
Advances in Samba4

Volker Lendecke

VL@Samba.ORG

August 23, 2004

1 Introduction

Samba 4 has been in development for about 18 months now. It is a complete
start from scratch, hardly anything in the core Samba code is used commonly
between Samba 3 and Samba 4. Why was this done?

Samba 3 shows its age. Essentially, it is still the very first implementation
started by Andrew Tridgell more than a decode ago. Certainly it has seen a
huge amount of improvement since that first implementation, but the internal
structure has not really changed during its development.

Since its start, the community around Samba has gained a lot of knowledge
around the protocols Windows implements, but the implementation in Samba
shows traces of the early phases when we did not know as much about these
protocols. One good example is the implementation of the Microsoft Remote
Procedure Calls, these days base for most of the extended functionality Microsoft
Servers implement. When they were first implemented, it was done in a com-
pletely manual manner, as Samba has always been done: Push around bits until
Windows accepts our stuff. This is closely reflected in the code, seen in the
subdirectory rpc_parse.

Samba 4 was started to correct this mistake, to get the infrastructure right
without having to take care of compatibility to existing code. This talk will cover
four areas of code where Samba 4 is an improvement over Samba 3:

• The talloc memory allocator has been simplified and enhanced.

• The MSRPC subsystem has been completely rewritten, Samba is now at
the same level as Microsoft was ten years ago.

• The ldb library is a big enhancement over the tdb databases introduced in
Samba 2.

• The LDAP libraries normally used are in the process of being completely
replaced by something we believe to be more flexible and better fitting into
the Samba framework.

2 talloc

Managing dynamic data structures with malloc() can become a real nightmare
when the structures become even moderately complex. C++ offers the concept
of automatic destructors that can help a lot, even higher-level languages offer
automatic garbage collection. It was never discussed in the Samba Team, but
rewriting Samba in a different language than C has never been seen as an option.
The one big advantage we get by using C is the wide availability of Compilers
across the different Unix platforms Samba is ported to.

After reading this section, you might be a bit disappointed, you might ask
yourself — what’s the point? Where is the major innovation? Every major
software project must have its own way to manage dynamic memory, this is just
the way Samba does it.

In Samba 2 the Trivial Allocator talloc was introduced to make memory
management a lot easier. The idea is absolutely simple: Initialize a TALLOC_CTX

and use talloc(ctx, size) instead of malloc. Then after you’re done, simply
talloc_destroy your context, and all of the memory you have talloc’ed is gone
immediately.

Why has this helped Samba so much? Samba is a rather simple daemon, it gets
a request and has to reply to it. Samba 3 has been using this extensively in the
MSRPC subsystem, and Samba 4 much more does so. When a request comes in,
a talloc context is initialized for this request, and all routines called deep below
can allocate memory using this talloc context. When the final response to the
request has been sent out, the per-request talloc context is destroyed, and none
of the internal routines have to care about freeing memory.

Samba 4 takes this to the extreme. malloc is used almost exclusively inside
talloc.c, everyone allocating memory has to decide which context the memory
has to be assigned to. Each smb request has his own structure, together with a
private talloc context:

struct smbsrv_request {

/* a talloc context for the lifetime of this request */

TALLOC_CTX *mem_ctx;

/* the server_context contains all context specific

to this SMB socket */

struct smbsrv_connection *smb_conn;

...

};

A common theme in Samba 4 was the following:

mem_ctx = talloc_init("request_context");

...

req = talloc(mem_ctx, sizeof(*req));

if (!req) {

return NULL;

}

ZERO_STRUCTP(req);

/* setup the request context */

req->smb_conn = smb_conn;

req->mem_ctx = mem_ctx;

Every important and complex struture that has to live longer than a few lines
of code gets its own talloc context.

Looking at current Samba 4 code, the snippet above is not entirely correct
anymore. Tridge and the rest of the people do not hesitate to change a lot
of internals of Samba 4 when it seems appropriate. Inspired by the Hierarchical
allocator http://swapped.cc/halloc/ the talloc interface has changed and sim-
plified. The recurring pattern mentioned above inspired the idea that every piece
of memory can be its own talloc context usable by further calls to talloc().

What does this mean? You allocate some memory using talloc, and you
decide whether it should die whenever another structure dies. A hypothetical
example might be a structure representing an open file:

struct open_file {

int fd;

size_t length;

const char *name;

};

The struct open_file itself is to be freed when the file is closed. The corre-
sponding close routine has to make sure that the member name is also freed. The
new talloc implementation makes this simpler: Use talloc for the main structure
and the file name, and talloc destroy will take care of freeing the file name for
you:

struct open_file *f = talloc(NULL, sizeof(struct open_file));

f->name = talloc_strdup(f, "filename");

...

talloc_destroy(f);

/* f->name is gone as well */

This works in a hierarchical manner. Every talloc’ed piece of memory can be
the root of more talloc’ed memory, destroying the root automatically frees all
children. Everyone who has been bothered to do kerberos programming will see
that this can simplify the APIs a lot. Free all memory that is used for a particular
request with a single call can be a huge relief.

For example, when you allocate a string representing the name of a file just
opened, you might decide that this string needs to be freed when the file is

3 The MSRPC-subsystem

Most of the functionality Microsoft servers offer beyond basic file sharing is using
a variant of the Distributed Computing Environment Remote Procedure Calls
(DCE-RPC). Even printing, which had traditionally been part of the basic CIFS
protocol is using RPCs since Windows NT4. All of the domain functionalities
that Windows offers is using RPCs, as does DCOM. Modern Windows clients
simply expect basic RPC functionalities, even if you only want to share files.

The initial implementation of the Microsoft variant of DCE-RPC, here called
MSRPC was driven by the need to become a member in a Windows NT4 do-
main, thus to implement the domain controller protocol of NT. At times before
Samba 2.0, ”security = server” was a bad hack to hand password queries to an-
other server. Microsoft had invented a better method to ask a separate server
whether a user had typed in his password correctly, but this method is based on
MSRPC. With Samba 2.0, the first implementation of the MSRPC subsystem
was published as stable.

This initial implementation was done exactly the same way as Samba has al-
ways been done: Tweak the bits we send and receive until Microsoft systems
accept our language. This approach however completely neglects that there is a
well-defined structure in the MSRPC system.

All of the Remote Procedure Calls Windows implements are defined in an
Interface Definition Language (IDL), the relevant encoding on the wire is called
Network Data Representation (NDR). Specifications for IDL as well as NDR are
nowadays freely available on the net. At the time Samba 2 was written this
was different: There have been no exact and specifications, although the general
structure of the code Microsoft implemented was well-known.

When you look at the subdirectory rpc parse in Samba 3, you see a lot of code
that implements basic encoding and decoding of MSRPC requests and responses.
This is a manual process that inevitably leads to subtle bugs in the data that
Samba 3 sends and receives on the wire. Especially nasty are the padding rules.
At which point do I have to increment a pointer to a multiple of 4, where can I
just put my additional data on the wire? All of this stuff can be automatically
be deduced from a brief high-level description in the Interface Definition.

How does this translate into code? Lets look at a very simple call from the
SAMR interface. SAMR implements the remote interface to the Windows user

database. The following piece of Samba 4 IDL code defines a call to delete a
member from a domain group:

/************************/

/* Function 0x18 */

NTSTATUS samr_DeleteGroupMember(

[in,ref] policy_handle *handle,

[in] uint32 rid

);

You have to pass in a so-called policy handle, an opaque data structure that
you got back from the server by an OpenGroup call. The other argument is a
32-bit unsigned integer representing a group member. To implement the encoding
and decoding routines for this simple call, in Samba 3 about 40 lines of code have
been necessary. The core routine is the encoding of the request:

BOOL samr_io_q_del_groupmem(const char *desc,

SAMR_Q_DEL_GROUPMEM * q_e,

prs_struct *ps, int depth)

{

if (q_e == NULL)

return False;

prs_debug(ps, depth, desc, "samr_io_q_del_groupmem");

depth++;

if(!prs_align(ps))

return False;

if(!smb_io_pol_hnd("pol", &q_e->pol, ps, depth))

return False;

if(!prs_uint32("rid", ps, depth, &q_e->rid))

return False;

return True;

}

Samba 4 implements pidl, the Perl IDL compiler. This compiler takes the
IDL file describing all the code and auto-generates all the encoding and decoding
routines, along with the function stubs necessary to use the routines. The amount
of compiled object code that Samba 4 uses to implement the same functionality
as Samba 3 provides is not less than in Samba 3, but the volume and complexity
of the source code is vastly reduced. The complete SAMR encoding and decoding
code in Samba 3 is a little less than 250 Kilobytes of hand-written code:

vlendec@delphin:/data/3_0> ls -l include/rpc_samr.h

rpc_parse/parse_samr.c

-rw-r--r-- ... 46165 2004-06-14 12:01 include/rpc_samr.h

-rw-r--r-- ... 203236 2004-06-14 12:01

rpc_parse/parse_samr.c

vlendec@delphin:/data/3_0>

In Samba 4 only about 10% of that code is used to implement even more
functionality:

vlendec@delphin:/data/4_0/librpc/idl> ls -l samr.idl

-rw-r--r-- ... 30614 2004-08-14 03:11 samr.idl

vlendec@delphin:/data/4_0/librpc/idl>

You may ask with good reason why we haven’t done this ages ago. The only
answer to this is lack of knowledge, too much other stuff to do, history. However,
with these foundations it should be a lot easier to follow what Microsoft does in
the future as it has been before.

4 ldb

One of the internal changes from Samba 2.0 to Samba 2.2 has been the intro-
duction of the trivial database tdb. Why was this necessary, and what is it used
for?

The multiple smbds on a running Samba server have to communicate in mul-
tiple ways. One example are the Windows-compatible byte range locks that are
wildly different from the ones Posix offers. These byte range locks have to be
implemented by Samba itself. Every file that is byte range locked by some client
is locked for all other users of that file, even if the other users are working on
a different client machine. Correctness and speed of these locks are absolutely
critical. So Samba needs a way to inform all smbds about the state of the byte
range locks.

This is done using the tdb files. A tdb database essentially is a multi-writer
hash table that loosely resembles the Berkely DB. At the time tdb was invented,
Berkely DBs were single-writer only however. So tridge implemented a database
library for Samba with its own API. Nowaday tdb files are used for many sorts
of things, for example winbindd uses it as a storage for its mapping from foreign
SIDs to local group and user IDs, and Samba as a domain controller can store
the user specific data in a tdb.

As flexible as tdb’s are, they have their limitations. They are tables mapping
arbitrary keys to arbitrary values. Period. Every record in a tdb is a binary
object with a single key. When you want to store complex data in a tdb, you
have to convert the data structure into a byte stream before storing it, and get
the data back into the structure after retrieving the byte stream. This is awkward
in two respects: First you have to make sure that you have the correct endianness
if your tdb file is to be ported across different architectures, and second it makes
extending the structures rather difficult. You manually have to take care of
version upgrades. Doing this is right is possible but error-prone.

Another problem with tdb files is the restriction to a single index. When looking
at the user database of a Samba server, this needs to be indexed by at least three
values: The user name, the SID and the unix uid. With Samba 3 this is done

manually whenever a tdb needs to be indexed by more than one attribute. One
of the attributes is chosen as the primary index for the databse, and the other
two ones are maintained as separate records pointing at the primary key. Again,
an error-prone process repeated again and again in Samba 3.

In Samba 4, tridge has taken a different approach. He has stripped the data
model of LDAP to its bare core, and has implemented a limited implementation
of an API close to the LDAP one on top of tdb. This new implementation is
called ldb.

An ldb is a database of objects with arbitrary attributes, all of which can have
arbitrary values, just like an LDAP database without any schema checking. Part
of the ldb library is an ldif parser and printer, so that a text-based dump of your
ldb database is easily possible.

Searching a ldb database is very similar to searching a LDAP database, the
corresponding call is:

int ldb_search(struct ldb_context *ldb,

const char *base,

enum ldb_scope scope,

const char *expression,

const char * const *attrs, struct ldb_message ***res)

A typical search for an object might look like the following:

struct ldb_message **admins;

const char * const *attrs = { "displayName", NULL };

result = ldb_search(ldb, "dc=samba,dc=org", LDB_SCOPE_SUBTREE,

"(objectSid=S-1-5-32-544)", attrs, &res);

This example would do a search for the Administrators alias in a hypotheti-
cal ldb containing an Active Directory compatible user database. You can use
complex filter strings that look for different attributes at the same time, you can
change objects, and the indices are naturally updated correctly. When you add
a new index, the library automatically re-indexes all database entries. The API
falls back to a complete traversal of the database in case you are looking for an
attribute that has not been indexed.

The AD compatible user database is the first and very obvious application this
ldb API is used for. The Samba 3 notion of a passdb that stores additional at-
tributes of a Unix user has been completely removed in the design of Samba 4.
Samba 4 will implement a complete Windows compatible user database indepen-
dent of the underlying Unix. Windows compatibility these days however means
that you have to present your data compatible to what Windows expects as ac-
tive directory. Samba 4 will store the data as exactly as possible like Windows
2003 does, so that the presentation via the LDAP protocol should become easily
possible.

The similarity to LDAP is true for all other operations like adding, modifying
and deleting entries. Everyone familiar with the LDAP API or even only the
command line utilities should feel at home with the ldb API very easily.

To summarize it, in ldb.h tridge compares ldb with tdb and ldb with LDAP:

• Major restrictions as compared to normal LDAP:

– no async calls.

– each record must have a unique key field

– the key must be representable as a NULL terminated C string and
may not contain a comma or braces.

• Major restrictions as compared to tdb:

– no explicit locking calls

5 LDAP

In the area of LDAP Samba has proceeded a lot in the last weeks. Initiated
by the author of this paper and then improved by Stefan Metzmacher and Simo
Sorce a completely new approach to LDAP has been initiated.

At a customer site I came across a winbind problem that turned out to be a
LDAP server that would simply hang in a query and not come back. No idea
why, it simply would not respond after taking the query. A weekend of frustrating
hacking later I decided that the OpenLDAP libraries had given me enough pain
that a replacement was necessary. I simply could not find out how to reliably
make the OpenLDAP libs return after a maximum time under all conditions.

What I started closely followed the proven Samba 4 concept: Clearly separate
concerns. There are at least two things to be taken care of when dealing with an
OpenLDAP server:

• Encoding the LDAP query into a stream of bytes, decoding the response.

• Sending the data stream to the LDAP server and waiting for the reply.

The classical LDAP RFC-conforming libraries take care of both aspects at the
same time. This poses some particular problems, even within Samba 3. Winbind
for many queries has to talk to LDAP servers, for example getting the user list
out of an AD Domain Controller is done via LDAP. Winbind however needs to
be responsive even when a DC freaks out or is just slow.

The LDAP queries in question have to be embedded into an asynchronous
server architecture as much as possible. A big select() loop needs to take care of
any operation that might block, in particular the queries to external servers. An
initial result of these considerations are two routines

ldap_encode() and ldap_decode(). They convert high-level structures that
correspond to LDAP queries into a stream of bytes and vice-versa.

The request structure for an LDAP search request for example looks like the
following:

struct ldap_SearchRequest {

const char *basedn;

enum ldap_scope scope;

enum ldap_deref deref;

uint32 timelimit;

uint32 sizelimit;

BOOL attributesonly;

char *filter;

int num_attributes;

const char **attributes;

};

union ldap_Request {

...

struct ldap_SearchRequest SearchRequest;

...

};

struct ldap_message {

TALLOC_CTX *mem_ctx;

uint32 messageid;

uint8 type;

union ldap_Request r;

int num_controls;

struct ldap_Control *controls;

};

A sample query for the root-DSE entry is set up the following way:

msg = new_ldap_message();

msg->type = LDAP_TAG_SearchRequest;

msg->r.SearchRequest.basedn = "";

msg->r.SearchRequest.scope = LDAP_SEARCH_SCOPE_BASE;

msg->r.SearchRequest.deref = LDAP_DEREFERENCE_NEVER;

msg->r.SearchRequest.timelimit = 0;

msg->r.SearchRequest.sizelimit = 0;

msg->r.SearchRequest.attributesonly = False;

msg->r.SearchRequest.filter = "(objectclass=*)";

msg->r.SearchRequest.num_attributes = 0;

msg->r.SearchRequest.attributes = NULL;

The structure msg is then passed to the routine ldap_encode, which has the
following prototype:

BOOL ldap_encode(struct ldap_message *msg, DATA_BLOB *result);

DATA_BLOB itself is another Samba-ism, but a very simple one:

typedef struct data_blob

{

uint8 *data;

size_t length;

void (*free)(struct data_blob *data_blob);

} DATA_BLOB;

The result of ldap_encode is the ASN1-encoded representation of the ldap
query you encoded in a high-level fashion by setting up all the values in the
struct ldap_message. This can then easily be sent to the LDAP server.

As you can see, this is a bit more verbose than the usual RFC-libs, but this
verbosity pays off later. It’s a lot more flexible. For example it was trivial to
implement a set/get/endent-style interface to LDAP-searches:

if (!ldap_setsearchent(conn, msg, NULL)) {

printf("Could not setsearchent\n");

return -1;

}

while ((result = ldap_getsearchent(conn, NULL)) != NULL) {

struct ldap_SearchResEntry *r = &result->r.SearchResultEntry;

int i;

printf("dn: %s\n", r->dn);

for (i=0; i<r->num_attributes; i++) {

int j;

printf(" %s\n", r->attributes[i].name);

for (j=0; j<r->attributes[i].num_values; j++) {

printf(" %s\n",

r->attributes[i].values[j].data);

}

}

}

ldap_endsearchent(conn, NULL);

In this example, conn represents an established connection to the LDAP server,
and ldap_setsearchent expects a fully set up search message as shown above.
To me this seems a lot simpler than messing around with the different RFC-
conforming routines for extracting all the search results.

The fact that this interface could be made a lot easier to use than the RFC-libs
was greatly helped by the talloc allocator mentioned above. The ldap_message

can become a rather complex structure that nobody wants to manually free()

after use. Having all memory for example for the distinguished name, the at-
tributes and values of a search result entry hang off the ldap_message itself
makes it trivial to get memory management right.

6 Summary

The four components presented in this paper are pieces of the core Samba 4
infrastructure. Glued together they make a Domain Controller that is as capable
as Samba 3 is possible to implement with a lot less code than was necessary for
Samba 3.

The two big missing pieces before Samba 4 is a Domain Controller that XP
accepts as a full Active Directory DC are LDAP support and Kerberos. Samba
4 has to listen on the LDAP port 389 and present the same user database an AD
DC presents. This can be done in at least two ways. We could use OpenLDAP
and implement a backend that talks to Samba’s ldb API, essentially translating
the protocol on port 389 into ldb queries. The other alternative would be to use
the new LDAP encoding/decoding routines and implement an LDAP server of
our own. We might be found guilty of the Not-Invented-Here syndrome, but the
OpenLDAP server has proven not to be the easiest piece of software to work with.
So Samba 4 might end up implementing all of LDAP itself.

With Kerberos matters are completely different. Contrary to LDAP, Kerberos
this is a very security sensitive protocol. History teaches that you should not
implement security stuff when it already has been done for you. We have two
competing Open Source implementations to choose from: MIT and Heimdal.
Probably Samba 4 will use Heimdal to implement the necessary KDC function-
ality, because Heimdal already implements a pluggable database backend for the
key material it uses.

But wait — The bread-and-butter business of Samba has always been file and
print, right? This talk has not covered any of these. The reimplementation of
the printing stuff should become a lot easier than the first one was in Samba
3, as we now have the MSRPC infrastructure available. File serving currently
is the big missing piece in Samba 4, but the infrastructure is in place to make
the implementation less painless than in Samba 3. For the absolutely impatient
there’s a bad hack available: Use a Samba 3 smbd as a file server forked off Samba
4 for each file share connection. For details send mail to vl@samba.org, or browse
through the archives of samba-technical@samba.org ;-)

