw packet data using the
567 B<-w> option.
568
569 =item -q
570
571 When capturing packets, don't display the continuous count of packets
572 captured that is normally shown when saving a capture to a file;
573 instead, just display, at the end of the capture, a count of packets
574 captured.  On systems that support the SIGINFO signal, such as various
575 BSDs, you can cause the current count to be displayed by typing your
576 "status" character (typically control-T, although it
577 might be set to "disabled" by default on at least some BSDs, so you'd
578 have to explicitly set it to use it).
579
580 When reading a capture file, or when capturing and not saving to a file,
581 don't print packet information; this is useful if you're using a B<-z>
582 option to calculate statistics and don't want the packet information
583 printed, just the statistics.
584
585 =item -r  E<lt>infileE<gt>
586
587 Read packet data from I<infile>, can be any supported capture file format
588 (including gzipped files).  It's B<not> possible to use named pipes
589 or stdin here!
590
591 =item -R  E<lt>read (display) filterE<gt>
592
593 Cause the specified filter (which uses the syntax of read/display filters,
594 rather than that of capture filters) to be applied before printing a
595 decoded form of packets or writing packets to a file; packets not
596 matching the filter are discarded rather than being printed or written.
597
598 =item -s  E<lt>capture snaplenE<gt>
599
600 Set the default snapshot length to use when capturing live data.
601 No more than I<snaplen> bytes of each network packet will be read into
602 memory, or saved to disk.  A value of 0 specifies a snapshot length of
603 65535, so that the full packet is captured; this is the default.
604
605 This option can occur multiple times.  If used before the first
606 occurrence of the B<-i> option, it sets the default snapshot length.
607 If used after an B<-i> option, it sets the snapshot length for
608 the interface specified by the last B<-i> option occurring before
609 this option.  If the snapshot length is not set specifically,
610 the default snapshot length is used if provided.
611
612 =item -S  E<lt>separatorE<gt>
613
614 Set the line separator to be printed between packets.
615
616 =item -t  ad|a|r|d|dd|e
617
618 Set the format of the packet timestamp printed in summary lines.
619 The format can be one of:
620
621 B<ad> absolute with date: The absolute date and time is the actual time and
622 date the packet was captured
623
624 B<a> absolute: The absolute time is the actual time the packet was captured,
625 with no date displayed
626
627 B<r> relative: The relative time is the time elapsed between the first packet
628 and the current packet
629
630 B<d> delta: The delta time is the time since the previous packet was
631 captured
632
633 B<dd> delta_displayed: The delta_displayed time is the time since the
634 previous displayed packet was captured
635
636 B<e> epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)
637
638 The default format is relative.
639
640 =item -T  pdml|psml|ps|text|fields
641
642 Set the format of the output when viewing decoded packet data.  The
643 options are one of:
644
645 B<pdml> Packet Details Markup Language, an XML-based format for the details of
646 a decoded packet.  This information is equivalent to the packet details
647 printed with the B<-V> flag.
648
649 B<psml> Packet Summary Markup Language, an XML-based format for the summary
650 information of a decoded packet.  This information is equivalent to the
651 information shown in the one-line summary printed by default.
652
653 B<ps> PostScript for a human-readable one-line summary of each of the packets,
654 or a multi-line view of the details of each of the packets, depending on
655 whether the B<-V> flag was specified.
656
657 B<text> Text of a human-readable one-line summary of each of the packets, or a
658 multi-line view of the details of each of the packets, depending on
659 whether the B<-V> flag was specified.  This is the default.
660
661 B<fields> The values of fields specified with the B<-e> option, in a
662 form specified by the B<-E> option.  For example,
663
664   -T fields -E separator=, -E quote=d
665
666 would generate comma-separated values (CSV) output suitable for importing
667 into your favorite spreadsheet program.
668
669
670 =item -v
671
672 Print the version and exit.
673
674 =item -V
675
676 Cause B<TShark> to print a view of the packet details rather
677 than a one-line summary of the packet.
678
679 =item -w  E<lt>outfileE<gt> | -
680
681 Write raw packet data to I<outfile> or to the standard output if
682 I<outfile> is '-'.
683
684 NOTE: -w provides raw packet data, not text.  If you want text output
685 you need to redirect stdout (e.g. using '>'), don't use the B<-w>
686 option for this.
687
688 =item -W  E<lt>file format optionE<gt>
689
690 Save extra information in the file if the format supports it.  For
691 example,
692
693   -F pcapng -W n
694
695 will save host name resolution records along with captured packets.
696
697 Future versions of Wireshark may automatically change the capture format to
698 B<pcapng> as needed.
699
700 The argument is a string that may contain the following letter:
701
702 B<n> write network address resolution information (pcapng only)
703
704 =item -x
705
706 Cause B<TShark> to print a hex and ASCII dump of the packet data
707 after printing the summary or details.
708
709 =item -X E<lt>eXtension optionsE<gt>
710
711 Specify an option to be passed to a B<TShark> module.  The eXtension option
712 is in the form I<extension_key>B<:>I<value>, where I<extension_key> can be:
713
714 B<lua_script>:I<lua_script_filename> tells B<Wireshark> to load the given script in addition to the
715 default Lua scripts.
716
717 =item -y  E<lt>capture link typeE<gt>
718
719 Set the data link type to use while capturing packets.  The values
720 reported by B<-L> are the values that can be used.
721
722 This option can occur multiple times.  If used before the first
723 occurrence of the B<-i> option, it sets the default capture link type.
724 If used after an B<-i> option, it sets the capture link type for
725 the interface specified by the last B<-i> option occurring before
726 this option.  If the capture link type is not set specifically,
727 the default capture link type is used if provided.
728
729 =item -z  E<lt>statisticsE<gt>
730
731 Get B<TShark> to collect various types of statistics and display the result
732 after finishing reading the capture file.  Use the B<-q> flag if you're
733 reading a capture file and only want the statistics printed, not any
734 per-packet information.
735
736 Note that the B<-z proto> option is different - it doesn't cause
737 statistics to be gathered and printed when the capture is complete, it
738 modifies the regular packet summary output to include the values of
739 fields specified with the option.  Therefore you must not use the B<-q>
740 option, as that option would suppress the printing of the regular packet
741 summary output, and must also not use the B<-V> option, as that would
742 cause packet detail information rather than packet summary information
743 to be printed.
744
745 Currently implemented statistics are:
746
747 =over 4
748
749 =item B<-z> afp,srt[,I<filter>]
750
751 =item B<-z> camel,srt
752
753 =item B<-z> dcerpc,srt,I<uuid>,I<major>.I<minor>[,I<filter>]
754
755 Collect call/reply SRT (Service Response Time) data for DCERPC interface I<uuid>,
756 version I<major>.I<minor>.
757 Data collected is the number of calls for each procedure, MinSRT, MaxSRT
758 and AvgSRT.
759
760 Example: S<B<-z dcerpc,srt,12345778-1234-abcd-ef00-0123456789ac,1.0>> will collect data for the CIFS SAMR Interface.
761
762 This option can be used multiple times on the command line.
763
764 If the optional I<filter> is provided, the stats will only be calculated
765 on those calls that match that filter.
766
767 Example: S<B<-z dcerpc,srt,12345778-1234-abcd-ef00-0123456789ac,1.0,ip.addr==1.2.3.4>> will collect SAMR
768 SRT statistics for a specific host.
769
770 =item B<-z> hosts[,ipv4][,ipv6]
771
772 Dump any collected IPv4 and/or IPv6 addresses in "hosts" format.  Both IPv4
773 and IPv6 addresses are dumped by default.
774
775 Addresses are collected from a number of sources, including standard "hosts"
776 files and captured traffic.
777
778 =item B<-z> icmp,srt[,I<filter>]
779
780 Compute total ICMP echo requests, replies, loss, and percent loss, as well as
781 minimum, maximum, mean, median and sample standard deviation SRT statistics
782 typical of what ping provides.
783
784 Example: S<B<-z icmp,srt,ip.src==1.2.3.4>> will collect ICMP SRT statistics
785 for ICMP echo request packets originating from a specific host.
786
787 This option can be used multiple times on the command line.
788
789 =item B<-z> icmpv6,srt[,I<filter>]
790
791 Compute total ICMPv6 echo requests, replies, loss, and percent loss, as well as
792 minimum, maximum, mean, median and sample standard deviation SRT statistics
793 typical of what ping provides.
794
795 Example: S<B<-z icmpv6,srt,ipv6.src==fe80::1>> will collect ICMPv6 SRT statistics
796 for ICMPv6 echo request packets originating from a specific host.
797
798 This option can be used multiple times on the command line.
799
800 =item B<-z> io,phs[,I<filter>]
801
802 Create Protocol Hierarchy Statistics listing both number of packets and bytes.
803 If no I<filter> is specified the statistics will be calculated for all packets.
804 If a I<filter> is specified statistics will be only calculated for those
805 packets that match the filter.
806
807 This option can be used multiple times on the command line.
808
809 =item B<-z> io,stat,I<interval>[,I<filter>][,I<filter>][,I<filter>]...
810
811 Collect packet/bytes statistics for the capture in intervals of
812 I<interval> seconds.  I<Interval> can be specified either as a whole or
813 fractional second and can be specified with microsecond (us) resolution.
814 If I<interval> is 0, the statistics will be calculated over all packets.
815
816 If no I<filter> is specified the statistics will be calculated for all packets.
817 If one or more I<filters> are specified statistics will be calculated for
818 all filters and presented with one column of statistics for each filter.
819
820 This option can be used multiple times on the command line.
821
822 Example: B<-z io,stat,1,ip.addr==1.2.3.4> will generate 1 second
823 statistics for all traffic to/from host 1.2.3.4.
824
825 Example: B<-z "io,stat,0.001,smb&&ip.addr==1.2.3.4"> will generate 1ms
826 statistics for all SMB packets to/from host 1.2.3.4.
827
828 The examples above all use the standard syntax for generating statistics
829 which only calculates the number of packets and bytes in each interval.
830
831 B<io,stat> can also do much more statistics and calculate COUNT(), SUM(),
832 MIN(), MAX(), AVG() and LOAD() using a slightly different filter syntax:
833
834 =item -z io,stat,I<interval>,E<34>[COUNT|SUM|MIN|MAX|AVG|LOAD](I<field>)I<field> [and I<filter>]E<34>
835
836 NOTE: One important thing to note here is that the field that the
837 calculation is based on MUST also be part of the filter string or
838 else the calculation will fail.
839
840 So: B<-z io,stat,0.010,AVG(smb.time)> does not work.  Use B<-z
841 io,stat,0.010,AVG(smb.time)smb.time> instead.  Also be aware that a field
842 can exist multiple times inside the same packet and will then be counted
843 multiple times in those packets.
844
845 NOTE: A second important thing to note is that the system setting for
846 decimal separator is set to "."! If it is set to "," the statistics
847 will not be displayed per filter.
848
849 B<COUNT(I<field>)I<field> [and I<filter>]> - Calculates the number of times that the
850 field I<name> (not its value) appears per interval in the filtered packet list.
851 ''I<field>'' can be any display filter name.
852
853 Example: B<-z io,stat,0.010,E<34>COUNT(smb.sid)smb.sidE<34>>
854
855 This will count the total number of SIDs seen in each 10ms interval.
856
857 B<SUM(I<field>)I<field> [and I<filter>]> - Unlike COUNT, the I<values> of the
858 specified field are summed per time interval.
859 ''I<field>'' can only be a named integer, float, double or relative time field.
860
861 Example: B<-z io,stat,0.010,E<34>SUM(frame.len)frame.lenE<34>>
862
863 Reports the total number of bytes that were transmitted bidirectionally in
864 all the packets within a 10 millisecond interval.
865
866 B<MIN/MAX/AVG(I<field>)I<field> [and I<filter>]> - The minimum, maximum, or average field value
867 in each interval is calculated.  The specified field must be a named integer,
868 float, double or relative time field.  For relative time fields, the output is presented in
869 seconds with six decimal digits of precision rounded to the nearest microsecond.
870
871 In the following example, the time of the first Read_AndX call, the last Read_AndX
872 response values are displayed and the minimum, maximum, and average Read response times
873 (SRTs) are calculated.  NOTE: If the DOS command shell line continuation character, ''^''
874 is used, each line cannot end in a comma so it is placed at the beginning of each
875 continuation line:
876
877   tshark -o tcp.desegment_tcp_streams:FALSE -n -q -r smb_reads.cap -z io,stat,0,
878   "MIN(frame.time_relative)frame.time_relative and smb.cmd==0x2e and smb.flags.response==0",
879   "MAX(frame.time_relative)frame.time_relative and smb.cmd==0x2e and smb.flags.response==1",
880   "MIN(smb.time)smb.time and smb.cmd==0x2e",
881   "MAX(smb.time)smb.time and smb.cmd==0x2e",
882   "AVG(smb.time)smb.time and smb.cmd==0x2e"
883
884
885   ======================================================================================================
886   IO Statistics
887   Column #0: MIN(frame.time_relative)frame.time_relative and smb.cmd==0x2e and smb.flags.response==0
888   Column #1: MAX(frame.time_relative)frame.time_relative and smb.cmd==0x2e and smb.flags.response==1
889   Column #2: MIN(smb.time)smb.time and smb.cmd==0x2e
890   Column #3: MAX(smb.time)smb.time and smb.cmd==0x2e
891   Column #4: AVG(smb.time)smb.time and smb.cmd==0x2e
892                   |    Column #0   |    Column #1   |    Column #2   |    Column #3   |    Column #4   |
893   Time            |       MIN      |       MAX      |       MIN      |       MAX      |       AVG      |
894   000.000-                 0.000000         7.704054         0.000072         0.005539         0.000295
895   ======================================================================================================
896
897 The following command displays the average SMB Read response PDU size, the
898 total number of read PDU bytes, the average SMB Write request PDU size, and
899 the total number of bytes transferred in SMB Write PDUs:
900
901   tshark -n -q -r smb_reads_writes.cap -z io,stat,0,
902   "AVG(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2e and smb.response_to",
903   "SUM(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2e and smb.response_to",
904   "AVG(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2f and not smb.response_to",
905   "SUM(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2f and not smb.response_to"
906
907   =====================================================================================
908   IO Statistics
909   Column #0: AVG(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2e and smb.response_to
910   Column #1: SUM(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2e and smb.response_to
911   Column #2: AVG(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2f and not smb.response_to
912   Column #3: SUM(smb.file.rw.length)smb.file.rw.length and smb.cmd==0x2f and not smb.response_to
913                   |    Column #0   |    Column #1   |    Column #2   |    Column #3   |
914   Time            |       AVG      |       SUM      |       AVG      |       SUM      |
915   000.000-                    30018         28067522               72             3240
916   =====================================================================================
917
918 B<LOAD(I<field>)I<field> [and I<filter>]> - The LOAD/Queue-Depth
919 in each interval is calculated.  The specified field must be a relative time field that represents a response time.  For example smb.time.
920 For each interval the Queue-Depth for the specified protocol is calculated.
921
922 The following command displays the average SMB LOAD.
923 A value of 1.0 represents one I/O in flight.
924
925   tshark -n -q -r smb_reads_writes.cap
926   -z "io,stat,0.001,LOAD(smb.time)smb.time"
927
928   ============================================================================
929   IO Statistics
930   Interval:   0.001000 secs
931   Column #0: LOAD(smb.time)smb.time
932                           |    Column #0   |
933   Time                    |       LOAD     |
934   0000.000000-0000.001000         1.000000
935   0000.001000-0000.002000         0.741000
936   0000.002000-0000.003000         0.000000
937   0000.003000-0000.004000         1.000000
938
939
940
941 B<FRAMES | BYTES[()I<filter>]> - Displays the total number of frames or bytes.
942 The filter field is optional but if included it must be prepended with ''()''.
943
944 The following command displays five columns: the total number of frames and bytes
945 (transferred bidirectionally) using a single comma, the same two stats using the FRAMES and BYTES
946 subcommands, the total number of frames containing at least one SMB Read response, and
947 the total number of bytes transmitted to the client (unidirectionally) at IP address 10.1.0.64.
948
949   tshark -o tcp.desegment_tcp_streams:FALSE -n -q -r smb_reads.cap -z io,stat,0,,FRAMES,BYTES,
950   "FRAMES()smb.cmd==0x2e and smb.response_to","BYTES()ip.dst==10.1.0.64"
951
952   =======================================================================================================================
953   IO Statistics
954   Column #0:
955   Column #1: FRAMES
956   Column #2: BYTES
957   Column #3: FRAMES()smb.cmd==0x2e and smb.response_to
958   Column #4: BYTES()ip.dst==10.1.0.64
959                   |            Column #0            |    Column #1   |    Column #2   |    Column #3   |    Column #4   |
960   Time            |     Frames     |      Bytes     |     FRAMES     |     BYTES      |     FRAMES     |     BYTES      |
961   000.000-                    33576         29721685            33576         29721685              870         29004801
962   =======================================================================================================================
963
964 =item B<-z> conv,I<type>[,I<filter>]
965
966 Create a table that lists all conversations that could be seen in the
967 capture.  I<type> specifies the conversation endpoint types for which we
968 want to generate the statistics; currently the supported ones are:
969
970   "eth"   Ethernet addresses
971   "fc"    Fibre Channel addresses
972   "fddi"  FDDI addresses
973   "ip"    IPv4 addresses
974   "ipv6"  IPv6 addresses
975   "ipx"   IPX addresses
976   "tcp"   TCP/IP socket pairs  Both IPv4 and IPv6 are supported
977   "tr"    Token Ring addresses
978   "udp"   UDP/IP socket pairs  Both IPv4 and IPv6 are supported
979
980 If the optional I<filter> is specified, only those packets that match the
981 filter will be used in the calculations.
982
983 The table is presented with one line for each conversation and displays
984 the number of packets/bytes in each direction as well as the total
985 number of packets/bytes.  The table is sorted according to the total
986 number of bytes.
987
988 =item B<-z> proto,colinfo,I<filter>,I<field>
989
990 Append all I<field> values for the packet to the Info column of the
991 one-line summary output.
992 This feature can be used to append arbitrary fields to the Info column
993 in addition to the normal content of that column.
994 I<field> is the display-filter name of a field which value should be placed
995 in the Info column.
996 I<filter> is a filter string that controls for which packets the field value
997 will be presented in the info column.  I<field> will only be presented in the
998 Info column for the packets which match I<filter>.
999
1000 NOTE: In order for B<TShark> to be able to extract the I<field> value
1001 from the packet, I<field> MUST be part of the I<filter> string.  If not,
1002 B<TShark> will not be able to extract its value.
1003
1004 For a simple example to add the "nfs.fh.hash" field to the Info column
1005 for all packets containing the "nfs.fh.hash" field, use
1006
1007 B<-z proto,colinfo,nfs.fh.hash,nfs.fh.hash>
1008
1009 To put "nfs.fh.hash" in the Info column but only for packets coming from
1010 host 1.2.3.4 use:
1011
1012 B<-z "proto,colinfo,nfs.fh.hash && ip.src==1.2.3.4,nfs.fh.hash">
1013
1014 This option can be used multiple times on the command line.
1015
1016 =item B<-z> diameter,avp[,I<cmd.code>,I<field>,I<field>,I<...>]
1017
1018 This option enables extraction of most important diameter fields from large capture files.
1019 Exactly one text line for each diameter message with matched B<diameter.cmd.code> will be printed.
1020
1021 Empty diameter command code or '*' can be specified to mach any B<diameter.cmd.code>
1022
1023 Example: B<-z diameter,avp>  extract default field set from diameter messages.
1024
1025 Example: B<-z diameter,avp,280>  extract default field set from diameter DWR messages.
1026
1027 Example: B<-z diameter,avp,272>  extract default field set from diameter CC messages.
1028
1029 Extract most important fields from diameter CC messages:
1030
1031 B<tshark -r file.cap.gz -q -z diameter,avp,272,CC-Request-Type,CC-Request-Number,Session-Id,Subscription-Id-Data,Rating-Group,Result-Code>
1032
1033 Following fields will be printed out for each diameter message:
1034
1035   "frame"        Frame number.
1036   "time"         Unix time of the frame arrival.
1037   "src"          Source address.
1038   "srcport"      Source port.
1039   "dst"          Destination address.
1040   "dstport"      Destination port.
1041   "proto"        Constant string 'diameter', which can be used for post processing of tshark output.  E.g. grep/sed/awk.
1042   "msgnr"        seq. number of diameter message within the frame.  E.g. '2' for the third diameter message in the same frame.
1043   "is_request"   '0' if message is a request, '1' if message is an answer.
1044   "cmd"          diameter.cmd_code, E.g. '272' for credit control messages.
1045   "req_frame"    Number of frame where matched request was found or '0'.
1046   "ans_frame"    Number of frame where matched answer was found or '0'.
1047   "resp_time"    response time in seconds, '0' in case if matched Request/Answer is not found in trace.  E.g. in the begin or end of capture.
1048
1049 B<-z diameter,avp> option is much faster than B<-V -T text> or B<-T pdml> options.
1050
1051 B<-z diameter,avp> option is more powerful than B<-T field> and B<-z proto,colinfo> options.
1052
1053 Multiple diameter messages in one frame are supported.
1054
1055 Several fields with same name within one diameter message are supported, e.g. I<diameter.Subscription-Id-Data> or I<diameter.Rating-Group>.
1056
1057 Note: B<tshark -q> option is recommended to suppress default B<tshark> output.
1058
1059 =item B<-z> rpc,srt,I<program>,I<version>[,I<filter>]
1060
1061 Collect call/reply SRT (Service Response Time) data for I<program>/I<version>.  Data collected
1062 is number of calls for each procedure, MinSRT, MaxSRT and AvgSRT.
1063
1064 Example: B<-z rpc,srt,100003,3> will collect data for NFS v3.
1065
1066 This option can be used multiple times on the command line.
1067
1068 If the optional I<filter> is provided, the stats will only be calculated
1069 on those calls that match that filter.
1070
1071 Example: B<-z rpc,srt,100003,3,nfs.fh.hash==0x12345678> will collect NFS v3
1072 SRT statistics for a specific file.
1073
1074 =item B<-z> rpc,programs
1075
1076 Collect call/reply SRT data for all known ONC-RPC programs/versions.
1077 Data collected is number of calls for each protocol/version, MinSRT,
1078 MaxSRT and AvgSRT.
1079 This option can only be used once on the command line.
1080
1081 =item B<-z> rtp,streams
1082
1083 Collect statistics for all RTP streams and calculate max. delta, max. and
1084 mean jitter and packet loss percentages.
1085
1086 =item B<-z> scsi,srt,I<cmdset>[,<filter>]
1087
1088 Collect call/reply SRT (Service Response Time) data for SCSI commandset <cmdset>.
1089
1090 Commandsets are 0:SBC   1:SSC  5:MMC
1091
1092 Data collected
1093 is the number of calls for each procedure, MinSRT, MaxSRT and AvgSRT.
1094
1095 Example: B<-z scsi,srt,0> will collect data for SCSI BLOCK COMMANDS (SBC).
1096
1097 This option can be used multiple times on the command line.
1098
1099 If the optional I<filter> is provided, the stats will only be calculated
1100 on those calls that match that filter.
1101
1102 Example: B<-z scsi,srt,0,ip.addr==1.2.3.4> will collect SCSI SBC
1103 SRT statistics for a specific iscsi/ifcp/fcip host.
1104
1105 =item B<-z> smb,srt[,I<filter>]
1106
1107 Collect call/reply SRT (Service Response Time) data for SMB.  Data collected
1108 is number of calls for each SMB command, MinSRT, MaxSRT and AvgSRT.
1109
1110 Example: B<-z smb,srt>
1111
1112 The data will be presented as separate tables for all normal SMB commands,
1113 all Transaction2 commands and all NT Transaction commands.
1114 Only those commands that are seen in the capture will have its stats
1115 displayed.
1116 Only the first command in a xAndX command chain will be used in the
1117 calculation.  So for common SessionSetupAndX + TreeConnectAndX chains,
1118 only the SessionSetupAndX call will be used in the statistics.
1119 This is a flaw that might be fixed in the future.
1120
1121 This option can be used multiple times on the command line.
1122
1123 If the optional I<filter> is provided, the stats will only be calculated
1124 on those calls that match that filter.
1125
1126 Example: B<-z "smb,srt,ip.addr==1.2.3.4"> will only collect stats for
1127 SMB packets exchanged by the host at IP address 1.2.3.4 .
1128
1129 =item B<-z> smb,sids
1130
1131 When this feature is used B<TShark> will print a report with all the
1132 discovered SID and account name mappings.  Only those SIDs where the
1133 account name is known will be presented in the table.
1134
1135 For this feature to work you will need to either to enable
1136 "Edit/Preferences/Protocols/SMB/Snoop SID to name mappings" in the
1137 preferences or you can override the preferences by specifying
1138 S<B<-o "smb.sid_name_snooping:TRUE">> on the B<TShark> command line.
1139
1140 The current method used by B<TShark> to find the SID->name mapping
1141 is relatively restricted with a hope of future expansion.
1142
1143 =item B<-z> mgcp,rtd[I<,filter>]
1144
1145 Collect requests/response RTD (Response Time Delay) data for MGCP.
1146 (This is similar to B<-z smb,srt>).  Data collected is the number of calls
1147 for each known MGCP Type, MinRTD, MaxRTD and AvgRTD.
1148 Additionally you get the number of duplicate requests/responses,
1149 unresponded requests, responses, which don't match with any request.
1150 Example: B<-z mgcp,rtd>.
1151
1152 This option can be used multiple times on the command line.
1153
1154 If the optional I<filter> is provided, the stats will only be calculated
1155 on those calls that match that filter.
1156 Example: B<-z "mgcp,rtd,ip.addr==1.2.3.4"> will only collect stats for
1157 MGCP packets exchanged by the host at IP address 1.2.3.4 .
1158
1159 =item B<-z> megaco,rtd[I<,filter>]
1160
1161 Collect requests/response RTD (Response Time Delay) data for MEGACO.
1162 (This is similar to B<-z smb,srt>).  Data collected is the number of calls
1163 for each known MEGACO Type, MinRTD, MaxRTD and AvgRTD.
1164 Additionally you get the number of duplicate requests/responses,
1165 unresponded requests, responses, which don't match with any request.
1166 Example: B<-z megaco,rtd>.
1167
1168 If the optional I<filter> is provided, the stats will only be calculated
1169 on those calls that match that filter.
1170 Example: B<-z "megaco,rtd,ip.addr==1.2.3.4"> will only collect stats for
1171 MEGACO packets exchanged by the host at IP address 1.2.3.4 .
1172
1173 This option can be used multiple times on the command line.
1174
1175 =item B<-z> h225,counter[I<,filter>]
1176
1177 Count ITU-T H.225 messages and their reasons.  In the first column you get a
1178 list of H.225 messages and H.225 message reasons, which occur in the current
1179 capture file.  The number of occurrences of each message or reason is displayed
1180 in the second column.
1181
1182 Example: B<-z h225,counter>.
1183
1184 If the optional I<filter> is provided, the stats will only be calculated
1185 on those calls that match that filter.
1186 Example: use B<-z "h225,counter,ip.addr==1.2.3.4"> to only collect stats for
1187 H.225 packets exchanged by the host at IP address 1.2.3.4 .
1188
1189 This option can be used multiple times on the command line.
1190
1191 =item B<-z> h225,srt[I<,filter>]
1192
1193 Collect requests/response SRT (Service Response Time) data for ITU-T H.225 RAS.
1194 Data collected is number of calls of each ITU-T H.225 RAS Message Type,
1195 Minimum SRT, Maximum SRT, Average SRT, Minimum in Packet, and Maximum in Packet.
1196 You will also get the number of Open Requests (Unresponded Requests),
1197 Discarded Responses (Responses without matching request) and Duplicate Messages.
1198
1199 Example: B<-z h225,srt>
1200
1201 This option can be used multiple times on the command line.
1202
1203 If the optional I<filter> is provided, the stats will only be calculated
1204 on those calls that match that filter.
1205
1206 Example: B<-z "h225,srt,ip.addr==1.2.3.4"> will only collect stats for
1207 ITU-T H.225 RAS packets exchanged by the host at IP address 1.2.3.4 .
1208
1209 =item B<-z> sip,stat[I<,filter>]
1210
1211 This option will activate a counter for SIP messages.  You will get the number
1212 of occurrences of each SIP Method and of each SIP Status-Code.  Additionally
1213 you also get the number of resent SIP Messages (only for SIP over UDP).
1214
1215 Example: B<-z sip,stat>.
1216
1217 This option can be used multiple times on the command line.
1218
1219 If the optional I<filter> is provided, the stats will only be calculated
1220 on those calls that match that filter.
1221 Example: B<-z "sip,stat,ip.addr==1.2.3.4"> will only collect stats for
1222 SIP packets exchanged by the host at IP address 1.2.3.4 .
1223
1224 =item B<-z> mac-lte,stat[I<,filter>]
1225
1226 This option will activate a counter for LTE MAC messages.  You will get
1227 information about the maximum number of UEs/TTI, common messages and
1228 various counters for each UE that appears in the log.
1229
1230 Example: B<-z mac-lte,stat>.
1231
1232 This option can be used multiple times on the command line.
1233
1234 If the optional I<filter> is provided, the stats will only be calculated
1235 for those frames that match that filter.
1236 Example: B<-z "mac-lte,stat,mac-lte.rnti>3000"> will only collect stats for
1237 UEs with an assigned RNTI whose value is more than 3000.
1238
1239 =item B<-z> rlc-lte,stat[I<,filter>]
1240
1241 This option will activate a counter for LTE RLC messages.  You will get
1242 information about common messages and various counters for each UE that appears
1243 in the log.
1244
1245 Example: B<-z rlc-lte,stat>.
1246
1247 This option can be used multiple times on the command line.
1248
1249 If the optional I<filter> is provided, the stats will only be calculated
1250 for those frames that match that filter.
1251 Example: B<-z "rlc-lte,stat,rlc-lte.ueid>3000"> will only collect stats for
1252 UEs with a UEId of more than 3000.
1253
1254 =item B<-z> expert[I<error|warn|note|chat>][I<,filter>]
1255
1256 Collects information about all expert info, and will display them in order,
1257 grouped by severity. 
1258
1259 Example: B<-z expert,sip> will show expert items of all severity for frames that
1260 match the sip protocol.
1261
1262 This option can be used multiple times on the command line.
1263
1264 If the optional I<filter> is provided, the stats will only be calculated
1265 on those calls that match that filter.
1266
1267 Example: B<-z "expert,note,tcp"> will only collect expert items for frames that
1268 include the tcp protocol, with a severity of note or higher.
1269
1270 =back
1271
1272 =back
1273
1274 =head1 CAPTURE FILTER SYNTAX
1275
1276 See the manual page of pcap-filter(4) or, if that doesn't exist, tcpdump(8),
1277 or, if that doesn't exist, L<http://wiki.wireshark.org/CaptureFilters>.
1278
1279 =head1 READ FILTER SYNTAX
1280
1281 For a complete table of protocol and protocol fields that are filterable
1282 in B<TShark> see the wireshark-filter(4) manual page.
1283
1284 =head1 FILES
1285
1286 These files contains various B<Wireshark> configuration values.
1287
1288 =over 4
1289
1290 =item Preferences
1291
1292 The F<preferences> files contain global (system-wide) and personal
1293 preference settings.  If the system-wide preference file exists, it is
1294 read first, overriding the default settings.  If the personal preferences
1295 file exists, it is read next, overriding any previous values.  Note: If
1296 the command line option B<-o> is used (possibly more than once), it will
1297 in turn override values from the preferences files.
1298
1299 The preferences settings are in the form I<prefname>B<:>I<value>,
1300 one per line,
1301 where I<prefname> is the name of the preference
1302 and I<value> is the value to
1303 which it should be set; white space is allowed between B<:> and
1304 I<value>.  A preference setting can be continued on subsequent lines by
1305 indenting the continuation lines with white space.  A B<#> character
1306 starts a comment that runs to the end of the line:
1307
1308   # Capture in promiscuous mode?
1309   # TRUE or FALSE (case-insensitive).
1310   capture.prom_mode: TRUE
1311
1312 The global preferences file is looked for in the F<wireshark> directory
1313 under the F<share> subdirectory of the main installation directory (for
1314 example, F</usr/local/share/wireshark/preferences>) on UNIX-compatible
1315 systems, and in the main installation directory (for example,
1316 F<C:\Program Files\Wireshark\preferences>) on Windows systems.
1317
1318 The personal preferences file is looked for in
1319 F<$HOME/.wireshark/preferences> on
1320 UNIX-compatible systems and F<%APPDATA%\Wireshark\preferences> (or, if
1321 %APPDATA% isn't defined, F<%USERPROFILE%\Application
1322 Data\Wireshark\preferences>) on Windows systems.
1323
1324 =item Disabled (Enabled) Protocols
1325
1326 The F<disabled_protos> files contain system-wide and personal lists of
1327 protocols that have been disabled, so that their dissectors are never
1328 called.  The files contain protocol names, one per line, where the
1329 protocol name is the same name that would be used in a display filter
1330 for the protocol:
1331
1332   http
1333   tcp     # a comment
1334
1335 The global F<disabled_protos> file uses the same directory as the global
1336 preferences file.
1337
1338 The personal F<disabled_protos> file uses the same directory as the
1339 personal preferences file.
1340
1341 =item Name Resolution (hosts)
1342
1343 If the personal F<hosts> file exists, it is
1344 used to resolve IPv4 and IPv6 addresses before any other
1345 attempts are made to resolve them.  The file has the standard F<hosts>
1346 file syntax; each line contains one IP address and name, separated by
1347 whitespace.  The same directory as for the personal preferences file is
1348 used.
1349
1350 Capture filter name resolution is handled by libpcap on UNIX-compatible
1351 systems and WinPCAP on Windows.  As such the Wireshark personal F<hosts> file
1352 will not be consulted for capture filter name resolution.
1353
1354 =item Name Resolution (ethers)
1355
1356 The F<ethers> files are consulted to correlate 6-byte hardware addresses to
1357 names.  First the personal F<ethers> file is tried and if an address is not
1358 found there the global F<ethers> file is tried next.
1359
1360 Each line contains one hardware address and name, separated by
1361 whitespace.  The digits of the hardware address are separated by colons
1362 (:), dashes (-) or periods (.).  The same separator character must be
1363 used consistently in an address.  The following three lines are valid
1364 lines of an F<ethers> file:
1365
1366   ff:ff:ff:ff:ff:ff          Broadcast
1367   c0-00-ff-ff-ff-ff          TR_broadcast
1368   00.00.00.00.00.00          Zero_broadcast
1369
1370 The global F<ethers> file is looked for in the F</etc> directory on
1371 UNIX-compatible systems, and in the main installation directory (for
1372 example, F<C:\Program Files\Wireshark>) on Windows systems.
1373
1374 The personal F<ethers> file is looked for in the same directory as the personal
1375 preferences file.
1376
1377 Capture filter name resolution is handled by libpcap on UNIX-compatible
1378 systems and WinPCAP on Windows.  As such the Wireshark personal F<ethers> file
1379 will not be consulted for capture filter name resolution.
1380
1381 =item Name Resolution (manuf)
1382
1383 The F<manuf> file is used to match the 3-byte vendor portion of a 6-byte
1384 hardware address with the manufacturer's name; it can also contain well-known
1385 MAC addresses and address ranges specified with a netmask.  The format of the
1386 file is the same as the F<ethers> files, except that entries of the form:
1387
1388   00:00:0C      Cisco
1389
1390 can be provided, with the 3-byte OUI and the name for a vendor, and
1391 entries such as:
1392
1393   00-00-0C-07-AC/40     All-HSRP-routers
1394
1395 can be specified, with a MAC address and a mask indicating how many bits
1396 of the address must match.  The above entry, for example, has 40
1397 significant bits, or 5 bytes, and would match addresses from
1398 00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF.  The mask need not be a
1399 multiple of 8.
1400
1401 The F<manuf> file is looked for in the same directory as the global
1402 preferences file.
1403
1404 =item Name Resolution (ipxnets)
1405
1406 The F<ipxnets> files are used to correlate 4-byte IPX network numbers to
1407 names.  First the global F<ipxnets> file is tried and if that address is not
1408 found there the personal one is tried next.
1409
1410 The format is the same as the F<ethers>
1411 file, except that each address is four bytes instead of six.
1412 Additionally, the address can be represented as a single hexadecimal
1413 number, as is more common in the IPX world, rather than four hex octets.
1414 For example, these four lines are valid lines of an F<ipxnets> file:
1415
1416   C0.A8.2C.00              HR
1417   c0-a8-1c-00              CEO
1418   00:00:BE:EF              IT_Server1
1419   110f                     FileServer3
1420
1421 The global F<ipxnets> file is looked for in the F</etc> directory on
1422 UNIX-compatible systems, and in the main installation directory (for
1423 example, F<C:\Program Files\Wireshark>) on Windows systems.
1424
1425 The personal F<ipxnets> file is looked for in the same directory as the
1426 personal preferences file.
1427
1428 =back
1429
1430 =head1 ENVIRONMENT VARIABLES
1431
1432 =over 4
1433
1434 =item WIRESHARK_DEBUG_EP_NO_CHUNKS
1435
1436 Normally per-packet memory is allocated in large "chunks."  This behavior
1437 doesn't work well with debugging tools such as Valgrind or ElectricFence.
1438 Export this environment variable to force individual allocations.
1439 Note: disabling chunks also disables canaries (see below).
1440
1441 =item WIRESHARK_DEBUG_SE_NO_CHUNKS
1442
1443 Normally per-file memory is allocated in large "chunks."  This behavior
1444 doesn't work well with debugging tools such as Valgrind or ElectricFence.
1445 Export this environment variable to force individual allocations.
1446 Note: disabling chunks also disables canaries (see below).
1447
1448 =item WIRESHARK_DEBUG_EP_NO_CANARY
1449
1450 Normally per-packet memory allocations are separated by "canaries" which
1451 allow detection of memory overruns.  This comes at the expense of some extra
1452 memory usage.  Exporting this environment variable disables these canaries.
1453
1454 =item WIRESHARK_DEBUG_SE_USE_CANARY
1455
1456 Exporting this environment variable causes per-file memory allocations to be
1457 protected with "canaries" which allow for detection of memory overruns.
1458 This comes at the expense of significant extra memory usage.
1459
1460 =item WIRESHARK_DEBUG_SCRUB_MEMORY
1461
1462 If this environment variable is exported, the contents of per-packet and
1463 per-file memory is initialized to 0xBADDCAFE when the memory is allocated
1464 and is reset to 0xDEADBEEF when the memory is freed.  This functionality is
1465 useful mainly to developers looking for bugs in the way memory is handled.
1466
1467 =item WIRESHARK_RUN_FROM_BUILD_DIRECTORY
1468
1469 This environment variable causes the plugins and other data files to be loaded
1470 from the build directory (where the program was compiled) rather than from the
1471 standard locations.  It has no effect when the program in question is running
1472 with root (or setuid) permissions on *NIX.
1473
1474 =item WIRESHARK_DATA_DIR
1475
1476 This environment variable causes the various data files to be loaded from
1477 a directory other than the standard locations.  It has no effect when the
1478 program in question is running with root (or setuid) permissions on *NIX.
1479
1480 =item WIRESHARK_PYTHON_DIR
1481
1482 This environment variable points to an alternate location for Python.
1483 It has no effect when the program in question is running with root (or setuid)
1484 permissions on *NIX.
1485
1486 =item ERF_RECORDS_TO_CHECK
1487
1488 This environment variable controls the number of ERF records checked when
1489 deciding if a file really is in the ERF format.  Setting this environment
1490 variable a number higher than the default (20) would make false positives
1491 less likely.
1492
1493 =item IPFIX_RECORDS_TO_CHECK
1494
1495 This environment variable controls the number of IPFIX records checked when
1496 deciding if a file really is in the IPFIX format.  Setting this environment
1497 variable a number higher than the default (20) would make false positives
1498 less likely.
1499
1500 =item WIRESHARK_ABORT_ON_DISSECTOR_BUG
1501
1502 If this environment variable is set, B<TShark> will call abort(3)
1503 when a dissector bug is encountered.  abort(3) will cause the program to
1504 exit abnormally; if you are running B<TShark> in a debugger, it
1505 should halt in the debugger and allow inspection of the process, and, if
1506 you are not running it in a debugger, it will, on some OSes, assuming
1507 your environment is configured correctly, generate a core dump file.
1508 This can be useful to developers attempting to troubleshoot a problem
1509 with a protocol dissector.
1510
1511 =item WIRESHARK_EP_VERIFY_POINTERS
1512
1513 This environment variable, if exported, causes certain uses of pointers to be
1514 audited to ensure they do not point to memory that is deallocated after each
1515 packet has been fully dissected.  This can be useful to developers writing or
1516 auditing code.
1517
1518 =item WIRESHARK_SE_VERIFY_POINTERS
1519
1520 This environment variable, if exported, causes certain uses of pointers to be
1521 audited to ensure they do not point to memory that is deallocated after when
1522 a capture file is closed.  This can be useful to developers writing or
1523 auditing code.
1524
1525 =back
1526
1527 =head1 SEE ALSO
1528
1529 wireshark-filter(4), wireshark(1), editcap(1), pcap-filter(4), tcpdump(8),
1530 pcap(3), dumpcap(1), text2pcap(1), mergecap(1)
1531
1532 =head1 NOTES
1533
1534 B<TShark> is part of the B<Wireshark> distribution.  The latest version
1535 of B<Wireshark> can be found at L<http://www.wireshark.org>.
1536
1537 HTML versions of the Wireshark project man pages are available at:
1538 L<http://www.wireshark.org/docs/man-pages>.
1539
1540 =head1 AUTHORS
1541
1542 B<TShark> uses the same packet dissection code that B<Wireshark> does,
1543 as well as using many other modules from B<Wireshark>; see the list of
1544 authors in the B<Wireshark> man page for a list of authors of that code.