
GENSEC - Designing a security subsystem

Andrew Bartlett <abartlet@samba.org>

25th April 2005

Abstract
This paper attempts to introduce the GENSEC security subsystem and

client credentials interfaces to interested bystanders and developers on the
Samba4 project. GENSEC attempts to abstract details about user authen-
tication into a single place, providing a simple API to the rest of Samba,
while remaining compatible with Microsoft’s implementations of the same
security protocols. Likewise the client credentials API provides Samba’s
client components with a single, simple way to handle usernames and
passwords.

Background

Samba4 is the ambitious new development branch of the long-standing free/open
source Samba project, a CIFS implementation which since 1992 has built com-
patibility with numerous clients and servers, but particularly those of Microsoft’s
Windows suite. In this new version, the Samba Team has taken on an unpar-
alleled challenge of matching current Windows versions exactly, in terms of
network protocols and features. While providing many challenges, this goal
provides an opportunity to implement things right. This document is about
this new development branch, and unless stated otherwise references to Samba
mean the current Samba4 development project.

The series of subsystems presented in this paper are the culmination of
four years of thought and development, since the first ‘Authentication rewrite’
work on the then Samba HEAD development branch back in 2001.

Because Samba takes the challenge to match Microsoft’s latest releases ex-
actly, the issues surrounding Active Directory and modern security technolo-
gies quickly came to the fore. It is no longer be possible to just pretend to
be NT4 and hope that the clients did not expect any particularly difficult be-
haviour. With this incarnation of Samba these challenges are being tackled, not
just worked around.

Finally, while the word ‘security’ does mean many different things, this
paper addresses the issues as they stem from authentication and the related
problems of data privacy and integrity over a network.

Security functions

Before we take a more in depth look at the technologies, it is perhaps wise to
first describe the question that security subsystems should be able to answer:

1



who are you?.

Who you are

The most common operation performed by a security subsystem is proving a
user’s identity. In a common example, a user asserts their identity with their
login user-name and password (the step of authentication), and then asserts
(by authorization) that ‘only I should be able to get at my mailbox’. This is
an easy problem to solve in the abstract: you simply prove who you are, and
proceed to be authorized for other operations. Performing this operation in a
manner that is secure to attack, and network efficient, is a more difficult task
however.

Who they are

One of the less-considered, but equally important matters that a security sub-
system should take care of is peer authentication. It is readily accepted that the
user must prove their identity to a server, but with a few exceptions (mostly
involving ‘secure’ websites), users do not expect a server to prove its identity
to them.

Proof of server identity is a very important issue, as soon as any of the
information given by that server needs to be trusted. Often called ‘mutual au-
thentication’, a solution to this problem ensures that the server is ‘trusted’ not
to provide malicious data, such as an invalid address book, and that it will
behave properly with information, such as credit card numbers, given to it.
Imagine if your bank website was being spoofed, and no matter where you
asked the bank to transferred your money, it was always diverted into the at-
tacker’s swiss bank account? Further imagine if the attacker continued to spoof
your Bank’s website, to give the indication that the money had never left your
account. These are the kind of problems we must deal with in mutual authen-
tication.

Data integrity

Once the identities of a server and client has been established, there must be
some way to ensure that only that server or client can continue to communi-
cate with the other. Otherwise, it may be possible for an impostor to take over
a connection and impersonate one party to the other. This connection hijacking
could allow unauthorized access to privileged documents, or server adminis-
tration functionality.

The practice of data integrity, also known as ‘signing’, typically requires a
cryptographic calculation designed such that both sides can prove these facts:
This signature could only have be performed by the other party, and could only
have been constructed over the data received. If the output of that calculation
does not match the value supplied by the other party, the message must be
considered compromised.

2



Data encryption

Whenever data flows over a communications network, it becomes open to at-
tacks simply by observation. Should a user’s password be sent in clear-text,
an attacker could use it to later log in as that user. Likewise, if a confidential
document were retrieved, an attacker in a position to watch the network traffic
could also read that document.

The practice of data secrecy, also known as ‘sealing’, ‘privacy’ and ‘confi-
dentiality’, involves the encryption of specific data portions, or the entire com-
munications channel, such that only the other party can decrypt it.

Transparency and Single Sign on

One of the biggest challenges in building a security subsystem is correct imple-
mentation of ‘Single Sign On’ and single source of password solutions. Users
expect that if they have ‘logged on’ to the network, that further network access
will not require them to re-enter their passwords, and any security subsystem
should be designed to accommodate this. Though simple in concept, the chal-
lenge is to design the security subsystem in a way that does not allow the user
to unwittingly compromise their own security.

Likewise, the choice of data integrity and encryption functions should be
transparent to the user, and as transparent as possible to the applications using
the security subsystem.

Authorization problems

The problem of authentication and the problem of authorization are often lumped
together, and this is certainly the case in Active Directory. We will first need to
consider them separately.

Once a user is authenticated, that is, they are who they claim to be, or more
simply they know the password to the account, a server must then determine
what resources that user may access. What files may they read/write? What
hosts may they login to? This process is authorization, and even extends to
such ideas as impersonation; a user may be authorized to impersonate another
user.

The tempting thing to do when designing real-world systems is to embody
a great deal of authorization information in the authentication process; infor-
mation such as group membership may be returned as a product of the login
process, and even evaluated to determine if an authentication attempt should
succeed. Unfortunately, it links the two processes very tightly: preventing a
single authentication identity from having multiple authorization identities.
That said, the two are linked (as they are in AD) for reasons of network effi-
ciency.

The problem

This paper details the design and development of a security subsystem for
Samba. GENSEC, as it has become known, provides Samba client and server

3



modules with a consistent interface to functionality including authentication,
data integrity, data privacy and user credentials (used for authorisation).

The idea of a generic security API is not new - such APIs and protocols have
been available for many years, and in many guises [1]. The reach of the Samba
project is such that it will clearly need to implement, by some mechanism or
other, a wide variety of these protocols, including SASL, GSS-API, SPNEGO[7]
as well as the proprietary NTLMSSP[6, 2]. This is not unique to Samba, and in
the wider open source world we see individual applications introduce similar
abstraction layers, or adopt the Open Source Cyrus-SASL library to provide
one.

History

The need for a centralised security subsystem became clear in the development
of Samba 3.0. Samba 3.0 contains three distinct, and incomplete implementa-
tions of NTLMSSP1, at least two implementations of SPNEGO2, a very simple
SASL client and an SCHANNEL implementation. While it did work, the lack
of clear boundaries around many parts of this code made extracting and con-
solidating this infrastructure a nightmare. Using it and extending it was no
walk in the park either. A lack of clear interfaces also meant that libsmbclient
and smbclient were largely unable to use Kerberos session credentials, even if
they were available. With this new development effort, the opportunity was
grasped early, and implemented before too much code was written, allowing
clean boundaries to be drawn.

This centralisation requirement also ensured that we would always have
the same set of security mechanisms available, wherever they were appropri-
ate: not limited by their original source modules.

The Microsoft pattern with SSPI

On the Microsoft side of the fence, it is well known that Microsoft uses a sub-
system called SSPI (Security Support Provider Interface)[4] to handle almost
all their network authentication and encryption interactions. This module,
modeled after GSSAPI but without API compatibility, provides all Windows
applications and the OS itself, with a single interface to these ‘security func-
tions’. This model was chosen not only for quite sensible software engineering
reasons, but also to provide a single point of audit (and key weakening) for
encryption export controls.

Sadly, Microsoft did not always use SSPI, and clearly has some private
hooks to certain parts of the back-end functionality. As such, certain behaviours
appear in the network protocols that cannot be strictly emulated via the public
API, nor via GSSAPI, were we to place our modules behind that framework.
These behaviours include, in particular, the use of the ‘user session key’ di-
rectly in arbitrary encryption and digest functions, rather than the use of SSPI
functions for these purposes.

1As well as the CIFS client and server, NTLMSSP was separately implemented in the RPC server
and in the ADS LDAP client.

2The SPNEGO implementations were in the CIFS client, server and separately in ntlm_auth .

4



Supporting Negotiation

One of the prime requirements of the GENSEC system is to support the SP-
NEGO protocol, a security negotiation protocol used extensively by Microsoft
to select a real protocol used to handle authentication on a particular con-
nection. As such, GENSEC has been designed with recursion in mind; this
GENSEC module should be able to choose another to perform the final task,
while allowing the negotiation details to be handled inside the SPNEGO mod-
ule itself.

Single Sign On

Following on from the special handling of SPNEGO is a particular problem
for the implementation of Single Sign On solutions. On a Unix-like platform,
the only Single Sign On technology currently available is Kerberos, and this is
selected (typically) via SPNEGO. This means that the calling application has no
idea if Kerberos is available, nor if the user has sufficient credentials to use it.
(Only NTLMSSP may be available, or the KDC may be un-contactable, which
would require a password prompt).

In short, Samba’s client applications must no longer unconditionally prompt
for a password, and must instead provide some appropriate callback.

Protocol Scope

The biggest challenge (and the failure of the previous efforts in this area) is
the shear scope of the protocols involved. Previous efforts did not attempt to
address all the host protocols at once, nor did they address or even allow for
the full scope of security protocols.

Host Protocols

At this stage, the host protocols which require security support in Samba are:

• CIFS

• DCE-RPC

• LDAP

• HTTP

Security Protocols

Likewise, any solution we construct must also correctly handle the number of
security protocols we implement:

5



NTLMSSP

NTLMSSP is a generic encapsulation of the NTLM challenge-response authen-
tication protocol, which derives from the early days of the CIFS protocol. NTLMSSP
adds negotiation of options including NTLM2 and the strength of the sub-
sequent signing or encryptions systems. Described on-line in both an Open
Group publication[6] and on Eric Glass’s Davenport NLTM page[2], NTLMSSP
is now a pretty well-understood wrapping of NTLM, which we already know
well.

NTLMSSP is perhaps also the most-abused authentication protocols, partic-
ularly as it lead the way in ‘single sign on’ HTTP (initially a very Microsoft-only
world, and with due disregard for established standards), but also finds itself
in almost every networks product produced by Microsoft. Unlike Kerberos,
there is no need in NTLM for the client or server to know each other by some
other means, which allows both attacks and connectivity. If the user’s login
credentials (shared automatically by the system) are not sufficient, the user is
typically prompted for a password.

Kerberos

Kerberos[5], originally from MIT’s project Athena, is a cryptographically se-
cure trusted-third-party security system. Kerberos version 5 (krb5) is the cur-
rent standard in RFC1510[3]. Suffering the key disadvantage of often requir-
ing that DNS function correctly, and that the client and server must belong to
the same (or trusting) realms, Kerberos is chosen by default between windows
clients in Active Directory, and Microsoft has extended Kerberos to behave in
ways useful to it’s role on the network.

New clarifications to the Kerberos 5 standard have recently been approved
by the IETF.

GSSAPI

GSSAPI is a wrapping layer around security protocols, designed to make them
easier to use. It typically wraps Kerberos version 5, but in theory can wrap
other systems. It has the ‘honour’ of being the inspiration behind SSPI, which
has had far more success in the network landscape than GSSAPI itself.

SPNEGO

This is a GSS security negotiation protocol, which means it fits into GSSAPI in
a network sense. It is intended to also fit into a the normal GSSAPI libraries.
Also known as SNEGO, work is progressing to make the P again really mean
‘protected’. SPNEGO in the current network reality will negotiate between
Kerberos and NTLMSSP, with the client typically choosing Kerberos if it can
successfully obtain a ticket for that particular server, otherwise transparently
and without warning falling back to NTLMSSP.

SCHANNEL

SCHANNEL is the security mechanism used between Microsoft client work-
stations and servers for domain membership, and uses the machine trust ac-

6



count. It is setup by first making calls on the NETLOGON DCE/RPC server,
which sets up a shared secret to allow the client to connect to other RPC ser-
vices. Interestingly the encryption algorithms are actually very similar to those
used and documented for Microsoft’s arcfour-hmac-md5 Kerberos encryp-
tion type, which made implementing this otherwise unknown standard easier.

Others

This list is expected to grow, particularly as LDAPv3 has DIGEST-MD5 as a
‘mandatory to implement’ security mechanism. It may be possible to link to
Cyrus-SASL, to optionally obtain a potentially arbitrary number of additional
mechanisms.

Building the solution

Building our own

The Samba project is perhaps unique in the extent to which it is expected to
be very, very portable: between hardware platforms, operating systems and
choice of software libraries. This presents a particular challenge, and when
we are faced with implementing Microsoft-compatible security protocols, it is
doubly so.

The Samba Team policy of self-reliance avoids having a large number of
external libraries that we must mandate be installed by administrators, and
ensures that we can fix (within our own area of control) any issues that come up
in protocol conformance. Likewise, there are aspects of control that we require,
that violate all the ‘good design’ rules that an externally library may suggest
we comply with, as we have found with Kerberos and GSSAPI in particular.

Additionally, there are some protocols (such as NTLMSSP and SCHAN-
NEL) that are not fully implemented elsewhere, and for which the Samba im-
plementation is the most advanced, and any generic security solution would
need mechanisms to import that portion of Samba.

NTLMSSP

The NTLMSSP library was brought forward from Samba 3.0, and has been up-
dated from that point. This code, built in the early days of the Samba 3.0 project
to support SPNEGO includes a micro-implementation of NDR generation and
parsing, suitable for the small packets used in the NTLMSSP exchange. The
code has proved surprisingly stable, and has now been extended to handle
NTLM2 signing.

It was the comparative success of this code in Samba 3.0 (used in the CIFS
client, CIFS server and the DCERPC client) that strongly influenced the design
of GENSEC.

SPNEGO

The SPNEGO code used by GENSEC was derived from the code contributed
by Anthony Ligouri to Samba 3.0’s ntlm_auth utility. This needed substantial

7



extension, but unlike the code used in the rest of Samba 3.0, this was quite
practical as it already possessed distinct parse and logic layers.

This code now selects between the registered GENSEC mechanisms, in
choosing a suitable security protocol (essentially NTLM or Krb5 for now) for
use on the connection.

SCHANNEL

Samba now includes a new SCHANNEL implementation, only distantly de-
rived from that in Samba 3.0. Now better separated from the rest of the DCE-
RPC code than it was in Samba 3.0, this is handled almost entirely as a normal
GENSEC module.

Using the Heimdal library

In an apparent contradiction with the above, we are also investigating a strong
tie with the Heimdal implementation of Kerberos and GSSAPI. This contradic-
tion comes about because we do not wish to re-implement the entire Kerberos
and GSSAPI libraries, but require features that to this point are only imple-
mented in our custom release of that library.

The idea is that we will statically link with this library, rather than require
the entire system convert to our choice.

Client Credentials Interface

Samba provides a credentials management system, for the consistent handling
of login credentials, be they user-names, passwords or implicit Kerberos cre-
dentials.

The particular feature of this interface is the callbacks, and the ‘level of
specification’. By allowing the credentials code to guess the user-name, for
example, we gain usability benefits. However we allow this to be overridden,
and we know that now the user-name has actually been specified. Likewise, a
password may be specified or if one is supplied, a callback run.

Separate from GENSEC

For now at least, there are parts of Samba which deal with passwords but do
not deal with GENSEC - these include in particular the ‘basic’ session setup
code, where extended security is not negotiated. These do not need to carry the
full weight of GENSEC, which they otherwise cannot use, so the specification
of passwords has been abstracted into a smaller module. GENSEC completely
depends on this smaller module, referencing those methods directly.

A single context pointer

Before the introduction of the new credentials code, it was common to have a
set of arguments in the form ‘user-name, ‘domain’ and ‘password’. Because

8



this API was used in the very high-level functions, as well as the actual low-
level implementation, it was not possible to callback for a password when it
was actually needed, nor specify a realm instead of a domain.

The solution was to replace all these arguments with a single context pointer,
on which the low-level code may now inquire for the information it actu-
ally requires, and which may be expanded without changing all the layers in-
between. Likewise, the command-line parsing code now has a single place to
fill in the information it knows, as well as how well it knows it (guessed from
an environment variable, specified on the command line etc).

Interfaces

cli_credentials_init() Create a new, uninitialised credentials context.

cli_credentials_get_*() (Various interfaces) Return a value off the con-
text, potentially calling the supplied callback to get the information.

cli_credentials_set_*() (Various interfaces) Set a particular value onto
the context, where it will be attached with talloc() . As well as
specifying the value, the caller must specify ‘how well’ they know
the value, as either CRED_GUESS(say user-name from LOGNAME
environment variable) or CRED_SPECIFIED(user explicity speci-
fied).

cli_credentials_guess() Guess the username, password and domain
from the available environment variables.

cli_credentials_set_conf() Specify basic details from the smb.conf, with-
out reference to environment variables. The user-name and pass-
word (at least) must still be supplied separately.

cli_credentials_set_machine_account() Specify that the local ma-
chine account credentials should be used, with the values retrieved
from the secrets database. This abstracts the database operations
away from the callers.

cli_credentials_set_anonymous() It is common to require anonymous
connections, and this call marks a context as anonymous (a call to
cli_credentials_set_conf() is still required).

cli_credentials_get_anonymous() Because some protocols behave dif-
ferently on anonymous connections, this returns True if the cre-
dentials are anonymous.

Server NTLM authentication

In a similar manner to the separation of client credentials from GENSEC, the
issue of NTLM authentication has been abstracted away from the server-side
GENSEC modules. Instead, the Samba 3.0-style authentication subsystem con-
tinues to handle authentication, as referenced from GENSEC, ‘basic’ session
setups as well as remote NETLOGON operations.

9



GENSEC Interfaces

Internal Library

GENSEC provides a limited set of interfaces to the rest of Samba, in a deliber-
ate policy to keep it as a separate subsystem within the Samba infrastructure.
GENSEC loads it’s modules in the same way as other Samba components do:
each module provides an initialisation function, which registers the available
operations with GENSEC.

Typically, subsystems within Samba only have to deal with the following
primary APIs:

gensec_client_start() Start GENSEC in client mode

gensec_server_start() Start GENSEC in server mode

gensec_start_mech_by_*() (A number of similar APIs) Start a particu-
lar GENSEC mechanism. This is perhaps one of the more powerful
aspects of GENSEC, as it ensures that GENSEC, not the caller, fig-
ures out the mapping between wire protocol IDs and actual security
mechanisms. This allows for new security protocols to ‘just work’.

gensec_update() Pass length-bounded packets of data between the peers,
until both are satisfied with the negotiation.

gensec_set_credentials () This API links an existing credentials context
to this GENSEC context.

Other APIs are provided to obtain information such as the name of the client.
Because GENSEC is all talloc() based, all memory allocated by GENSEC is
controlled within the talloc() system, and a call to talloc_free(gensec_security)
will deallocate and cleanup the entire GENSEC system.3

If data encryption or integrity protection is required, then the following
APIs provide this:

gensec_sign_packet() Produce a signature for the supplied packet

gensec_check_packet() Validate an incoming signature

gensec_seal_packet() Encrypt the supplied packet

gensec_unseal_packet() Validate and decrypt the incoming packet

gensec_wrap() ‘Wrap’ a packet, in a way determined by the mechanism,
and which may sign, or encrypt the data if this was negotiated.

gensec_unwrap() ‘Unwrap’ a packet, in a way determined by the mecha-
nism, and which may validate any signature, or decrypt the data if
required.

The latter two APIs were introduced to cope with backing GENSEC onto the
standard GSSAPI, which uses this format.

3For more information on talloc(), please see talloc_guide.txt in the root of the Samba4 source
tree

10



C, Python etc Libraries

While a externally accessible C library is not currently available for GENSEC,
it is hoped that by keeping a tight set of interfaces, it will not prove difficult
to construct a stable library interface in the future. Likewise, the possibility to
add Python bindings is very interesting.

ntlm_auth

Samba3 provides a binary utility known as ntlm_auth to allow external pro-
grams to use Samba as a partial outsourcing of their security subsystems. This
allows programs such as Squid and mod_ntlm_winbind to use ntlm_auth
without knowledge of the NTLMSSP or SPNEGO protocols, and without need-
ing to talk to domain controllers directly. Samba4 continues this practice, and
by calling ntlm_auth with the correct --helper-protocol argument, ex-
ternal programs may access GENSEC over a clean, replaceable stdio interface.

Module design

GENSEC uses modules to provide the actual implementation of each of the
security protocols, and these register with the GENSEC subsystem at initiali-
sation time. The GENSEC internal interface is very similar to that exposed to
external users, except that each module may or may not provide certain capa-
bilities: some modules, such as the current gensec_krb5 module, may not be
able to perform data encryption or integrity protection.

Each module declares a structure of function pointers, and those pointers
left NULL are considered unimplemented. When designing a new module, it
is best to look at current examples of other modules in the source tree, as these
give a guide to the style, and expectations of new GENSEC modules. As an
example, the NTLMSSP module initialisation is show in Figure 1.

The first few lines declare information about the module - the name for
debugging, the protocol names for SASL (as used in LDAP, for example), the
assigned number for use on DCE-RPC, and the OID that is used for GSSAPI
and SPNEGO. Modules may be enabled or disabled by default, so as to allow
experimental modules to be built, but inactive.

The Session Key function breaks all the abstractions that should be present
in such a security system, but are required for operation on CIFS, due to the
way that ‘session keys’ are used in SMB signing.

Future requirements

GENSEC and the other security subsystems with which it collaborates are not
the end of the line in this area: there is still a lot of work to do, particularly as
we try and assist other projects in the use of this infrastructure, and as we cope
with newer requirements on the Samba code generally.

11



static const struct gensec_security_ops gensec_ntlmssp_security_ops = {
.name = "ntlmssp",
.sasl_name = "NTLM",
.auth_type = DCERPC_AUTH_TYPE_NTLMSSP,
.oid = GENSEC_OID_NTLMSSP,
.enabled = True,
.client_start = gensec_ntlmssp_client_start,
.server_start = gensec_ntlmssp_server_start,
.update = gensec_ntlmssp_update,
.sig_size = gensec_ntlmssp_sig_size,
.sign_packet = gensec_ntlmssp_sign_packet,
.check_packet = gensec_ntlmssp_check_packet,
.seal_packet = gensec_ntlmssp_seal_packet,
.unseal_packet = gensec_ntlmssp_unseal_packet,
.wrap = gensec_ntlmssp_wrap,
.unwrap = gensec_ntlmssp_unwrap,
.session_key = gensec_ntlmssp_session_key,
.session_info = gensec_ntlmssp_session_info,
.have_feature = gensec_ntlmssp_have_feature

};

Figure 1: NTLMSSP GENSEC module initialisation

Asynchronous request support

The particular area that looms as a change for GENSEC is that of asynchronous
request support. This involves saving state regarding the progress of the GENSEC
transaction into the context, such that the state machine can return to the main
processing loop, and be recalled later. This is currently an issue in the NTLMSSP
server, where we contact a remote domain controller, and we must process
other packets while we wait for a reply. Likewise, we would hope not to block
in the GENSEC client, while we wait for packets to return from a KDC we may
need to talk to.

Moving beyond Samba

As GENSEC becomes more useful, we also should seriously consider how it is
best used outside Samba. For example, many projects are now using Samba’s
ntlm_auth to handle NTLMSSP authentication, but at some point soon they
may wish to handle SPNEGO, and more particularly the signing and sealing
of the subsequent data streams. It is likely that this may require GENSEC to be
rewritten into an external library, (as it is rather Samba-specific at this point),
but this is yet to be determined.

References

[1] Jeremy Allison. Security soup. Jan 2004. URL
http://www.linux.org.au/conf/2004/eventrecord/LCA2004-cd/papers/securitysoup.sxi .

12



[2] Eric Glass. The NTLM Authentication Protocol, 2003. URL
http://davenport.sourceforge.net/ntlm.html .

[3] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5),
September 1993. URL ftp://ftp.isi.edu/in-notes/rfc1510.txt .
RFC 1510.

[4] Microsoft Corporation. The Security Support Provider Interface, 1999. URL
http://www.microsoft.com/windows2000/techinfo/howitworks/security/sspi2000.asp .

[5] MIT. Kerberos: The network authentication protocol. URL
http://web.mit.edu/kerberos/www/ . 2004.

[6] Open Group. The Open Group ActiveX Core Tech-
nology Reference, chapter 11 - NTLM. URL
http://www.opengroup.org/comsource/techref2/NCH1222X.HTM .

[7] Sanj Surati and Michael Muckin. Dec 2002. URL
http://msdn.microsoft.com/library/en-us/dnsecure/html/http-sso-2.asp .

13


