ctdb-recoverd: Optimise check for rebalance candidates in LCP2
[kai/samba-autobuild/.git] / ctdb / server / ctdb_takeover.c
1 /* 
2    ctdb ip takeover code
3
4    Copyright (C) Ronnie Sahlberg  2007
5    Copyright (C) Andrew Tridgell  2007
6    Copyright (C) Martin Schwenke  2011
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12    
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17    
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21 #include "includes.h"
22 #include "tdb.h"
23 #include "lib/util/dlinklist.h"
24 #include "system/network.h"
25 #include "system/filesys.h"
26 #include "system/wait.h"
27 #include "../include/ctdb_private.h"
28 #include "../common/rb_tree.h"
29
30
31 #define TAKEOVER_TIMEOUT() timeval_current_ofs(ctdb->tunable.takeover_timeout,0)
32
33 #define CTDB_ARP_INTERVAL 1
34 #define CTDB_ARP_REPEAT   3
35
36 /* Flags used in IP allocation algorithms. */
37 struct ctdb_ipflags {
38         bool noiptakeover;
39         bool noiphost;
40 };
41
42 struct ctdb_iface {
43         struct ctdb_iface *prev, *next;
44         const char *name;
45         bool link_up;
46         uint32_t references;
47 };
48
49 static const char *ctdb_vnn_iface_string(const struct ctdb_vnn *vnn)
50 {
51         if (vnn->iface) {
52                 return vnn->iface->name;
53         }
54
55         return "__none__";
56 }
57
58 static int ctdb_add_local_iface(struct ctdb_context *ctdb, const char *iface)
59 {
60         struct ctdb_iface *i;
61
62         /* Verify that we dont have an entry for this ip yet */
63         for (i=ctdb->ifaces;i;i=i->next) {
64                 if (strcmp(i->name, iface) == 0) {
65                         return 0;
66                 }
67         }
68
69         /* create a new structure for this interface */
70         i = talloc_zero(ctdb, struct ctdb_iface);
71         CTDB_NO_MEMORY_FATAL(ctdb, i);
72         i->name = talloc_strdup(i, iface);
73         CTDB_NO_MEMORY(ctdb, i->name);
74         /*
75          * If link_up defaults to true then IPs can be allocated to a
76          * node during the first recovery.  However, then an interface
77          * could have its link marked down during the startup event,
78          * causing the IP to move almost immediately.  If link_up
79          * defaults to false then, during normal operation, IPs added
80          * to a new interface can't be assigned until a monitor cycle
81          * has occurred and marked the new interfaces up.  This makes
82          * IP allocation unpredictable.  The following is a neat
83          * compromise: early in startup link_up defaults to false, so
84          * IPs can't be assigned, and after startup IPs can be
85          * assigned immediately.
86          */
87         i->link_up = (ctdb->runstate == CTDB_RUNSTATE_RUNNING);
88
89         DLIST_ADD(ctdb->ifaces, i);
90
91         return 0;
92 }
93
94 static bool vnn_has_interface_with_name(struct ctdb_vnn *vnn,
95                                         const char *name)
96 {
97         int n;
98
99         for (n = 0; vnn->ifaces[n] != NULL; n++) {
100                 if (strcmp(name, vnn->ifaces[n]) == 0) {
101                         return true;
102                 }
103         }
104
105         return false;
106 }
107
108 /* If any interfaces now have no possible IPs then delete them.  This
109  * implementation is naive (i.e. simple) rather than clever
110  * (i.e. complex).  Given that this is run on delip and that operation
111  * is rare, this doesn't need to be efficient - it needs to be
112  * foolproof.  One alternative is reference counting, where the logic
113  * is distributed and can, therefore, be broken in multiple places.
114  * Another alternative is to build a red-black tree of interfaces that
115  * can have addresses (by walking ctdb->vnn and ctdb->single_ip_vnn
116  * once) and then walking ctdb->ifaces once and deleting those not in
117  * the tree.  Let's go to one of those if the naive implementation
118  * causes problems...  :-)
119  */
120 static void ctdb_remove_orphaned_ifaces(struct ctdb_context *ctdb,
121                                         struct ctdb_vnn *vnn,
122                                         TALLOC_CTX *mem_ctx)
123 {
124         struct ctdb_iface *i;
125
126         /* For each interface, check if there's an IP using it. */
127         for(i=ctdb->ifaces; i; i=i->next) {
128                 struct ctdb_vnn *tv;
129                 bool found;
130
131                 /* Only consider interfaces named in the given VNN. */
132                 if (!vnn_has_interface_with_name(vnn, i->name)) {
133                         continue;
134                 }
135
136                 /* Is the "single IP" on this interface? */
137                 if ((ctdb->single_ip_vnn != NULL) &&
138                     (ctdb->single_ip_vnn->ifaces[0] != NULL) &&
139                     (strcmp(i->name, ctdb->single_ip_vnn->ifaces[0]) == 0)) {
140                         /* Found, next interface please... */
141                         continue;
142                 }
143                 /* Search for a vnn with this interface. */
144                 found = false;
145                 for (tv=ctdb->vnn; tv; tv=tv->next) {
146                         if (vnn_has_interface_with_name(tv, i->name)) {
147                                 found = true;
148                                 break;
149                         }
150                 }
151
152                 if (!found) {
153                         /* None of the VNNs are using this interface. */
154                         DLIST_REMOVE(ctdb->ifaces, i);
155                         /* Caller will free mem_ctx when convenient. */
156                         talloc_steal(mem_ctx, i);
157                 }
158         }
159 }
160
161
162 static struct ctdb_iface *ctdb_find_iface(struct ctdb_context *ctdb,
163                                           const char *iface)
164 {
165         struct ctdb_iface *i;
166
167         for (i=ctdb->ifaces;i;i=i->next) {
168                 if (strcmp(i->name, iface) == 0) {
169                         return i;
170                 }
171         }
172
173         return NULL;
174 }
175
176 static struct ctdb_iface *ctdb_vnn_best_iface(struct ctdb_context *ctdb,
177                                               struct ctdb_vnn *vnn)
178 {
179         int i;
180         struct ctdb_iface *cur = NULL;
181         struct ctdb_iface *best = NULL;
182
183         for (i=0; vnn->ifaces[i]; i++) {
184
185                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
186                 if (cur == NULL) {
187                         continue;
188                 }
189
190                 if (!cur->link_up) {
191                         continue;
192                 }
193
194                 if (best == NULL) {
195                         best = cur;
196                         continue;
197                 }
198
199                 if (cur->references < best->references) {
200                         best = cur;
201                         continue;
202                 }
203         }
204
205         return best;
206 }
207
208 static int32_t ctdb_vnn_assign_iface(struct ctdb_context *ctdb,
209                                      struct ctdb_vnn *vnn)
210 {
211         struct ctdb_iface *best = NULL;
212
213         if (vnn->iface) {
214                 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
215                                    "still assigned to iface '%s'\n",
216                                    ctdb_addr_to_str(&vnn->public_address),
217                                    ctdb_vnn_iface_string(vnn)));
218                 return 0;
219         }
220
221         best = ctdb_vnn_best_iface(ctdb, vnn);
222         if (best == NULL) {
223                 DEBUG(DEBUG_ERR, (__location__ " public address '%s' "
224                                   "cannot assign to iface any iface\n",
225                                   ctdb_addr_to_str(&vnn->public_address)));
226                 return -1;
227         }
228
229         vnn->iface = best;
230         best->references++;
231         vnn->pnn = ctdb->pnn;
232
233         DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
234                            "now assigned to iface '%s' refs[%d]\n",
235                            ctdb_addr_to_str(&vnn->public_address),
236                            ctdb_vnn_iface_string(vnn),
237                            best->references));
238         return 0;
239 }
240
241 static void ctdb_vnn_unassign_iface(struct ctdb_context *ctdb,
242                                     struct ctdb_vnn *vnn)
243 {
244         DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
245                            "now unassigned (old iface '%s' refs[%d])\n",
246                            ctdb_addr_to_str(&vnn->public_address),
247                            ctdb_vnn_iface_string(vnn),
248                            vnn->iface?vnn->iface->references:0));
249         if (vnn->iface) {
250                 vnn->iface->references--;
251         }
252         vnn->iface = NULL;
253         if (vnn->pnn == ctdb->pnn) {
254                 vnn->pnn = -1;
255         }
256 }
257
258 static bool ctdb_vnn_available(struct ctdb_context *ctdb,
259                                struct ctdb_vnn *vnn)
260 {
261         int i;
262
263         if (vnn->iface && vnn->iface->link_up) {
264                 return true;
265         }
266
267         for (i=0; vnn->ifaces[i]; i++) {
268                 struct ctdb_iface *cur;
269
270                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
271                 if (cur == NULL) {
272                         continue;
273                 }
274
275                 if (cur->link_up) {
276                         return true;
277                 }
278         }
279
280         return false;
281 }
282
283 struct ctdb_takeover_arp {
284         struct ctdb_context *ctdb;
285         uint32_t count;
286         ctdb_sock_addr addr;
287         struct ctdb_tcp_array *tcparray;
288         struct ctdb_vnn *vnn;
289 };
290
291
292 /*
293   lists of tcp endpoints
294  */
295 struct ctdb_tcp_list {
296         struct ctdb_tcp_list *prev, *next;
297         struct ctdb_tcp_connection connection;
298 };
299
300 /*
301   list of clients to kill on IP release
302  */
303 struct ctdb_client_ip {
304         struct ctdb_client_ip *prev, *next;
305         struct ctdb_context *ctdb;
306         ctdb_sock_addr addr;
307         uint32_t client_id;
308 };
309
310
311 /*
312   send a gratuitous arp
313  */
314 static void ctdb_control_send_arp(struct event_context *ev, struct timed_event *te, 
315                                   struct timeval t, void *private_data)
316 {
317         struct ctdb_takeover_arp *arp = talloc_get_type(private_data, 
318                                                         struct ctdb_takeover_arp);
319         int i, ret;
320         struct ctdb_tcp_array *tcparray;
321         const char *iface = ctdb_vnn_iface_string(arp->vnn);
322
323         ret = ctdb_sys_send_arp(&arp->addr, iface);
324         if (ret != 0) {
325                 DEBUG(DEBUG_CRIT,(__location__ " sending of arp failed on iface '%s' (%s)\n",
326                                   iface, strerror(errno)));
327         }
328
329         tcparray = arp->tcparray;
330         if (tcparray) {
331                 for (i=0;i<tcparray->num;i++) {
332                         struct ctdb_tcp_connection *tcon;
333
334                         tcon = &tcparray->connections[i];
335                         DEBUG(DEBUG_INFO,("sending tcp tickle ack for %u->%s:%u\n",
336                                 (unsigned)ntohs(tcon->dst_addr.ip.sin_port), 
337                                 ctdb_addr_to_str(&tcon->src_addr),
338                                 (unsigned)ntohs(tcon->src_addr.ip.sin_port)));
339                         ret = ctdb_sys_send_tcp(
340                                 &tcon->src_addr, 
341                                 &tcon->dst_addr,
342                                 0, 0, 0);
343                         if (ret != 0) {
344                                 DEBUG(DEBUG_CRIT,(__location__ " Failed to send tcp tickle ack for %s\n",
345                                         ctdb_addr_to_str(&tcon->src_addr)));
346                         }
347                 }
348         }
349
350         arp->count++;
351
352         if (arp->count == CTDB_ARP_REPEAT) {
353                 talloc_free(arp);
354                 return;
355         }
356
357         event_add_timed(arp->ctdb->ev, arp->vnn->takeover_ctx, 
358                         timeval_current_ofs(CTDB_ARP_INTERVAL, 100000), 
359                         ctdb_control_send_arp, arp);
360 }
361
362 static int32_t ctdb_announce_vnn_iface(struct ctdb_context *ctdb,
363                                        struct ctdb_vnn *vnn)
364 {
365         struct ctdb_takeover_arp *arp;
366         struct ctdb_tcp_array *tcparray;
367
368         if (!vnn->takeover_ctx) {
369                 vnn->takeover_ctx = talloc_new(vnn);
370                 if (!vnn->takeover_ctx) {
371                         return -1;
372                 }
373         }
374
375         arp = talloc_zero(vnn->takeover_ctx, struct ctdb_takeover_arp);
376         if (!arp) {
377                 return -1;
378         }
379
380         arp->ctdb = ctdb;
381         arp->addr = vnn->public_address;
382         arp->vnn  = vnn;
383
384         tcparray = vnn->tcp_array;
385         if (tcparray) {
386                 /* add all of the known tcp connections for this IP to the
387                    list of tcp connections to send tickle acks for */
388                 arp->tcparray = talloc_steal(arp, tcparray);
389
390                 vnn->tcp_array = NULL;
391                 vnn->tcp_update_needed = true;
392         }
393
394         event_add_timed(arp->ctdb->ev, vnn->takeover_ctx,
395                         timeval_zero(), ctdb_control_send_arp, arp);
396
397         return 0;
398 }
399
400 struct takeover_callback_state {
401         struct ctdb_req_control *c;
402         ctdb_sock_addr *addr;
403         struct ctdb_vnn *vnn;
404 };
405
406 struct ctdb_do_takeip_state {
407         struct ctdb_req_control *c;
408         struct ctdb_vnn *vnn;
409 };
410
411 /*
412   called when takeip event finishes
413  */
414 static void ctdb_do_takeip_callback(struct ctdb_context *ctdb, int status,
415                                     void *private_data)
416 {
417         struct ctdb_do_takeip_state *state =
418                 talloc_get_type(private_data, struct ctdb_do_takeip_state);
419         int32_t ret;
420         TDB_DATA data;
421
422         if (status != 0) {
423                 struct ctdb_node *node = ctdb->nodes[ctdb->pnn];
424         
425                 if (status == -ETIME) {
426                         ctdb_ban_self(ctdb);
427                 }
428                 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
429                                  ctdb_addr_to_str(&state->vnn->public_address),
430                                  ctdb_vnn_iface_string(state->vnn)));
431                 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
432
433                 node->flags |= NODE_FLAGS_UNHEALTHY;
434                 talloc_free(state);
435                 return;
436         }
437
438         if (ctdb->do_checkpublicip) {
439
440         ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
441         if (ret != 0) {
442                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
443                 talloc_free(state);
444                 return;
445         }
446
447         }
448
449         data.dptr  = (uint8_t *)ctdb_addr_to_str(&state->vnn->public_address);
450         data.dsize = strlen((char *)data.dptr) + 1;
451         DEBUG(DEBUG_INFO,(__location__ " sending TAKE_IP for '%s'\n", data.dptr));
452
453         ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_TAKE_IP, data);
454
455
456         /* the control succeeded */
457         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
458         talloc_free(state);
459         return;
460 }
461
462 static int ctdb_takeip_destructor(struct ctdb_do_takeip_state *state)
463 {
464         state->vnn->update_in_flight = false;
465         return 0;
466 }
467
468 /*
469   take over an ip address
470  */
471 static int32_t ctdb_do_takeip(struct ctdb_context *ctdb,
472                               struct ctdb_req_control *c,
473                               struct ctdb_vnn *vnn)
474 {
475         int ret;
476         struct ctdb_do_takeip_state *state;
477
478         if (vnn->update_in_flight) {
479                 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u rejected "
480                                     "update for this IP already in flight\n",
481                                     ctdb_addr_to_str(&vnn->public_address),
482                                     vnn->public_netmask_bits));
483                 return -1;
484         }
485
486         ret = ctdb_vnn_assign_iface(ctdb, vnn);
487         if (ret != 0) {
488                 DEBUG(DEBUG_ERR,("Takeover of IP %s/%u failed to "
489                                  "assign a usable interface\n",
490                                  ctdb_addr_to_str(&vnn->public_address),
491                                  vnn->public_netmask_bits));
492                 return -1;
493         }
494
495         state = talloc(vnn, struct ctdb_do_takeip_state);
496         CTDB_NO_MEMORY(ctdb, state);
497
498         state->c = talloc_steal(ctdb, c);
499         state->vnn   = vnn;
500
501         vnn->update_in_flight = true;
502         talloc_set_destructor(state, ctdb_takeip_destructor);
503
504         DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u on interface %s\n",
505                             ctdb_addr_to_str(&vnn->public_address),
506                             vnn->public_netmask_bits,
507                             ctdb_vnn_iface_string(vnn)));
508
509         ret = ctdb_event_script_callback(ctdb,
510                                          state,
511                                          ctdb_do_takeip_callback,
512                                          state,
513                                          CTDB_EVENT_TAKE_IP,
514                                          "%s %s %u",
515                                          ctdb_vnn_iface_string(vnn),
516                                          ctdb_addr_to_str(&vnn->public_address),
517                                          vnn->public_netmask_bits);
518
519         if (ret != 0) {
520                 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
521                         ctdb_addr_to_str(&vnn->public_address),
522                         ctdb_vnn_iface_string(vnn)));
523                 talloc_free(state);
524                 return -1;
525         }
526
527         return 0;
528 }
529
530 struct ctdb_do_updateip_state {
531         struct ctdb_req_control *c;
532         struct ctdb_iface *old;
533         struct ctdb_vnn *vnn;
534 };
535
536 /*
537   called when updateip event finishes
538  */
539 static void ctdb_do_updateip_callback(struct ctdb_context *ctdb, int status,
540                                       void *private_data)
541 {
542         struct ctdb_do_updateip_state *state =
543                 talloc_get_type(private_data, struct ctdb_do_updateip_state);
544         int32_t ret;
545
546         if (status != 0) {
547                 if (status == -ETIME) {
548                         ctdb_ban_self(ctdb);
549                 }
550                 DEBUG(DEBUG_ERR,(__location__ " Failed to move IP %s from interface %s to %s\n",
551                         ctdb_addr_to_str(&state->vnn->public_address),
552                         state->old->name,
553                         ctdb_vnn_iface_string(state->vnn)));
554
555                 /*
556                  * All we can do is reset the old interface
557                  * and let the next run fix it
558                  */
559                 ctdb_vnn_unassign_iface(ctdb, state->vnn);
560                 state->vnn->iface = state->old;
561                 state->vnn->iface->references++;
562
563                 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
564                 talloc_free(state);
565                 return;
566         }
567
568         if (ctdb->do_checkpublicip) {
569
570         ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
571         if (ret != 0) {
572                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
573                 talloc_free(state);
574                 return;
575         }
576
577         }
578
579         /* the control succeeded */
580         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
581         talloc_free(state);
582         return;
583 }
584
585 static int ctdb_updateip_destructor(struct ctdb_do_updateip_state *state)
586 {
587         state->vnn->update_in_flight = false;
588         return 0;
589 }
590
591 /*
592   update (move) an ip address
593  */
594 static int32_t ctdb_do_updateip(struct ctdb_context *ctdb,
595                                 struct ctdb_req_control *c,
596                                 struct ctdb_vnn *vnn)
597 {
598         int ret;
599         struct ctdb_do_updateip_state *state;
600         struct ctdb_iface *old = vnn->iface;
601         const char *new_name;
602
603         if (vnn->update_in_flight) {
604                 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u rejected "
605                                     "update for this IP already in flight\n",
606                                     ctdb_addr_to_str(&vnn->public_address),
607                                     vnn->public_netmask_bits));
608                 return -1;
609         }
610
611         ctdb_vnn_unassign_iface(ctdb, vnn);
612         ret = ctdb_vnn_assign_iface(ctdb, vnn);
613         if (ret != 0) {
614                 DEBUG(DEBUG_ERR,("update of IP %s/%u failed to "
615                                  "assin a usable interface (old iface '%s')\n",
616                                  ctdb_addr_to_str(&vnn->public_address),
617                                  vnn->public_netmask_bits,
618                                  old->name));
619                 return -1;
620         }
621
622         new_name = ctdb_vnn_iface_string(vnn);
623         if (old->name != NULL && new_name != NULL && !strcmp(old->name, new_name)) {
624                 /* A benign update from one interface onto itself.
625                  * no need to run the eventscripts in this case, just return
626                  * success.
627                  */
628                 ctdb_request_control_reply(ctdb, c, NULL, 0, NULL);
629                 return 0;
630         }
631
632         state = talloc(vnn, struct ctdb_do_updateip_state);
633         CTDB_NO_MEMORY(ctdb, state);
634
635         state->c = talloc_steal(ctdb, c);
636         state->old = old;
637         state->vnn = vnn;
638
639         vnn->update_in_flight = true;
640         talloc_set_destructor(state, ctdb_updateip_destructor);
641
642         DEBUG(DEBUG_NOTICE,("Update of IP %s/%u from "
643                             "interface %s to %s\n",
644                             ctdb_addr_to_str(&vnn->public_address),
645                             vnn->public_netmask_bits,
646                             old->name,
647                             new_name));
648
649         ret = ctdb_event_script_callback(ctdb,
650                                          state,
651                                          ctdb_do_updateip_callback,
652                                          state,
653                                          CTDB_EVENT_UPDATE_IP,
654                                          "%s %s %s %u",
655                                          state->old->name,
656                                          new_name,
657                                          ctdb_addr_to_str(&vnn->public_address),
658                                          vnn->public_netmask_bits);
659         if (ret != 0) {
660                 DEBUG(DEBUG_ERR,(__location__ " Failed update IP %s from interface %s to %s\n",
661                                  ctdb_addr_to_str(&vnn->public_address),
662                                  old->name, new_name));
663                 talloc_free(state);
664                 return -1;
665         }
666
667         return 0;
668 }
669
670 /*
671   Find the vnn of the node that has a public ip address
672   returns -1 if the address is not known as a public address
673  */
674 static struct ctdb_vnn *find_public_ip_vnn(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
675 {
676         struct ctdb_vnn *vnn;
677
678         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
679                 if (ctdb_same_ip(&vnn->public_address, addr)) {
680                         return vnn;
681                 }
682         }
683
684         return NULL;
685 }
686
687 /*
688   take over an ip address
689  */
690 int32_t ctdb_control_takeover_ip(struct ctdb_context *ctdb,
691                                  struct ctdb_req_control *c,
692                                  TDB_DATA indata,
693                                  bool *async_reply)
694 {
695         int ret;
696         struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
697         struct ctdb_vnn *vnn;
698         bool have_ip = false;
699         bool do_updateip = false;
700         bool do_takeip = false;
701         struct ctdb_iface *best_iface = NULL;
702
703         if (pip->pnn != ctdb->pnn) {
704                 DEBUG(DEBUG_ERR,(__location__" takeoverip called for an ip '%s' "
705                                  "with pnn %d, but we're node %d\n",
706                                  ctdb_addr_to_str(&pip->addr),
707                                  pip->pnn, ctdb->pnn));
708                 return -1;
709         }
710
711         /* update out vnn list */
712         vnn = find_public_ip_vnn(ctdb, &pip->addr);
713         if (vnn == NULL) {
714                 DEBUG(DEBUG_INFO,("takeoverip called for an ip '%s' that is not a public address\n",
715                         ctdb_addr_to_str(&pip->addr)));
716                 return 0;
717         }
718
719         if (ctdb->do_checkpublicip) {
720                 have_ip = ctdb_sys_have_ip(&pip->addr);
721         }
722         best_iface = ctdb_vnn_best_iface(ctdb, vnn);
723         if (best_iface == NULL) {
724                 DEBUG(DEBUG_ERR,("takeoverip of IP %s/%u failed to find"
725                                  "a usable interface (old %s, have_ip %d)\n",
726                                  ctdb_addr_to_str(&vnn->public_address),
727                                  vnn->public_netmask_bits,
728                                  ctdb_vnn_iface_string(vnn),
729                                  have_ip));
730                 return -1;
731         }
732
733         if (vnn->iface == NULL && vnn->pnn == -1 && have_ip && best_iface != NULL) {
734                 DEBUG(DEBUG_ERR,("Taking over newly created ip\n"));
735                 have_ip = false;
736         }
737
738
739         if (vnn->iface == NULL && have_ip) {
740                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
741                                   "but we have no interface assigned, has someone manually configured it? Ignore for now.\n",
742                                  ctdb_addr_to_str(&vnn->public_address)));
743                 return 0;
744         }
745
746         if (vnn->pnn != ctdb->pnn && have_ip && vnn->pnn != -1) {
747                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
748                                   "and we have it on iface[%s], but it was assigned to node %d"
749                                   "and we are node %d, banning ourself\n",
750                                  ctdb_addr_to_str(&vnn->public_address),
751                                  ctdb_vnn_iface_string(vnn), vnn->pnn, ctdb->pnn));
752                 ctdb_ban_self(ctdb);
753                 return -1;
754         }
755
756         if (vnn->pnn == -1 && have_ip) {
757                 vnn->pnn = ctdb->pnn;
758                 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
759                                   "and we already have it on iface[%s], update local daemon\n",
760                                  ctdb_addr_to_str(&vnn->public_address),
761                                   ctdb_vnn_iface_string(vnn)));
762                 return 0;
763         }
764
765         if (vnn->iface) {
766                 if (vnn->iface != best_iface) {
767                         if (!vnn->iface->link_up) {
768                                 do_updateip = true;
769                         } else if (vnn->iface->references > (best_iface->references + 1)) {
770                                 /* only move when the rebalance gains something */
771                                         do_updateip = true;
772                         }
773                 }
774         }
775
776         if (!have_ip) {
777                 if (do_updateip) {
778                         ctdb_vnn_unassign_iface(ctdb, vnn);
779                         do_updateip = false;
780                 }
781                 do_takeip = true;
782         }
783
784         if (do_takeip) {
785                 ret = ctdb_do_takeip(ctdb, c, vnn);
786                 if (ret != 0) {
787                         return -1;
788                 }
789         } else if (do_updateip) {
790                 ret = ctdb_do_updateip(ctdb, c, vnn);
791                 if (ret != 0) {
792                         return -1;
793                 }
794         } else {
795                 /*
796                  * The interface is up and the kernel known the ip
797                  * => do nothing
798                  */
799                 DEBUG(DEBUG_INFO,("Redundant takeover of IP %s/%u on interface %s (ip already held)\n",
800                         ctdb_addr_to_str(&pip->addr),
801                         vnn->public_netmask_bits,
802                         ctdb_vnn_iface_string(vnn)));
803                 return 0;
804         }
805
806         /* tell ctdb_control.c that we will be replying asynchronously */
807         *async_reply = true;
808
809         return 0;
810 }
811
812 /*
813   takeover an ip address old v4 style
814  */
815 int32_t ctdb_control_takeover_ipv4(struct ctdb_context *ctdb, 
816                                 struct ctdb_req_control *c,
817                                 TDB_DATA indata, 
818                                 bool *async_reply)
819 {
820         TDB_DATA data;
821         
822         data.dsize = sizeof(struct ctdb_public_ip);
823         data.dptr  = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
824         CTDB_NO_MEMORY(ctdb, data.dptr);
825         
826         memcpy(data.dptr, indata.dptr, indata.dsize);
827         return ctdb_control_takeover_ip(ctdb, c, data, async_reply);
828 }
829
830 /*
831   kill any clients that are registered with a IP that is being released
832  */
833 static void release_kill_clients(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
834 {
835         struct ctdb_client_ip *ip;
836
837         DEBUG(DEBUG_INFO,("release_kill_clients for ip %s\n",
838                 ctdb_addr_to_str(addr)));
839
840         for (ip=ctdb->client_ip_list; ip; ip=ip->next) {
841                 ctdb_sock_addr tmp_addr;
842
843                 tmp_addr = ip->addr;
844                 DEBUG(DEBUG_INFO,("checking for client %u with IP %s\n", 
845                         ip->client_id,
846                         ctdb_addr_to_str(&ip->addr)));
847
848                 if (ctdb_same_ip(&tmp_addr, addr)) {
849                         struct ctdb_client *client = ctdb_reqid_find(ctdb, 
850                                                                      ip->client_id, 
851                                                                      struct ctdb_client);
852                         DEBUG(DEBUG_INFO,("matched client %u with IP %s and pid %u\n", 
853                                 ip->client_id,
854                                 ctdb_addr_to_str(&ip->addr),
855                                 client->pid));
856
857                         if (client->pid != 0) {
858                                 DEBUG(DEBUG_INFO,(__location__ " Killing client pid %u for IP %s on client_id %u\n",
859                                         (unsigned)client->pid,
860                                         ctdb_addr_to_str(addr),
861                                         ip->client_id));
862                                 kill(client->pid, SIGKILL);
863                         }
864                 }
865         }
866 }
867
868 /*
869   called when releaseip event finishes
870  */
871 static void release_ip_callback(struct ctdb_context *ctdb, int status, 
872                                 void *private_data)
873 {
874         struct takeover_callback_state *state = 
875                 talloc_get_type(private_data, struct takeover_callback_state);
876         TDB_DATA data;
877
878         if (status == -ETIME) {
879                 ctdb_ban_self(ctdb);
880         }
881
882         if (ctdb->do_checkpublicip && ctdb_sys_have_ip(state->addr)) {
883                 DEBUG(DEBUG_ERR, ("IP %s still hosted during release IP callback, failing\n",
884                                   ctdb_addr_to_str(state->addr)));
885                 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
886                 talloc_free(state);
887                 return;
888         }
889
890         /* send a message to all clients of this node telling them
891            that the cluster has been reconfigured and they should
892            release any sockets on this IP */
893         data.dptr = (uint8_t *)talloc_strdup(state, ctdb_addr_to_str(state->addr));
894         CTDB_NO_MEMORY_VOID(ctdb, data.dptr);
895         data.dsize = strlen((char *)data.dptr)+1;
896
897         DEBUG(DEBUG_INFO,(__location__ " sending RELEASE_IP for '%s'\n", data.dptr));
898
899         ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_RELEASE_IP, data);
900
901         /* kill clients that have registered with this IP */
902         release_kill_clients(ctdb, state->addr);
903
904         ctdb_vnn_unassign_iface(ctdb, state->vnn);
905
906         /* the control succeeded */
907         ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
908         talloc_free(state);
909 }
910
911 static int ctdb_releaseip_destructor(struct takeover_callback_state *state)
912 {
913         state->vnn->update_in_flight = false;
914         return 0;
915 }
916
917 /*
918   release an ip address
919  */
920 int32_t ctdb_control_release_ip(struct ctdb_context *ctdb, 
921                                 struct ctdb_req_control *c,
922                                 TDB_DATA indata, 
923                                 bool *async_reply)
924 {
925         int ret;
926         struct takeover_callback_state *state;
927         struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
928         struct ctdb_vnn *vnn;
929         char *iface;
930
931         /* update our vnn list */
932         vnn = find_public_ip_vnn(ctdb, &pip->addr);
933         if (vnn == NULL) {
934                 DEBUG(DEBUG_INFO,("releaseip called for an ip '%s' that is not a public address\n",
935                         ctdb_addr_to_str(&pip->addr)));
936                 return 0;
937         }
938         vnn->pnn = pip->pnn;
939
940         /* stop any previous arps */
941         talloc_free(vnn->takeover_ctx);
942         vnn->takeover_ctx = NULL;
943
944         /* Some ctdb tool commands (e.g. moveip, rebalanceip) send
945          * lazy multicast to drop an IP from any node that isn't the
946          * intended new node.  The following causes makes ctdbd ignore
947          * a release for any address it doesn't host.
948          */
949         if (ctdb->do_checkpublicip) {
950                 if (!ctdb_sys_have_ip(&pip->addr)) {
951                         DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u on interface %s (ip not held)\n",
952                                 ctdb_addr_to_str(&pip->addr),
953                                 vnn->public_netmask_bits,
954                                 ctdb_vnn_iface_string(vnn)));
955                         ctdb_vnn_unassign_iface(ctdb, vnn);
956                         return 0;
957                 }
958         } else {
959                 if (vnn->iface == NULL) {
960                         DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u (ip not held)\n",
961                                            ctdb_addr_to_str(&pip->addr),
962                                            vnn->public_netmask_bits));
963                         return 0;
964                 }
965         }
966
967         /* There is a potential race between take_ip and us because we
968          * update the VNN via a callback that run when the
969          * eventscripts have been run.  Avoid the race by allowing one
970          * update to be in flight at a time.
971          */
972         if (vnn->update_in_flight) {
973                 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u rejected "
974                                     "update for this IP already in flight\n",
975                                     ctdb_addr_to_str(&vnn->public_address),
976                                     vnn->public_netmask_bits));
977                 return -1;
978         }
979
980         if (ctdb->do_checkpublicip) {
981                 iface = ctdb_sys_find_ifname(&pip->addr);
982                 if (iface == NULL) {
983                         DEBUG(DEBUG_ERR, ("Could not find which interface the ip address is hosted on. can not release it\n"));
984                         return 0;
985                 }
986                 if (vnn->iface == NULL) {
987                         DEBUG(DEBUG_WARNING,
988                               ("Public IP %s is hosted on interface %s but we have no VNN\n",
989                                ctdb_addr_to_str(&pip->addr),
990                                iface));
991                 } else if (strcmp(iface, ctdb_vnn_iface_string(vnn)) != 0) {
992                         DEBUG(DEBUG_WARNING,
993                               ("Public IP %s is hosted on inteterface %s but VNN says %s\n",
994                                ctdb_addr_to_str(&pip->addr),
995                                iface,
996                                ctdb_vnn_iface_string(vnn)));
997                         /* Should we fix vnn->iface?  If we do, what
998                          * happens to reference counts?
999                          */
1000                 }
1001         } else {
1002                 iface = strdup(ctdb_vnn_iface_string(vnn));
1003         }
1004
1005         DEBUG(DEBUG_NOTICE,("Release of IP %s/%u on interface %s  node:%d\n",
1006                 ctdb_addr_to_str(&pip->addr),
1007                 vnn->public_netmask_bits,
1008                 iface,
1009                 pip->pnn));
1010
1011         state = talloc(ctdb, struct takeover_callback_state);
1012         CTDB_NO_MEMORY(ctdb, state);
1013
1014         state->c = talloc_steal(state, c);
1015         state->addr = talloc(state, ctdb_sock_addr);       
1016         CTDB_NO_MEMORY(ctdb, state->addr);
1017         *state->addr = pip->addr;
1018         state->vnn   = vnn;
1019
1020         vnn->update_in_flight = true;
1021         talloc_set_destructor(state, ctdb_releaseip_destructor);
1022
1023         ret = ctdb_event_script_callback(ctdb, 
1024                                          state, release_ip_callback, state,
1025                                          CTDB_EVENT_RELEASE_IP,
1026                                          "%s %s %u",
1027                                          iface,
1028                                          ctdb_addr_to_str(&pip->addr),
1029                                          vnn->public_netmask_bits);
1030         free(iface);
1031         if (ret != 0) {
1032                 DEBUG(DEBUG_ERR,(__location__ " Failed to release IP %s on interface %s\n",
1033                         ctdb_addr_to_str(&pip->addr),
1034                         ctdb_vnn_iface_string(vnn)));
1035                 talloc_free(state);
1036                 return -1;
1037         }
1038
1039         /* tell the control that we will be reply asynchronously */
1040         *async_reply = true;
1041         return 0;
1042 }
1043
1044 /*
1045   release an ip address old v4 style
1046  */
1047 int32_t ctdb_control_release_ipv4(struct ctdb_context *ctdb, 
1048                                 struct ctdb_req_control *c,
1049                                 TDB_DATA indata, 
1050                                 bool *async_reply)
1051 {
1052         TDB_DATA data;
1053         
1054         data.dsize = sizeof(struct ctdb_public_ip);
1055         data.dptr  = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
1056         CTDB_NO_MEMORY(ctdb, data.dptr);
1057         
1058         memcpy(data.dptr, indata.dptr, indata.dsize);
1059         return ctdb_control_release_ip(ctdb, c, data, async_reply);
1060 }
1061
1062
1063 static int ctdb_add_public_address(struct ctdb_context *ctdb,
1064                                    ctdb_sock_addr *addr,
1065                                    unsigned mask, const char *ifaces,
1066                                    bool check_address)
1067 {
1068         struct ctdb_vnn      *vnn;
1069         uint32_t num = 0;
1070         char *tmp;
1071         const char *iface;
1072         int i;
1073         int ret;
1074
1075         tmp = strdup(ifaces);
1076         for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1077                 if (!ctdb_sys_check_iface_exists(iface)) {
1078                         DEBUG(DEBUG_CRIT,("Interface %s does not exist. Can not add public-address : %s\n", iface, ctdb_addr_to_str(addr)));
1079                         free(tmp);
1080                         return -1;
1081                 }
1082         }
1083         free(tmp);
1084
1085         /* Verify that we dont have an entry for this ip yet */
1086         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1087                 if (ctdb_same_sockaddr(addr, &vnn->public_address)) {
1088                         DEBUG(DEBUG_CRIT,("Same ip '%s' specified multiple times in the public address list \n", 
1089                                 ctdb_addr_to_str(addr)));
1090                         return -1;
1091                 }               
1092         }
1093
1094         /* create a new vnn structure for this ip address */
1095         vnn = talloc_zero(ctdb, struct ctdb_vnn);
1096         CTDB_NO_MEMORY_FATAL(ctdb, vnn);
1097         vnn->ifaces = talloc_array(vnn, const char *, num + 2);
1098         tmp = talloc_strdup(vnn, ifaces);
1099         CTDB_NO_MEMORY_FATAL(ctdb, tmp);
1100         for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1101                 vnn->ifaces = talloc_realloc(vnn, vnn->ifaces, const char *, num + 2);
1102                 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces);
1103                 vnn->ifaces[num] = talloc_strdup(vnn, iface);
1104                 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces[num]);
1105                 num++;
1106         }
1107         talloc_free(tmp);
1108         vnn->ifaces[num] = NULL;
1109         vnn->public_address      = *addr;
1110         vnn->public_netmask_bits = mask;
1111         vnn->pnn                 = -1;
1112         if (check_address) {
1113                 if (ctdb_sys_have_ip(addr)) {
1114                         DEBUG(DEBUG_ERR,("We are already hosting public address '%s'. setting PNN to ourself:%d\n", ctdb_addr_to_str(addr), ctdb->pnn));
1115                         vnn->pnn = ctdb->pnn;
1116                 }
1117         }
1118
1119         for (i=0; vnn->ifaces[i]; i++) {
1120                 ret = ctdb_add_local_iface(ctdb, vnn->ifaces[i]);
1121                 if (ret != 0) {
1122                         DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1123                                            "for public_address[%s]\n",
1124                                            vnn->ifaces[i], ctdb_addr_to_str(addr)));
1125                         talloc_free(vnn);
1126                         return -1;
1127                 }
1128         }
1129
1130         DLIST_ADD(ctdb->vnn, vnn);
1131
1132         return 0;
1133 }
1134
1135 static void ctdb_check_interfaces_event(struct event_context *ev, struct timed_event *te, 
1136                                   struct timeval t, void *private_data)
1137 {
1138         struct ctdb_context *ctdb = talloc_get_type(private_data, 
1139                                                         struct ctdb_context);
1140         struct ctdb_vnn *vnn;
1141
1142         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1143                 int i;
1144
1145                 for (i=0; vnn->ifaces[i] != NULL; i++) {
1146                         if (!ctdb_sys_check_iface_exists(vnn->ifaces[i])) {
1147                                 DEBUG(DEBUG_CRIT,("Interface %s does not exist but is used by public ip %s\n",
1148                                         vnn->ifaces[i],
1149                                         ctdb_addr_to_str(&vnn->public_address)));
1150                         }
1151                 }
1152         }
1153
1154         event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx, 
1155                 timeval_current_ofs(30, 0), 
1156                 ctdb_check_interfaces_event, ctdb);
1157 }
1158
1159
1160 int ctdb_start_monitoring_interfaces(struct ctdb_context *ctdb)
1161 {
1162         if (ctdb->check_public_ifaces_ctx != NULL) {
1163                 talloc_free(ctdb->check_public_ifaces_ctx);
1164                 ctdb->check_public_ifaces_ctx = NULL;
1165         }
1166
1167         ctdb->check_public_ifaces_ctx = talloc_new(ctdb);
1168         if (ctdb->check_public_ifaces_ctx == NULL) {
1169                 ctdb_fatal(ctdb, "failed to allocate context for checking interfaces");
1170         }
1171
1172         event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx, 
1173                 timeval_current_ofs(30, 0), 
1174                 ctdb_check_interfaces_event, ctdb);
1175
1176         return 0;
1177 }
1178
1179
1180 /*
1181   setup the public address lists from a file
1182 */
1183 int ctdb_set_public_addresses(struct ctdb_context *ctdb, bool check_addresses)
1184 {
1185         char **lines;
1186         int nlines;
1187         int i;
1188
1189         lines = file_lines_load(ctdb->public_addresses_file, &nlines, ctdb);
1190         if (lines == NULL) {
1191                 ctdb_set_error(ctdb, "Failed to load public address list '%s'\n", ctdb->public_addresses_file);
1192                 return -1;
1193         }
1194         while (nlines > 0 && strcmp(lines[nlines-1], "") == 0) {
1195                 nlines--;
1196         }
1197
1198         for (i=0;i<nlines;i++) {
1199                 unsigned mask;
1200                 ctdb_sock_addr addr;
1201                 const char *addrstr;
1202                 const char *ifaces;
1203                 char *tok, *line;
1204
1205                 line = lines[i];
1206                 while ((*line == ' ') || (*line == '\t')) {
1207                         line++;
1208                 }
1209                 if (*line == '#') {
1210                         continue;
1211                 }
1212                 if (strcmp(line, "") == 0) {
1213                         continue;
1214                 }
1215                 tok = strtok(line, " \t");
1216                 addrstr = tok;
1217                 tok = strtok(NULL, " \t");
1218                 if (tok == NULL) {
1219                         if (NULL == ctdb->default_public_interface) {
1220                                 DEBUG(DEBUG_CRIT,("No default public interface and no interface specified at line %u of public address list\n",
1221                                          i+1));
1222                                 talloc_free(lines);
1223                                 return -1;
1224                         }
1225                         ifaces = ctdb->default_public_interface;
1226                 } else {
1227                         ifaces = tok;
1228                 }
1229
1230                 if (!addrstr || !parse_ip_mask(addrstr, ifaces, &addr, &mask)) {
1231                         DEBUG(DEBUG_CRIT,("Badly formed line %u in public address list\n", i+1));
1232                         talloc_free(lines);
1233                         return -1;
1234                 }
1235                 if (ctdb_add_public_address(ctdb, &addr, mask, ifaces, check_addresses)) {
1236                         DEBUG(DEBUG_CRIT,("Failed to add line %u to the public address list\n", i+1));
1237                         talloc_free(lines);
1238                         return -1;
1239                 }
1240         }
1241
1242
1243         talloc_free(lines);
1244         return 0;
1245 }
1246
1247 int ctdb_set_single_public_ip(struct ctdb_context *ctdb,
1248                               const char *iface,
1249                               const char *ip)
1250 {
1251         struct ctdb_vnn *svnn;
1252         struct ctdb_iface *cur = NULL;
1253         bool ok;
1254         int ret;
1255
1256         svnn = talloc_zero(ctdb, struct ctdb_vnn);
1257         CTDB_NO_MEMORY(ctdb, svnn);
1258
1259         svnn->ifaces = talloc_array(svnn, const char *, 2);
1260         CTDB_NO_MEMORY(ctdb, svnn->ifaces);
1261         svnn->ifaces[0] = talloc_strdup(svnn->ifaces, iface);
1262         CTDB_NO_MEMORY(ctdb, svnn->ifaces[0]);
1263         svnn->ifaces[1] = NULL;
1264
1265         ok = parse_ip(ip, iface, 0, &svnn->public_address);
1266         if (!ok) {
1267                 talloc_free(svnn);
1268                 return -1;
1269         }
1270
1271         ret = ctdb_add_local_iface(ctdb, svnn->ifaces[0]);
1272         if (ret != 0) {
1273                 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1274                                    "for single_ip[%s]\n",
1275                                    svnn->ifaces[0],
1276                                    ctdb_addr_to_str(&svnn->public_address)));
1277                 talloc_free(svnn);
1278                 return -1;
1279         }
1280
1281         /* assume the single public ip interface is initially "good" */
1282         cur = ctdb_find_iface(ctdb, iface);
1283         if (cur == NULL) {
1284                 DEBUG(DEBUG_CRIT,("Can not find public interface %s used by --single-public-ip", iface));
1285                 return -1;
1286         }
1287         cur->link_up = true;
1288
1289         ret = ctdb_vnn_assign_iface(ctdb, svnn);
1290         if (ret != 0) {
1291                 talloc_free(svnn);
1292                 return -1;
1293         }
1294
1295         ctdb->single_ip_vnn = svnn;
1296         return 0;
1297 }
1298
1299 struct ctdb_public_ip_list {
1300         struct ctdb_public_ip_list *next;
1301         uint32_t pnn;
1302         ctdb_sock_addr addr;
1303 };
1304
1305 /* Given a physical node, return the number of
1306    public addresses that is currently assigned to this node.
1307 */
1308 static int node_ip_coverage(struct ctdb_context *ctdb, 
1309         int32_t pnn,
1310         struct ctdb_public_ip_list *ips)
1311 {
1312         int num=0;
1313
1314         for (;ips;ips=ips->next) {
1315                 if (ips->pnn == pnn) {
1316                         num++;
1317                 }
1318         }
1319         return num;
1320 }
1321
1322
1323 /* Can the given node host the given IP: is the public IP known to the
1324  * node and is NOIPHOST unset?
1325 */
1326 static bool can_node_host_ip(struct ctdb_context *ctdb, int32_t pnn, 
1327                              struct ctdb_ipflags ipflags,
1328                              struct ctdb_public_ip_list *ip)
1329 {
1330         struct ctdb_all_public_ips *public_ips;
1331         int i;
1332
1333         if (ipflags.noiphost) {
1334                 return false;
1335         }
1336
1337         public_ips = ctdb->nodes[pnn]->available_public_ips;
1338
1339         if (public_ips == NULL) {
1340                 return false;
1341         }
1342
1343         for (i=0; i<public_ips->num; i++) {
1344                 if (ctdb_same_ip(&ip->addr, &public_ips->ips[i].addr)) {
1345                         /* yes, this node can serve this public ip */
1346                         return true;
1347                 }
1348         }
1349
1350         return false;
1351 }
1352
1353 static bool can_node_takeover_ip(struct ctdb_context *ctdb, int32_t pnn, 
1354                                  struct ctdb_ipflags ipflags,
1355                                  struct ctdb_public_ip_list *ip)
1356 {
1357         if (ipflags.noiptakeover) {
1358                 return false;
1359         }
1360
1361         return can_node_host_ip(ctdb, pnn, ipflags, ip);
1362 }
1363
1364 /* search the node lists list for a node to takeover this ip.
1365    pick the node that currently are serving the least number of ips
1366    so that the ips get spread out evenly.
1367 */
1368 static int find_takeover_node(struct ctdb_context *ctdb, 
1369                 struct ctdb_ipflags *ipflags,
1370                 struct ctdb_public_ip_list *ip,
1371                 struct ctdb_public_ip_list *all_ips)
1372 {
1373         int pnn, min=0, num;
1374         int i, numnodes;
1375
1376         numnodes = talloc_array_length(ipflags);
1377         pnn    = -1;
1378         for (i=0; i<numnodes; i++) {
1379                 /* verify that this node can serve this ip */
1380                 if (!can_node_takeover_ip(ctdb, i, ipflags[i], ip)) {
1381                         /* no it couldnt   so skip to the next node */
1382                         continue;
1383                 }
1384
1385                 num = node_ip_coverage(ctdb, i, all_ips);
1386                 /* was this the first node we checked ? */
1387                 if (pnn == -1) {
1388                         pnn = i;
1389                         min  = num;
1390                 } else {
1391                         if (num < min) {
1392                                 pnn = i;
1393                                 min  = num;
1394                         }
1395                 }
1396         }       
1397         if (pnn == -1) {
1398                 DEBUG(DEBUG_WARNING,(__location__ " Could not find node to take over public address '%s'\n",
1399                         ctdb_addr_to_str(&ip->addr)));
1400
1401                 return -1;
1402         }
1403
1404         ip->pnn = pnn;
1405         return 0;
1406 }
1407
1408 #define IP_KEYLEN       4
1409 static uint32_t *ip_key(ctdb_sock_addr *ip)
1410 {
1411         static uint32_t key[IP_KEYLEN];
1412
1413         bzero(key, sizeof(key));
1414
1415         switch (ip->sa.sa_family) {
1416         case AF_INET:
1417                 key[3]  = htonl(ip->ip.sin_addr.s_addr);
1418                 break;
1419         case AF_INET6: {
1420                 uint32_t *s6_a32 = (uint32_t *)&(ip->ip6.sin6_addr.s6_addr);
1421                 key[0]  = htonl(s6_a32[0]);
1422                 key[1]  = htonl(s6_a32[1]);
1423                 key[2]  = htonl(s6_a32[2]);
1424                 key[3]  = htonl(s6_a32[3]);
1425                 break;
1426         }
1427         default:
1428                 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", ip->sa.sa_family));
1429                 return key;
1430         }
1431
1432         return key;
1433 }
1434
1435 static void *add_ip_callback(void *parm, void *data)
1436 {
1437         struct ctdb_public_ip_list *this_ip = parm; 
1438         struct ctdb_public_ip_list *prev_ip = data; 
1439
1440         if (prev_ip == NULL) {
1441                 return parm;
1442         }
1443         if (this_ip->pnn == -1) {
1444                 this_ip->pnn = prev_ip->pnn;
1445         }
1446
1447         return parm;
1448 }
1449
1450 static int getips_count_callback(void *param, void *data)
1451 {
1452         struct ctdb_public_ip_list **ip_list = (struct ctdb_public_ip_list **)param;
1453         struct ctdb_public_ip_list *new_ip = (struct ctdb_public_ip_list *)data;
1454
1455         new_ip->next = *ip_list;
1456         *ip_list     = new_ip;
1457         return 0;
1458 }
1459
1460 static struct ctdb_public_ip_list *
1461 create_merged_ip_list(struct ctdb_context *ctdb)
1462 {
1463         int i, j;
1464         struct ctdb_public_ip_list *ip_list;
1465         struct ctdb_all_public_ips *public_ips;
1466
1467         if (ctdb->ip_tree != NULL) {
1468                 talloc_free(ctdb->ip_tree);
1469                 ctdb->ip_tree = NULL;
1470         }
1471         ctdb->ip_tree = trbt_create(ctdb, 0);
1472
1473         for (i=0;i<ctdb->num_nodes;i++) {
1474                 public_ips = ctdb->nodes[i]->known_public_ips;
1475
1476                 if (ctdb->nodes[i]->flags & NODE_FLAGS_DELETED) {
1477                         continue;
1478                 }
1479
1480                 /* there were no public ips for this node */
1481                 if (public_ips == NULL) {
1482                         continue;
1483                 }               
1484
1485                 for (j=0;j<public_ips->num;j++) {
1486                         struct ctdb_public_ip_list *tmp_ip; 
1487
1488                         tmp_ip = talloc_zero(ctdb->ip_tree, struct ctdb_public_ip_list);
1489                         CTDB_NO_MEMORY_NULL(ctdb, tmp_ip);
1490                         /* Do not use information about IP addresses hosted
1491                          * on other nodes, it may not be accurate */
1492                         if (public_ips->ips[j].pnn == ctdb->nodes[i]->pnn) {
1493                                 tmp_ip->pnn = public_ips->ips[j].pnn;
1494                         } else {
1495                                 tmp_ip->pnn = -1;
1496                         }
1497                         tmp_ip->addr = public_ips->ips[j].addr;
1498                         tmp_ip->next = NULL;
1499
1500                         trbt_insertarray32_callback(ctdb->ip_tree,
1501                                 IP_KEYLEN, ip_key(&public_ips->ips[j].addr),
1502                                 add_ip_callback,
1503                                 tmp_ip);
1504                 }
1505         }
1506
1507         ip_list = NULL;
1508         trbt_traversearray32(ctdb->ip_tree, IP_KEYLEN, getips_count_callback, &ip_list);
1509
1510         return ip_list;
1511 }
1512
1513 /* 
1514  * This is the length of the longtest common prefix between the IPs.
1515  * It is calculated by XOR-ing the 2 IPs together and counting the
1516  * number of leading zeroes.  The implementation means that all
1517  * addresses end up being 128 bits long.
1518  *
1519  * FIXME? Should we consider IPv4 and IPv6 separately given that the
1520  * 12 bytes of 0 prefix padding will hurt the algorithm if there are
1521  * lots of nodes and IP addresses?
1522  */
1523 static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
1524 {
1525         uint32_t ip1_k[IP_KEYLEN];
1526         uint32_t *t;
1527         int i;
1528         uint32_t x;
1529
1530         uint32_t distance = 0;
1531
1532         memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
1533         t = ip_key(ip2);
1534         for (i=0; i<IP_KEYLEN; i++) {
1535                 x = ip1_k[i] ^ t[i];
1536                 if (x == 0) {
1537                         distance += 32;
1538                 } else {
1539                         /* Count number of leading zeroes. 
1540                          * FIXME? This could be optimised...
1541                          */
1542                         while ((x & (1 << 31)) == 0) {
1543                                 x <<= 1;
1544                                 distance += 1;
1545                         }
1546                 }
1547         }
1548
1549         return distance;
1550 }
1551
1552 /* Calculate the IP distance for the given IP relative to IPs on the
1553    given node.  The ips argument is generally the all_ips variable
1554    used in the main part of the algorithm.
1555  */
1556 static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
1557                                   struct ctdb_public_ip_list *ips,
1558                                   int pnn)
1559 {
1560         struct ctdb_public_ip_list *t;
1561         uint32_t d;
1562
1563         uint32_t sum = 0;
1564
1565         for (t=ips; t != NULL; t=t->next) {
1566                 if (t->pnn != pnn) {
1567                         continue;
1568                 }
1569
1570                 /* Optimisation: We never calculate the distance
1571                  * between an address and itself.  This allows us to
1572                  * calculate the effect of removing an address from a
1573                  * node by simply calculating the distance between
1574                  * that address and all of the exitsing addresses.
1575                  * Moreover, we assume that we're only ever dealing
1576                  * with addresses from all_ips so we can identify an
1577                  * address via a pointer rather than doing a more
1578                  * expensive address comparison. */
1579                 if (&(t->addr) == ip) {
1580                         continue;
1581                 }
1582
1583                 d = ip_distance(ip, &(t->addr));
1584                 sum += d * d;  /* Cheaper than pulling in math.h :-) */
1585         }
1586
1587         return sum;
1588 }
1589
1590 /* Return the LCP2 imbalance metric for addresses currently assigned
1591    to the given node.
1592  */
1593 static uint32_t lcp2_imbalance(struct ctdb_public_ip_list * all_ips, int pnn)
1594 {
1595         struct ctdb_public_ip_list *t;
1596
1597         uint32_t imbalance = 0;
1598
1599         for (t=all_ips; t!=NULL; t=t->next) {
1600                 if (t->pnn != pnn) {
1601                         continue;
1602                 }
1603                 /* Pass the rest of the IPs rather than the whole
1604                    all_ips input list.
1605                 */
1606                 imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
1607         }
1608
1609         return imbalance;
1610 }
1611
1612 /* Allocate any unassigned IPs just by looping through the IPs and
1613  * finding the best node for each.
1614  */
1615 static void basic_allocate_unassigned(struct ctdb_context *ctdb,
1616                                       struct ctdb_ipflags *ipflags,
1617                                       struct ctdb_public_ip_list *all_ips)
1618 {
1619         struct ctdb_public_ip_list *tmp_ip;
1620
1621         /* loop over all ip's and find a physical node to cover for 
1622            each unassigned ip.
1623         */
1624         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1625                 if (tmp_ip->pnn == -1) {
1626                         if (find_takeover_node(ctdb, ipflags, tmp_ip, all_ips)) {
1627                                 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1628                                         ctdb_addr_to_str(&tmp_ip->addr)));
1629                         }
1630                 }
1631         }
1632 }
1633
1634 /* Basic non-deterministic rebalancing algorithm.
1635  */
1636 static void basic_failback(struct ctdb_context *ctdb,
1637                            struct ctdb_ipflags *ipflags,
1638                            struct ctdb_public_ip_list *all_ips,
1639                            int num_ips)
1640 {
1641         int i, numnodes;
1642         int maxnode, maxnum, minnode, minnum, num, retries;
1643         struct ctdb_public_ip_list *tmp_ip;
1644
1645         numnodes = talloc_array_length(ipflags);
1646         retries = 0;
1647
1648 try_again:
1649         maxnum=0;
1650         minnum=0;
1651
1652         /* for each ip address, loop over all nodes that can serve
1653            this ip and make sure that the difference between the node
1654            serving the most and the node serving the least ip's are
1655            not greater than 1.
1656         */
1657         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1658                 if (tmp_ip->pnn == -1) {
1659                         continue;
1660                 }
1661
1662                 /* Get the highest and lowest number of ips's served by any 
1663                    valid node which can serve this ip.
1664                 */
1665                 maxnode = -1;
1666                 minnode = -1;
1667                 for (i=0; i<numnodes; i++) {
1668                         /* only check nodes that can actually serve this ip */
1669                         if (!can_node_takeover_ip(ctdb, i, ipflags[i], tmp_ip)) {
1670                                 /* no it couldnt   so skip to the next node */
1671                                 continue;
1672                         }
1673
1674                         num = node_ip_coverage(ctdb, i, all_ips);
1675                         if (maxnode == -1) {
1676                                 maxnode = i;
1677                                 maxnum  = num;
1678                         } else {
1679                                 if (num > maxnum) {
1680                                         maxnode = i;
1681                                         maxnum  = num;
1682                                 }
1683                         }
1684                         if (minnode == -1) {
1685                                 minnode = i;
1686                                 minnum  = num;
1687                         } else {
1688                                 if (num < minnum) {
1689                                         minnode = i;
1690                                         minnum  = num;
1691                                 }
1692                         }
1693                 }
1694                 if (maxnode == -1) {
1695                         DEBUG(DEBUG_WARNING,(__location__ " Could not find maxnode. May not be able to serve ip '%s'\n",
1696                                 ctdb_addr_to_str(&tmp_ip->addr)));
1697
1698                         continue;
1699                 }
1700
1701                 /* if the spread between the smallest and largest coverage by
1702                    a node is >=2 we steal one of the ips from the node with
1703                    most coverage to even things out a bit.
1704                    try to do this a limited number of times since we dont
1705                    want to spend too much time balancing the ip coverage.
1706                 */
1707                 if ( (maxnum > minnum+1)
1708                      && (retries < (num_ips + 5)) ){
1709                         struct ctdb_public_ip_list *tmp;
1710
1711                         /* Reassign one of maxnode's VNNs */
1712                         for (tmp=all_ips;tmp;tmp=tmp->next) {
1713                                 if (tmp->pnn == maxnode) {
1714                                         (void)find_takeover_node(ctdb, ipflags, tmp, all_ips);
1715                                         retries++;
1716                                         goto try_again;;
1717                                 }
1718                         }
1719                 }
1720         }
1721 }
1722
1723 static void lcp2_init(struct ctdb_context *tmp_ctx,
1724                       struct ctdb_ipflags *ipflags,
1725                       struct ctdb_public_ip_list *all_ips,
1726                       uint32_t *force_rebalance_nodes,
1727                       uint32_t **lcp2_imbalances,
1728                       bool **rebalance_candidates)
1729 {
1730         int i, numnodes;
1731         struct ctdb_public_ip_list *tmp_ip;
1732
1733         numnodes = talloc_array_length(ipflags);
1734
1735         *rebalance_candidates = talloc_array(tmp_ctx, bool, numnodes);
1736         CTDB_NO_MEMORY_FATAL(tmp_ctx, *rebalance_candidates);
1737         *lcp2_imbalances = talloc_array(tmp_ctx, uint32_t, numnodes);
1738         CTDB_NO_MEMORY_FATAL(tmp_ctx, *lcp2_imbalances);
1739
1740         for (i=0; i<numnodes; i++) {
1741                 (*lcp2_imbalances)[i] = lcp2_imbalance(all_ips, i);
1742                 /* First step: assume all nodes are candidates */
1743                 (*rebalance_candidates)[i] = true;
1744         }
1745
1746         /* 2nd step: if a node has IPs assigned then it must have been
1747          * healthy before, so we remove it from consideration.  This
1748          * is overkill but is all we have because we don't maintain
1749          * state between takeover runs.  An alternative would be to
1750          * keep state and invalidate it every time the recovery master
1751          * changes.
1752          */
1753         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1754                 if (tmp_ip->pnn != -1) {
1755                         (*rebalance_candidates)[tmp_ip->pnn] = false;
1756                 }
1757         }
1758
1759         /* 3rd step: if a node is forced to re-balance then
1760            we allow failback onto the node */
1761         if (force_rebalance_nodes == NULL) {
1762                 return;
1763         }
1764         for (i = 0; i < talloc_array_length(force_rebalance_nodes); i++) {
1765                 uint32_t pnn = force_rebalance_nodes[i];
1766                 if (pnn >= numnodes) {
1767                         DEBUG(DEBUG_ERR,
1768                               (__location__ "unknown node %u\n", pnn));
1769                         continue;
1770                 }
1771
1772                 DEBUG(DEBUG_NOTICE,
1773                       ("Forcing rebalancing of IPs to node %u\n", pnn));
1774                 (*rebalance_candidates)[pnn] = true;
1775         }
1776 }
1777
1778 /* Allocate any unassigned addresses using the LCP2 algorithm to find
1779  * the IP/node combination that will cost the least.
1780  */
1781 static void lcp2_allocate_unassigned(struct ctdb_context *ctdb,
1782                                      struct ctdb_ipflags *ipflags,
1783                                      struct ctdb_public_ip_list *all_ips,
1784                                      uint32_t *lcp2_imbalances)
1785 {
1786         struct ctdb_public_ip_list *tmp_ip;
1787         int dstnode, numnodes;
1788
1789         int minnode;
1790         uint32_t mindsum, dstdsum, dstimbl, minimbl;
1791         struct ctdb_public_ip_list *minip;
1792
1793         bool should_loop = true;
1794         bool have_unassigned = true;
1795
1796         numnodes = talloc_array_length(ipflags);
1797
1798         while (have_unassigned && should_loop) {
1799                 should_loop = false;
1800
1801                 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1802                 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
1803
1804                 minnode = -1;
1805                 mindsum = 0;
1806                 minip = NULL;
1807
1808                 /* loop over each unassigned ip. */
1809                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1810                         if (tmp_ip->pnn != -1) {
1811                                 continue;
1812                         }
1813
1814                         for (dstnode=0; dstnode<numnodes; dstnode++) {
1815                                 /* only check nodes that can actually takeover this ip */
1816                                 if (!can_node_takeover_ip(ctdb, dstnode,
1817                                                           ipflags[dstnode],
1818                                                           tmp_ip)) {
1819                                         /* no it couldnt   so skip to the next node */
1820                                         continue;
1821                                 }
1822
1823                                 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1824                                 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1825                                 DEBUG(DEBUG_DEBUG,(" %s -> %d [+%d]\n",
1826                                                    ctdb_addr_to_str(&(tmp_ip->addr)),
1827                                                    dstnode,
1828                                                    dstimbl - lcp2_imbalances[dstnode]));
1829
1830
1831                                 if ((minnode == -1) || (dstdsum < mindsum)) {
1832                                         minnode = dstnode;
1833                                         minimbl = dstimbl;
1834                                         mindsum = dstdsum;
1835                                         minip = tmp_ip;
1836                                         should_loop = true;
1837                                 }
1838                         }
1839                 }
1840
1841                 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1842
1843                 /* If we found one then assign it to the given node. */
1844                 if (minnode != -1) {
1845                         minip->pnn = minnode;
1846                         lcp2_imbalances[minnode] = minimbl;
1847                         DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
1848                                           ctdb_addr_to_str(&(minip->addr)),
1849                                           minnode,
1850                                           mindsum));
1851                 }
1852
1853                 /* There might be a better way but at least this is clear. */
1854                 have_unassigned = false;
1855                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1856                         if (tmp_ip->pnn == -1) {
1857                                 have_unassigned = true;
1858                         }
1859                 }
1860         }
1861
1862         /* We know if we have an unassigned addresses so we might as
1863          * well optimise.
1864          */
1865         if (have_unassigned) {
1866                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1867                         if (tmp_ip->pnn == -1) {
1868                                 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1869                                                      ctdb_addr_to_str(&tmp_ip->addr)));
1870                         }
1871                 }
1872         }
1873 }
1874
1875 /* LCP2 algorithm for rebalancing the cluster.  Given a candidate node
1876  * to move IPs from, determines the best IP/destination node
1877  * combination to move from the source node.
1878  */
1879 static bool lcp2_failback_candidate(struct ctdb_context *ctdb,
1880                                     struct ctdb_ipflags *ipflags,
1881                                     struct ctdb_public_ip_list *all_ips,
1882                                     int srcnode,
1883                                     uint32_t candimbl,
1884                                     uint32_t *lcp2_imbalances,
1885                                     bool *rebalance_candidates)
1886 {
1887         int dstnode, mindstnode, numnodes;
1888         uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
1889         uint32_t minsrcimbl, mindstimbl;
1890         struct ctdb_public_ip_list *minip;
1891         struct ctdb_public_ip_list *tmp_ip;
1892
1893         /* Find an IP and destination node that best reduces imbalance. */
1894         srcimbl = 0;
1895         minip = NULL;
1896         minsrcimbl = 0;
1897         mindstnode = -1;
1898         mindstimbl = 0;
1899
1900         numnodes = talloc_array_length(ipflags);
1901
1902         DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1903         DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n", srcnode, candimbl));
1904
1905         for (tmp_ip=all_ips; tmp_ip; tmp_ip=tmp_ip->next) {
1906                 /* Only consider addresses on srcnode. */
1907                 if (tmp_ip->pnn != srcnode) {
1908                         continue;
1909                 }
1910
1911                 /* What is this IP address costing the source node? */
1912                 srcdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, srcnode);
1913                 srcimbl = candimbl - srcdsum;
1914
1915                 /* Consider this IP address would cost each potential
1916                  * destination node.  Destination nodes are limited to
1917                  * those that are newly healthy, since we don't want
1918                  * to do gratuitous failover of IPs just to make minor
1919                  * balance improvements.
1920                  */
1921                 for (dstnode=0; dstnode<numnodes; dstnode++) {
1922                         if (!rebalance_candidates[dstnode]) {
1923                                 continue;
1924                         }
1925
1926                         /* only check nodes that can actually takeover this ip */
1927                         if (!can_node_takeover_ip(ctdb, dstnode,
1928                                                   ipflags[dstnode], tmp_ip)) {
1929                                 /* no it couldnt   so skip to the next node */
1930                                 continue;
1931                         }
1932
1933                         dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1934                         dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1935                         DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
1936                                            srcnode, srcimbl - lcp2_imbalances[srcnode],
1937                                            ctdb_addr_to_str(&(tmp_ip->addr)),
1938                                            dstnode, dstimbl - lcp2_imbalances[dstnode]));
1939
1940                         if ((dstimbl < candimbl) && (dstdsum < srcdsum) && \
1941                             ((mindstnode == -1) ||                              \
1942                              ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
1943
1944                                 minip = tmp_ip;
1945                                 minsrcimbl = srcimbl;
1946                                 mindstnode = dstnode;
1947                                 mindstimbl = dstimbl;
1948                         }
1949                 }
1950         }
1951         DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1952
1953         if (mindstnode != -1) {
1954                 /* We found a move that makes things better... */
1955                 DEBUG(DEBUG_INFO,("%d [%d] -> %s -> %d [+%d]\n",
1956                                   srcnode, minsrcimbl - lcp2_imbalances[srcnode],
1957                                   ctdb_addr_to_str(&(minip->addr)),
1958                                   mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
1959
1960
1961                 lcp2_imbalances[srcnode] = minsrcimbl;
1962                 lcp2_imbalances[mindstnode] = mindstimbl;
1963                 minip->pnn = mindstnode;
1964
1965                 return true;
1966         }
1967
1968         return false;
1969         
1970 }
1971
1972 struct lcp2_imbalance_pnn {
1973         uint32_t imbalance;
1974         int pnn;
1975 };
1976
1977 static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
1978 {
1979         const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
1980         const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
1981
1982         if (lipa->imbalance > lipb->imbalance) {
1983                 return -1;
1984         } else if (lipa->imbalance == lipb->imbalance) {
1985                 return 0;
1986         } else {
1987                 return 1;
1988         }
1989 }
1990
1991 /* LCP2 algorithm for rebalancing the cluster.  This finds the source
1992  * node with the highest LCP2 imbalance, and then determines the best
1993  * IP/destination node combination to move from the source node.
1994  */
1995 static void lcp2_failback(struct ctdb_context *ctdb,
1996                           struct ctdb_ipflags *ipflags,
1997                           struct ctdb_public_ip_list *all_ips,
1998                           uint32_t *lcp2_imbalances,
1999                           bool *rebalance_candidates)
2000 {
2001         int i, numnodes;
2002         struct lcp2_imbalance_pnn * lips;
2003         bool again;
2004
2005         numnodes = talloc_array_length(ipflags);
2006
2007 try_again:
2008         /* Put the imbalances and nodes into an array, sort them and
2009          * iterate through candidates.  Usually the 1st one will be
2010          * used, so this doesn't cost much...
2011          */
2012         DEBUG(DEBUG_DEBUG,("+++++++++++++++++++++++++++++++++++++++++\n"));
2013         DEBUG(DEBUG_DEBUG,("Selecting most imbalanced node from:\n"));
2014         lips = talloc_array(ctdb, struct lcp2_imbalance_pnn, numnodes);
2015         for (i=0; i<numnodes; i++) {
2016                 lips[i].imbalance = lcp2_imbalances[i];
2017                 lips[i].pnn = i;
2018                 DEBUG(DEBUG_DEBUG,(" %d [%d]\n", i, lcp2_imbalances[i]));
2019         }
2020         qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
2021               lcp2_cmp_imbalance_pnn);
2022
2023         again = false;
2024         for (i=0; i<numnodes; i++) {
2025                 /* This means that all nodes had 0 or 1 addresses, so
2026                  * can't be imbalanced.
2027                  */
2028                 if (lips[i].imbalance == 0) {
2029                         break;
2030                 }
2031
2032                 if (lcp2_failback_candidate(ctdb,
2033                                             ipflags,
2034                                             all_ips,
2035                                             lips[i].pnn,
2036                                             lips[i].imbalance,
2037                                             lcp2_imbalances,
2038                                             rebalance_candidates)) {
2039                         again = true;
2040                         break;
2041                 }
2042         }
2043
2044         talloc_free(lips);
2045         if (again) {
2046                 goto try_again;
2047         }
2048 }
2049
2050 static void unassign_unsuitable_ips(struct ctdb_context *ctdb,
2051                                     struct ctdb_ipflags *ipflags,
2052                                     struct ctdb_public_ip_list *all_ips)
2053 {
2054         struct ctdb_public_ip_list *tmp_ip;
2055
2056         /* verify that the assigned nodes can serve that public ip
2057            and set it to -1 if not
2058         */
2059         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2060                 if (tmp_ip->pnn == -1) {
2061                         continue;
2062                 }
2063                 if (!can_node_host_ip(ctdb, tmp_ip->pnn,
2064                                       ipflags[tmp_ip->pnn], tmp_ip) != 0) {
2065                         /* this node can not serve this ip. */
2066                         DEBUG(DEBUG_DEBUG,("Unassign IP: %s from %d\n",
2067                                            ctdb_addr_to_str(&(tmp_ip->addr)),
2068                                            tmp_ip->pnn));
2069                         tmp_ip->pnn = -1;
2070                 }
2071         }
2072 }
2073
2074 static void ip_alloc_deterministic_ips(struct ctdb_context *ctdb,
2075                                        struct ctdb_ipflags *ipflags,
2076                                        struct ctdb_public_ip_list *all_ips)
2077 {
2078         struct ctdb_public_ip_list *tmp_ip;
2079         int i, numnodes;
2080
2081         numnodes = talloc_array_length(ipflags);
2082
2083         DEBUG(DEBUG_NOTICE,("Deterministic IPs enabled. Resetting all ip allocations\n"));
2084        /* Allocate IPs to nodes in a modulo fashion so that IPs will
2085         *  always be allocated the same way for a specific set of
2086         *  available/unavailable nodes.
2087         */
2088
2089         for (i=0,tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next,i++) {
2090                 tmp_ip->pnn = i % numnodes;
2091         }
2092
2093         /* IP failback doesn't make sense with deterministic
2094          * IPs, since the modulo step above implicitly fails
2095          * back IPs to their "home" node.
2096          */
2097         if (1 == ctdb->tunable.no_ip_failback) {
2098                 DEBUG(DEBUG_WARNING, ("WARNING: 'NoIPFailback' set but ignored - incompatible with 'DeterministicIPs\n"));
2099         }
2100
2101         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2102
2103         basic_allocate_unassigned(ctdb, ipflags, all_ips);
2104
2105         /* No failback here! */
2106 }
2107
2108 static void ip_alloc_nondeterministic_ips(struct ctdb_context *ctdb,
2109                                           struct ctdb_ipflags *ipflags,
2110                                           struct ctdb_public_ip_list *all_ips)
2111 {
2112         /* This should be pushed down into basic_failback. */
2113         struct ctdb_public_ip_list *tmp_ip;
2114         int num_ips = 0;
2115         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2116                 num_ips++;
2117         }
2118
2119         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2120
2121         basic_allocate_unassigned(ctdb, ipflags, all_ips);
2122
2123         /* If we don't want IPs to fail back then don't rebalance IPs. */
2124         if (1 == ctdb->tunable.no_ip_failback) {
2125                 return;
2126         }
2127
2128         /* Now, try to make sure the ip adresses are evenly distributed
2129            across the nodes.
2130         */
2131         basic_failback(ctdb, ipflags, all_ips, num_ips);
2132 }
2133
2134 static void ip_alloc_lcp2(struct ctdb_context *ctdb,
2135                           struct ctdb_ipflags *ipflags,
2136                           struct ctdb_public_ip_list *all_ips,
2137                           uint32_t *force_rebalance_nodes)
2138 {
2139         uint32_t *lcp2_imbalances;
2140         bool *rebalance_candidates;
2141         int numnodes, num_rebalance_candidates, i;
2142
2143         TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2144
2145         unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2146
2147         lcp2_init(tmp_ctx, ipflags, all_ips,force_rebalance_nodes,
2148                   &lcp2_imbalances, &rebalance_candidates);
2149
2150         lcp2_allocate_unassigned(ctdb, ipflags, all_ips, lcp2_imbalances);
2151
2152         /* If we don't want IPs to fail back then don't rebalance IPs. */
2153         if (1 == ctdb->tunable.no_ip_failback) {
2154                 goto finished;
2155         }
2156
2157         /* It is only worth continuing if we have suitable target
2158          * nodes to transfer IPs to.  This check is much cheaper than
2159          * continuing on...
2160          */
2161         numnodes = talloc_array_length(ipflags);
2162         num_rebalance_candidates = 0;
2163         for (i=0; i<numnodes; i++) {
2164                 if (rebalance_candidates[i]) {
2165                         num_rebalance_candidates++;
2166                 }
2167         }
2168         if (num_rebalance_candidates == 0) {
2169                 goto finished;
2170         }
2171
2172         /* Now, try to make sure the ip adresses are evenly distributed
2173            across the nodes.
2174         */
2175         lcp2_failback(ctdb, ipflags, all_ips,
2176                       lcp2_imbalances, rebalance_candidates);
2177
2178 finished:
2179         talloc_free(tmp_ctx);
2180 }
2181
2182 static bool all_nodes_are_disabled(struct ctdb_node_map *nodemap)
2183 {
2184         int i, num_healthy;
2185
2186         /* Count how many completely healthy nodes we have */
2187         num_healthy = 0;
2188         for (i=0;i<nodemap->num;i++) {
2189                 if (!(nodemap->nodes[i].flags & (NODE_FLAGS_INACTIVE|NODE_FLAGS_DISABLED))) {
2190                         num_healthy++;
2191                 }
2192         }
2193
2194         return num_healthy == 0;
2195 }
2196
2197 /* The calculation part of the IP allocation algorithm. */
2198 static void ctdb_takeover_run_core(struct ctdb_context *ctdb,
2199                                    struct ctdb_ipflags *ipflags,
2200                                    struct ctdb_public_ip_list **all_ips_p,
2201                                    uint32_t *force_rebalance_nodes)
2202 {
2203         /* since nodes only know about those public addresses that
2204            can be served by that particular node, no single node has
2205            a full list of all public addresses that exist in the cluster.
2206            Walk over all node structures and create a merged list of
2207            all public addresses that exist in the cluster.
2208
2209            keep the tree of ips around as ctdb->ip_tree
2210         */
2211         *all_ips_p = create_merged_ip_list(ctdb);
2212
2213         if (1 == ctdb->tunable.lcp2_public_ip_assignment) {
2214                 ip_alloc_lcp2(ctdb, ipflags, *all_ips_p, force_rebalance_nodes);
2215         } else if (1 == ctdb->tunable.deterministic_public_ips) {
2216                 ip_alloc_deterministic_ips(ctdb, ipflags, *all_ips_p);
2217         } else {
2218                 ip_alloc_nondeterministic_ips(ctdb, ipflags, *all_ips_p);
2219         }
2220
2221         /* at this point ->pnn is the node which will own each IP
2222            or -1 if there is no node that can cover this ip
2223         */
2224
2225         return;
2226 }
2227
2228 struct get_tunable_callback_data {
2229         const char *tunable;
2230         uint32_t *out;
2231         bool fatal;
2232 };
2233
2234 static void get_tunable_callback(struct ctdb_context *ctdb, uint32_t pnn,
2235                                  int32_t res, TDB_DATA outdata,
2236                                  void *callback)
2237 {
2238         struct get_tunable_callback_data *cd =
2239                 (struct get_tunable_callback_data *)callback;
2240         int size;
2241
2242         if (res != 0) {
2243                 /* Already handled in fail callback */
2244                 return;
2245         }
2246
2247         if (outdata.dsize != sizeof(uint32_t)) {
2248                 DEBUG(DEBUG_ERR,("Wrong size of returned data when reading \"%s\" tunable from node %d. Expected %d bytes but received %d bytes\n",
2249                                  cd->tunable, pnn, (int)sizeof(uint32_t),
2250                                  (int)outdata.dsize));
2251                 cd->fatal = true;
2252                 return;
2253         }
2254
2255         size = talloc_array_length(cd->out);
2256         if (pnn >= size) {
2257                 DEBUG(DEBUG_ERR,("Got %s reply from node %d but nodemap only has %d entries\n",
2258                                  cd->tunable, pnn, size));
2259                 return;
2260         }
2261
2262                 
2263         cd->out[pnn] = *(uint32_t *)outdata.dptr;
2264 }
2265
2266 static void get_tunable_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2267                                        int32_t res, TDB_DATA outdata,
2268                                        void *callback)
2269 {
2270         struct get_tunable_callback_data *cd =
2271                 (struct get_tunable_callback_data *)callback;
2272
2273         switch (res) {
2274         case -ETIME:
2275                 DEBUG(DEBUG_ERR,
2276                       ("Timed out getting tunable \"%s\" from node %d\n",
2277                        cd->tunable, pnn));
2278                 cd->fatal = true;
2279                 break;
2280         case -EINVAL:
2281         case -1:
2282                 DEBUG(DEBUG_WARNING,
2283                       ("Tunable \"%s\" not implemented on node %d\n",
2284                        cd->tunable, pnn));
2285                 break;
2286         default:
2287                 DEBUG(DEBUG_ERR,
2288                       ("Unexpected error getting tunable \"%s\" from node %d\n",
2289                        cd->tunable, pnn));
2290                 cd->fatal = true;
2291         }
2292 }
2293
2294 static uint32_t *get_tunable_from_nodes(struct ctdb_context *ctdb,
2295                                         TALLOC_CTX *tmp_ctx,
2296                                         struct ctdb_node_map *nodemap,
2297                                         const char *tunable,
2298                                         uint32_t default_value)
2299 {
2300         TDB_DATA data;
2301         struct ctdb_control_get_tunable *t;
2302         uint32_t *nodes;
2303         uint32_t *tvals;
2304         struct get_tunable_callback_data callback_data;
2305         int i;
2306
2307         tvals = talloc_array(tmp_ctx, uint32_t, nodemap->num);
2308         CTDB_NO_MEMORY_NULL(ctdb, tvals);
2309         for (i=0; i<nodemap->num; i++) {
2310                 tvals[i] = default_value;
2311         }
2312                 
2313         callback_data.out = tvals;
2314         callback_data.tunable = tunable;
2315         callback_data.fatal = false;
2316
2317         data.dsize = offsetof(struct ctdb_control_get_tunable, name) + strlen(tunable) + 1;
2318         data.dptr  = talloc_size(tmp_ctx, data.dsize);
2319         t = (struct ctdb_control_get_tunable *)data.dptr;
2320         t->length = strlen(tunable)+1;
2321         memcpy(t->name, tunable, t->length);
2322         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2323         if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_TUNABLE,
2324                                       nodes, 0, TAKEOVER_TIMEOUT(),
2325                                       false, data,
2326                                       get_tunable_callback,
2327                                       get_tunable_fail_callback,
2328                                       &callback_data) != 0) {
2329                 if (callback_data.fatal) {
2330                         talloc_free(tvals);
2331                         tvals = NULL;
2332                 }
2333         }
2334         talloc_free(nodes);
2335         talloc_free(data.dptr);
2336
2337         return tvals;
2338 }
2339
2340 struct get_runstate_callback_data {
2341         enum ctdb_runstate *out;
2342         bool fatal;
2343 };
2344
2345 static void get_runstate_callback(struct ctdb_context *ctdb, uint32_t pnn,
2346                                   int32_t res, TDB_DATA outdata,
2347                                   void *callback_data)
2348 {
2349         struct get_runstate_callback_data *cd =
2350                 (struct get_runstate_callback_data *)callback_data;
2351         int size;
2352
2353         if (res != 0) {
2354                 /* Already handled in fail callback */
2355                 return;
2356         }
2357
2358         if (outdata.dsize != sizeof(uint32_t)) {
2359                 DEBUG(DEBUG_ERR,("Wrong size of returned data when getting runstate from node %d. Expected %d bytes but received %d bytes\n",
2360                                  pnn, (int)sizeof(uint32_t),
2361                                  (int)outdata.dsize));
2362                 cd->fatal = true;
2363                 return;
2364         }
2365
2366         size = talloc_array_length(cd->out);
2367         if (pnn >= size) {
2368                 DEBUG(DEBUG_ERR,("Got reply from node %d but nodemap only has %d entries\n",
2369                                  pnn, size));
2370                 return;
2371         }
2372
2373         cd->out[pnn] = (enum ctdb_runstate)*(uint32_t *)outdata.dptr;
2374 }
2375
2376 static void get_runstate_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2377                                        int32_t res, TDB_DATA outdata,
2378                                        void *callback)
2379 {
2380         struct get_runstate_callback_data *cd =
2381                 (struct get_runstate_callback_data *)callback;
2382
2383         switch (res) {
2384         case -ETIME:
2385                 DEBUG(DEBUG_ERR,
2386                       ("Timed out getting runstate from node %d\n", pnn));
2387                 cd->fatal = true;
2388                 break;
2389         default:
2390                 DEBUG(DEBUG_WARNING,
2391                       ("Error getting runstate from node %d - assuming runstates not supported\n",
2392                        pnn));
2393         }
2394 }
2395
2396 static enum ctdb_runstate * get_runstate_from_nodes(struct ctdb_context *ctdb,
2397                                                     TALLOC_CTX *tmp_ctx,
2398                                                     struct ctdb_node_map *nodemap,
2399                                                     enum ctdb_runstate default_value)
2400 {
2401         uint32_t *nodes;
2402         enum ctdb_runstate *rs;
2403         struct get_runstate_callback_data callback_data;
2404         int i;
2405
2406         rs = talloc_array(tmp_ctx, enum ctdb_runstate, nodemap->num);
2407         CTDB_NO_MEMORY_NULL(ctdb, rs);
2408         for (i=0; i<nodemap->num; i++) {
2409                 rs[i] = default_value;
2410         }
2411
2412         callback_data.out = rs;
2413         callback_data.fatal = false;
2414
2415         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2416         if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_RUNSTATE,
2417                                       nodes, 0, TAKEOVER_TIMEOUT(),
2418                                       true, tdb_null,
2419                                       get_runstate_callback,
2420                                       get_runstate_fail_callback,
2421                                       &callback_data) != 0) {
2422                 if (callback_data.fatal) {
2423                         free(rs);
2424                         rs = NULL;
2425                 }
2426         }
2427         talloc_free(nodes);
2428
2429         return rs;
2430 }
2431
2432 /* Set internal flags for IP allocation:
2433  *   Clear ip flags
2434  *   Set NOIPTAKOVER ip flags from per-node NoIPTakeover tunable
2435  *   Set NOIPHOST ip flag for each INACTIVE node
2436  *   if all nodes are disabled:
2437  *     Set NOIPHOST ip flags from per-node NoIPHostOnAllDisabled tunable
2438  *   else
2439  *     Set NOIPHOST ip flags for disabled nodes
2440  */
2441 static struct ctdb_ipflags *
2442 set_ipflags_internal(struct ctdb_context *ctdb,
2443                      TALLOC_CTX *tmp_ctx,
2444                      struct ctdb_node_map *nodemap,
2445                      uint32_t *tval_noiptakeover,
2446                      uint32_t *tval_noiphostonalldisabled,
2447                      enum ctdb_runstate *runstate)
2448 {
2449         int i;
2450         struct ctdb_ipflags *ipflags;
2451
2452         /* Clear IP flags - implicit due to talloc_zero */
2453         ipflags = talloc_zero_array(tmp_ctx, struct ctdb_ipflags, nodemap->num);
2454         CTDB_NO_MEMORY_NULL(ctdb, ipflags);
2455
2456         for (i=0;i<nodemap->num;i++) {
2457                 /* Can not take IPs on node with NoIPTakeover set */
2458                 if (tval_noiptakeover[i] != 0) {
2459                         ipflags[i].noiptakeover = true;
2460                 }
2461
2462                 /* Can not host IPs on node not in RUNNING state */
2463                 if (runstate[i] != CTDB_RUNSTATE_RUNNING) {
2464                         ipflags[i].noiphost = true;
2465                         continue;
2466                 }
2467                 /* Can not host IPs on INACTIVE node */
2468                 if (nodemap->nodes[i].flags & NODE_FLAGS_INACTIVE) {
2469                         ipflags[i].noiphost = true;
2470                 }
2471         }
2472
2473         if (all_nodes_are_disabled(nodemap)) {
2474                 /* If all nodes are disabled, can not host IPs on node
2475                  * with NoIPHostOnAllDisabled set
2476                  */
2477                 for (i=0;i<nodemap->num;i++) {
2478                         if (tval_noiphostonalldisabled[i] != 0) {
2479                                 ipflags[i].noiphost = true;
2480                         }
2481                 }
2482         } else {
2483                 /* If some nodes are not disabled, then can not host
2484                  * IPs on DISABLED node
2485                  */
2486                 for (i=0;i<nodemap->num;i++) {
2487                         if (nodemap->nodes[i].flags & NODE_FLAGS_DISABLED) {
2488                                 ipflags[i].noiphost = true;
2489                         }
2490                 }
2491         }
2492
2493         return ipflags;
2494 }
2495
2496 static struct ctdb_ipflags *set_ipflags(struct ctdb_context *ctdb,
2497                                         TALLOC_CTX *tmp_ctx,
2498                                         struct ctdb_node_map *nodemap)
2499 {
2500         uint32_t *tval_noiptakeover;
2501         uint32_t *tval_noiphostonalldisabled;
2502         struct ctdb_ipflags *ipflags;
2503         enum ctdb_runstate *runstate;
2504
2505
2506         tval_noiptakeover = get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2507                                                    "NoIPTakeover", 0);
2508         if (tval_noiptakeover == NULL) {
2509                 return NULL;
2510         }
2511
2512         tval_noiphostonalldisabled =
2513                 get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2514                                        "NoIPHostOnAllDisabled", 0);
2515         if (tval_noiphostonalldisabled == NULL) {
2516                 /* Caller frees tmp_ctx */
2517                 return NULL;
2518         }
2519
2520         /* Any nodes where CTDB_CONTROL_GET_RUNSTATE is not supported
2521          * will default to CTDB_RUNSTATE_RUNNING.  This ensures
2522          * reasonable behaviour on a mixed cluster during upgrade.
2523          */
2524         runstate = get_runstate_from_nodes(ctdb, tmp_ctx, nodemap,
2525                                            CTDB_RUNSTATE_RUNNING);
2526         if (runstate == NULL) {
2527                 /* Caller frees tmp_ctx */
2528                 return NULL;
2529         }
2530
2531         ipflags = set_ipflags_internal(ctdb, tmp_ctx, nodemap,
2532                                        tval_noiptakeover,
2533                                        tval_noiphostonalldisabled,
2534                                        runstate);
2535
2536         talloc_free(tval_noiptakeover);
2537         talloc_free(tval_noiphostonalldisabled);
2538         talloc_free(runstate);
2539
2540         return ipflags;
2541 }
2542
2543 struct iprealloc_callback_data {
2544         bool *retry_nodes;
2545         int retry_count;
2546         client_async_callback fail_callback;
2547         void *fail_callback_data;
2548         struct ctdb_node_map *nodemap;
2549 };
2550
2551 static void iprealloc_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2552                                         int32_t res, TDB_DATA outdata,
2553                                         void *callback)
2554 {
2555         int numnodes;
2556         struct iprealloc_callback_data *cd =
2557                 (struct iprealloc_callback_data *)callback;
2558
2559         numnodes = talloc_array_length(cd->retry_nodes);
2560         if (pnn > numnodes) {
2561                 DEBUG(DEBUG_ERR,
2562                       ("ipreallocated failure from node %d, "
2563                        "but only %d nodes in nodemap\n",
2564                        pnn, numnodes));
2565                 return;
2566         }
2567
2568         /* Can't run the "ipreallocated" event on a INACTIVE node */
2569         if (cd->nodemap->nodes[pnn].flags & NODE_FLAGS_INACTIVE) {
2570                 DEBUG(DEBUG_WARNING,
2571                       ("ipreallocated failed on inactive node %d, ignoring\n",
2572                        pnn));
2573                 return;
2574         }
2575
2576         switch (res) {
2577         case -ETIME:
2578                 /* If the control timed out then that's a real error,
2579                  * so call the real fail callback
2580                  */
2581                 cd->fail_callback(ctdb, pnn, res, outdata,
2582                                   cd->fail_callback_data);
2583                 break;
2584         default:
2585                 /* If not a timeout then either the ipreallocated
2586                  * eventscript (or some setup) failed.  This might
2587                  * have failed because the IPREALLOCATED control isn't
2588                  * implemented - right now there is no way of knowing
2589                  * because the error codes are all folded down to -1.
2590                  * Consider retrying using EVENTSCRIPT control...
2591                  */
2592                 DEBUG(DEBUG_WARNING,
2593                       ("ipreallocated failure from node %d, flagging retry\n",
2594                        pnn));
2595                 cd->retry_nodes[pnn] = true;
2596                 cd->retry_count++;
2597         }
2598 }
2599
2600 struct takeover_callback_data {
2601         bool *node_failed;
2602         client_async_callback fail_callback;
2603         void *fail_callback_data;
2604         struct ctdb_node_map *nodemap;
2605 };
2606
2607 static void takeover_run_fail_callback(struct ctdb_context *ctdb,
2608                                        uint32_t node_pnn, int32_t res,
2609                                        TDB_DATA outdata, void *callback_data)
2610 {
2611         struct takeover_callback_data *cd =
2612                 talloc_get_type_abort(callback_data,
2613                                       struct takeover_callback_data);
2614         int i;
2615
2616         for (i = 0; i < cd->nodemap->num; i++) {
2617                 if (node_pnn == cd->nodemap->nodes[i].pnn) {
2618                         break;
2619                 }
2620         }
2621
2622         if (i == cd->nodemap->num) {
2623                 DEBUG(DEBUG_ERR, (__location__ " invalid PNN %u\n", node_pnn));
2624                 return;
2625         }
2626
2627         if (!cd->node_failed[i]) {
2628                 cd->node_failed[i] = true;
2629                 cd->fail_callback(ctdb, node_pnn, res, outdata,
2630                                   cd->fail_callback_data);
2631         }
2632 }
2633
2634 /*
2635   make any IP alias changes for public addresses that are necessary 
2636  */
2637 int ctdb_takeover_run(struct ctdb_context *ctdb, struct ctdb_node_map *nodemap,
2638                       uint32_t *force_rebalance_nodes,
2639                       client_async_callback fail_callback, void *callback_data)
2640 {
2641         int i, j, ret;
2642         struct ctdb_public_ip ip;
2643         struct ctdb_public_ipv4 ipv4;
2644         uint32_t *nodes;
2645         struct ctdb_public_ip_list *all_ips, *tmp_ip;
2646         TDB_DATA data;
2647         struct timeval timeout;
2648         struct client_async_data *async_data;
2649         struct ctdb_client_control_state *state;
2650         TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2651         struct ctdb_ipflags *ipflags;
2652         struct takeover_callback_data *takeover_data;
2653         struct iprealloc_callback_data iprealloc_data;
2654         bool *retry_data;
2655
2656         /*
2657          * ip failover is completely disabled, just send out the 
2658          * ipreallocated event.
2659          */
2660         if (ctdb->tunable.disable_ip_failover != 0) {
2661                 goto ipreallocated;
2662         }
2663
2664         ipflags = set_ipflags(ctdb, tmp_ctx, nodemap);
2665         if (ipflags == NULL) {
2666                 DEBUG(DEBUG_ERR,("Failed to set IP flags - aborting takeover run\n"));
2667                 talloc_free(tmp_ctx);
2668                 return -1;
2669         }
2670
2671         ZERO_STRUCT(ip);
2672
2673         /* Do the IP reassignment calculations */
2674         ctdb_takeover_run_core(ctdb, ipflags, &all_ips, force_rebalance_nodes);
2675
2676         /* Now tell all nodes to release any public IPs should not
2677          * host.  This will be a NOOP on nodes that don't currently
2678          * hold the given IP.
2679          */
2680         takeover_data = talloc_zero(tmp_ctx, struct takeover_callback_data);
2681         CTDB_NO_MEMORY_FATAL(ctdb, takeover_data);
2682
2683         takeover_data->node_failed = talloc_zero_array(tmp_ctx,
2684                                                        bool, nodemap->num);
2685         CTDB_NO_MEMORY_FATAL(ctdb, takeover_data->node_failed);
2686         takeover_data->fail_callback = fail_callback;
2687         takeover_data->fail_callback_data = callback_data;
2688         takeover_data->nodemap = nodemap;
2689
2690         async_data = talloc_zero(tmp_ctx, struct client_async_data);
2691         CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2692
2693         async_data->fail_callback = takeover_run_fail_callback;
2694         async_data->callback_data = takeover_data;
2695
2696         for (i=0;i<nodemap->num;i++) {
2697                 /* don't talk to unconnected nodes, but do talk to banned nodes */
2698                 if (nodemap->nodes[i].flags & NODE_FLAGS_DISCONNECTED) {
2699                         continue;
2700                 }
2701
2702                 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2703                         if (tmp_ip->pnn == nodemap->nodes[i].pnn) {
2704                                 /* This node should be serving this
2705                                    vnn so dont tell it to release the ip
2706                                 */
2707                                 continue;
2708                         }
2709                         if (tmp_ip->addr.sa.sa_family == AF_INET) {
2710                                 ipv4.pnn = tmp_ip->pnn;
2711                                 ipv4.sin = tmp_ip->addr.ip;
2712
2713                                 timeout = TAKEOVER_TIMEOUT();
2714                                 data.dsize = sizeof(ipv4);
2715                                 data.dptr  = (uint8_t *)&ipv4;
2716                                 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2717                                                 0, CTDB_CONTROL_RELEASE_IPv4, 0,
2718                                                 data, async_data,
2719                                                 &timeout, NULL);
2720                         } else {
2721                                 ip.pnn  = tmp_ip->pnn;
2722                                 ip.addr = tmp_ip->addr;
2723
2724                                 timeout = TAKEOVER_TIMEOUT();
2725                                 data.dsize = sizeof(ip);
2726                                 data.dptr  = (uint8_t *)&ip;
2727                                 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2728                                                 0, CTDB_CONTROL_RELEASE_IP, 0,
2729                                                 data, async_data,
2730                                                 &timeout, NULL);
2731                         }
2732
2733                         if (state == NULL) {
2734                                 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_RELEASE_IP to node %u\n", nodemap->nodes[i].pnn));
2735                                 talloc_free(tmp_ctx);
2736                                 return -1;
2737                         }
2738                 
2739                         ctdb_client_async_add(async_data, state);
2740                 }
2741         }
2742         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2743                 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_RELEASE_IP failed\n"));
2744                 talloc_free(tmp_ctx);
2745                 return -1;
2746         }
2747         talloc_free(async_data);
2748
2749
2750         /* tell all nodes to get their own IPs */
2751         async_data = talloc_zero(tmp_ctx, struct client_async_data);
2752         CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2753
2754         async_data->fail_callback = fail_callback;
2755         async_data->callback_data = callback_data;
2756
2757         for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2758                 if (tmp_ip->pnn == -1) {
2759                         /* this IP won't be taken over */
2760                         continue;
2761                 }
2762
2763                 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2764                         ipv4.pnn = tmp_ip->pnn;
2765                         ipv4.sin = tmp_ip->addr.ip;
2766
2767                         timeout = TAKEOVER_TIMEOUT();
2768                         data.dsize = sizeof(ipv4);
2769                         data.dptr  = (uint8_t *)&ipv4;
2770                         state = ctdb_control_send(ctdb, tmp_ip->pnn,
2771                                         0, CTDB_CONTROL_TAKEOVER_IPv4, 0,
2772                                         data, async_data,
2773                                         &timeout, NULL);
2774                 } else {
2775                         ip.pnn  = tmp_ip->pnn;
2776                         ip.addr = tmp_ip->addr;
2777
2778                         timeout = TAKEOVER_TIMEOUT();
2779                         data.dsize = sizeof(ip);
2780                         data.dptr  = (uint8_t *)&ip;
2781                         state = ctdb_control_send(ctdb, tmp_ip->pnn,
2782                                         0, CTDB_CONTROL_TAKEOVER_IP, 0,
2783                                         data, async_data,
2784                                         &timeout, NULL);
2785                 }
2786                 if (state == NULL) {
2787                         DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_TAKEOVER_IP to node %u\n", tmp_ip->pnn));
2788                         talloc_free(tmp_ctx);
2789                         return -1;
2790                 }
2791                 
2792                 ctdb_client_async_add(async_data, state);
2793         }
2794         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2795                 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_TAKEOVER_IP failed\n"));
2796                 talloc_free(tmp_ctx);
2797                 return -1;
2798         }
2799
2800 ipreallocated:
2801         /* 
2802          * Tell all nodes to run eventscripts to process the
2803          * "ipreallocated" event.  This can do a lot of things,
2804          * including restarting services to reconfigure them if public
2805          * IPs have moved.  Once upon a time this event only used to
2806          * update natwg.
2807          */
2808         retry_data = talloc_zero_array(tmp_ctx, bool, nodemap->num);
2809         CTDB_NO_MEMORY_FATAL(ctdb, retry_data);
2810         iprealloc_data.retry_nodes = retry_data;
2811         iprealloc_data.retry_count = 0;
2812         iprealloc_data.fail_callback = fail_callback;
2813         iprealloc_data.fail_callback_data = callback_data;
2814         iprealloc_data.nodemap = nodemap;
2815
2816         nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2817         ret = ctdb_client_async_control(ctdb, CTDB_CONTROL_IPREALLOCATED,
2818                                         nodes, 0, TAKEOVER_TIMEOUT(),
2819                                         false, tdb_null,
2820                                         NULL, iprealloc_fail_callback,
2821                                         &iprealloc_data);
2822         if (ret != 0) {
2823                 /* If the control failed then we should retry to any
2824                  * nodes flagged by iprealloc_fail_callback using the
2825                  * EVENTSCRIPT control.  This is a best-effort at
2826                  * backward compatiblity when running a mixed cluster
2827                  * where some nodes have not yet been upgraded to
2828                  * support the IPREALLOCATED control.
2829                  */
2830                 DEBUG(DEBUG_WARNING,
2831                       ("Retry ipreallocated to some nodes using eventscript control\n"));
2832
2833                 nodes = talloc_array(tmp_ctx, uint32_t,
2834                                      iprealloc_data.retry_count);
2835                 CTDB_NO_MEMORY_FATAL(ctdb, nodes);
2836
2837                 j = 0;
2838                 for (i=0; i<nodemap->num; i++) {
2839                         if (iprealloc_data.retry_nodes[i]) {
2840                                 nodes[j] = i;
2841                                 j++;
2842                         }
2843                 }
2844
2845                 data.dptr  = discard_const("ipreallocated");
2846                 data.dsize = strlen((char *)data.dptr) + 1; 
2847                 ret = ctdb_client_async_control(ctdb,
2848                                                 CTDB_CONTROL_RUN_EVENTSCRIPTS,
2849                                                 nodes, 0, TAKEOVER_TIMEOUT(),
2850                                                 false, data,
2851                                                 NULL, fail_callback,
2852                                                 callback_data);
2853                 if (ret != 0) {
2854                         DEBUG(DEBUG_ERR, (__location__ " failed to send control to run eventscripts with \"ipreallocated\"\n"));
2855                 }
2856         }
2857
2858         talloc_free(tmp_ctx);
2859         return ret;
2860 }
2861
2862
2863 /*
2864   destroy a ctdb_client_ip structure
2865  */
2866 static int ctdb_client_ip_destructor(struct ctdb_client_ip *ip)
2867 {
2868         DEBUG(DEBUG_DEBUG,("destroying client tcp for %s:%u (client_id %u)\n",
2869                 ctdb_addr_to_str(&ip->addr),
2870                 ntohs(ip->addr.ip.sin_port),
2871                 ip->client_id));
2872
2873         DLIST_REMOVE(ip->ctdb->client_ip_list, ip);
2874         return 0;
2875 }
2876
2877 /*
2878   called by a client to inform us of a TCP connection that it is managing
2879   that should tickled with an ACK when IP takeover is done
2880   we handle both the old ipv4 style of packets as well as the new ipv4/6
2881   pdus.
2882  */
2883 int32_t ctdb_control_tcp_client(struct ctdb_context *ctdb, uint32_t client_id,
2884                                 TDB_DATA indata)
2885 {
2886         struct ctdb_client *client = ctdb_reqid_find(ctdb, client_id, struct ctdb_client);
2887         struct ctdb_control_tcp *old_addr = NULL;
2888         struct ctdb_control_tcp_addr new_addr;
2889         struct ctdb_control_tcp_addr *tcp_sock = NULL;
2890         struct ctdb_tcp_list *tcp;
2891         struct ctdb_tcp_connection t;
2892         int ret;
2893         TDB_DATA data;
2894         struct ctdb_client_ip *ip;
2895         struct ctdb_vnn *vnn;
2896         ctdb_sock_addr addr;
2897
2898         switch (indata.dsize) {
2899         case sizeof(struct ctdb_control_tcp):
2900                 old_addr = (struct ctdb_control_tcp *)indata.dptr;
2901                 ZERO_STRUCT(new_addr);
2902                 tcp_sock = &new_addr;
2903                 tcp_sock->src.ip  = old_addr->src;
2904                 tcp_sock->dest.ip = old_addr->dest;
2905                 break;
2906         case sizeof(struct ctdb_control_tcp_addr):
2907                 tcp_sock = (struct ctdb_control_tcp_addr *)indata.dptr;
2908                 break;
2909         default:
2910                 DEBUG(DEBUG_ERR,(__location__ " Invalid data structure passed "
2911                                  "to ctdb_control_tcp_client. size was %d but "
2912                                  "only allowed sizes are %lu and %lu\n",
2913                                  (int)indata.dsize,
2914                                  (long unsigned)sizeof(struct ctdb_control_tcp),
2915                                  (long unsigned)sizeof(struct ctdb_control_tcp_addr)));
2916                 return -1;
2917         }
2918
2919         addr = tcp_sock->src;
2920         ctdb_canonicalize_ip(&addr,  &tcp_sock->src);
2921         addr = tcp_sock->dest;
2922         ctdb_canonicalize_ip(&addr, &tcp_sock->dest);
2923
2924         ZERO_STRUCT(addr);
2925         memcpy(&addr, &tcp_sock->dest, sizeof(addr));
2926         vnn = find_public_ip_vnn(ctdb, &addr);
2927         if (vnn == NULL) {
2928                 switch (addr.sa.sa_family) {
2929                 case AF_INET:
2930                         if (ntohl(addr.ip.sin_addr.s_addr) != INADDR_LOOPBACK) {
2931                                 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public address.\n", 
2932                                         ctdb_addr_to_str(&addr)));
2933                         }
2934                         break;
2935                 case AF_INET6:
2936                         DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public ipv6 address.\n", 
2937                                 ctdb_addr_to_str(&addr)));
2938                         break;
2939                 default:
2940                         DEBUG(DEBUG_ERR,(__location__ " Unknown family type %d\n", addr.sa.sa_family));
2941                 }
2942
2943                 return 0;
2944         }
2945
2946         if (vnn->pnn != ctdb->pnn) {
2947                 DEBUG(DEBUG_ERR,("Attempt to register tcp client for IP %s we don't hold - failing (client_id %u pid %u)\n",
2948                         ctdb_addr_to_str(&addr),
2949                         client_id, client->pid));
2950                 /* failing this call will tell smbd to die */
2951                 return -1;
2952         }
2953
2954         ip = talloc(client, struct ctdb_client_ip);
2955         CTDB_NO_MEMORY(ctdb, ip);
2956
2957         ip->ctdb      = ctdb;
2958         ip->addr      = addr;
2959         ip->client_id = client_id;
2960         talloc_set_destructor(ip, ctdb_client_ip_destructor);
2961         DLIST_ADD(ctdb->client_ip_list, ip);
2962
2963         tcp = talloc(client, struct ctdb_tcp_list);
2964         CTDB_NO_MEMORY(ctdb, tcp);
2965
2966         tcp->connection.src_addr = tcp_sock->src;
2967         tcp->connection.dst_addr = tcp_sock->dest;
2968
2969         DLIST_ADD(client->tcp_list, tcp);
2970
2971         t.src_addr = tcp_sock->src;
2972         t.dst_addr = tcp_sock->dest;
2973
2974         data.dptr = (uint8_t *)&t;
2975         data.dsize = sizeof(t);
2976
2977         switch (addr.sa.sa_family) {
2978         case AF_INET:
2979                 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2980                         (unsigned)ntohs(tcp_sock->dest.ip.sin_port), 
2981                         ctdb_addr_to_str(&tcp_sock->src),
2982                         (unsigned)ntohs(tcp_sock->src.ip.sin_port), client_id, client->pid));
2983                 break;
2984         case AF_INET6:
2985                 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2986                         (unsigned)ntohs(tcp_sock->dest.ip6.sin6_port), 
2987                         ctdb_addr_to_str(&tcp_sock->src),
2988                         (unsigned)ntohs(tcp_sock->src.ip6.sin6_port), client_id, client->pid));
2989                 break;
2990         default:
2991                 DEBUG(DEBUG_ERR,(__location__ " Unknown family %d\n", addr.sa.sa_family));
2992         }
2993
2994
2995         /* tell all nodes about this tcp connection */
2996         ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0, 
2997                                        CTDB_CONTROL_TCP_ADD,
2998                                        0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
2999         if (ret != 0) {
3000                 DEBUG(DEBUG_ERR,(__location__ " Failed to send CTDB_CONTROL_TCP_ADD\n"));
3001                 return -1;
3002         }
3003
3004         return 0;
3005 }
3006
3007 /*
3008   find a tcp address on a list
3009  */
3010 static struct ctdb_tcp_connection *ctdb_tcp_find(struct ctdb_tcp_array *array, 
3011                                            struct ctdb_tcp_connection *tcp)
3012 {
3013         int i;
3014
3015         if (array == NULL) {
3016                 return NULL;
3017         }
3018
3019         for (i=0;i<array->num;i++) {
3020                 if (ctdb_same_sockaddr(&array->connections[i].src_addr, &tcp->src_addr) &&
3021                     ctdb_same_sockaddr(&array->connections[i].dst_addr, &tcp->dst_addr)) {
3022                         return &array->connections[i];
3023                 }
3024         }
3025         return NULL;
3026 }
3027
3028
3029
3030 /*
3031   called by a daemon to inform us of a TCP connection that one of its
3032   clients managing that should tickled with an ACK when IP takeover is
3033   done
3034  */
3035 int32_t ctdb_control_tcp_add(struct ctdb_context *ctdb, TDB_DATA indata, bool tcp_update_needed)
3036 {
3037         struct ctdb_tcp_connection *p = (struct ctdb_tcp_connection *)indata.dptr;
3038         struct ctdb_tcp_array *tcparray;
3039         struct ctdb_tcp_connection tcp;
3040         struct ctdb_vnn *vnn;
3041
3042         vnn = find_public_ip_vnn(ctdb, &p->dst_addr);
3043         if (vnn == NULL) {
3044                 DEBUG(DEBUG_INFO,(__location__ " got TCP_ADD control for an address which is not a public address '%s'\n",
3045                         ctdb_addr_to_str(&p->dst_addr)));
3046
3047                 return -1;
3048         }
3049
3050
3051         tcparray = vnn->tcp_array;
3052
3053         /* If this is the first tickle */
3054         if (tcparray == NULL) {
3055                 tcparray = talloc_size(ctdb->nodes, 
3056                         offsetof(struct ctdb_tcp_array, connections) +
3057                         sizeof(struct ctdb_tcp_connection) * 1);
3058                 CTDB_NO_MEMORY(ctdb, tcparray);
3059                 vnn->tcp_array = tcparray;
3060
3061                 tcparray->num = 0;
3062                 tcparray->connections = talloc_size(tcparray, sizeof(struct ctdb_tcp_connection));
3063                 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3064
3065                 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3066                 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3067                 tcparray->num++;
3068
3069                 if (tcp_update_needed) {
3070                         vnn->tcp_update_needed = true;
3071                 }
3072                 return 0;
3073         }
3074
3075
3076         /* Do we already have this tickle ?*/
3077         tcp.src_addr = p->src_addr;
3078         tcp.dst_addr = p->dst_addr;
3079         if (ctdb_tcp_find(vnn->tcp_array, &tcp) != NULL) {
3080                 DEBUG(DEBUG_DEBUG,("Already had tickle info for %s:%u for vnn:%u\n",
3081                         ctdb_addr_to_str(&tcp.dst_addr),
3082                         ntohs(tcp.dst_addr.ip.sin_port),
3083                         vnn->pnn));
3084                 return 0;
3085         }
3086
3087         /* A new tickle, we must add it to the array */
3088         tcparray->connections = talloc_realloc(tcparray, tcparray->connections,
3089                                         struct ctdb_tcp_connection,
3090                                         tcparray->num+1);
3091         CTDB_NO_MEMORY(ctdb, tcparray->connections);
3092
3093         vnn->tcp_array = tcparray;
3094         tcparray->connections[tcparray->num].src_addr = p->src_addr;
3095         tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3096         tcparray->num++;
3097                                 
3098         DEBUG(DEBUG_INFO,("Added tickle info for %s:%u from vnn %u\n",
3099                 ctdb_addr_to_str(&tcp.dst_addr),
3100                 ntohs(tcp.dst_addr.ip.sin_port),
3101                 vnn->pnn));
3102
3103         if (tcp_update_needed) {
3104                 vnn->tcp_update_needed = true;
3105         }
3106
3107         return 0;
3108 }
3109
3110
3111 /*
3112   called by a daemon to inform us of a TCP connection that one of its
3113   clients managing that should tickled with an ACK when IP takeover is
3114   done
3115  */
3116 static void ctdb_remove_tcp_connection(struct ctdb_context *ctdb, struct ctdb_tcp_connection *conn)
3117 {
3118         struct ctdb_tcp_connection *tcpp;
3119         struct ctdb_vnn *vnn = find_public_ip_vnn(ctdb, &conn->dst_addr);
3120
3121         if (vnn == NULL) {
3122                 DEBUG(DEBUG_ERR,(__location__ " unable to find public address %s\n",
3123                         ctdb_addr_to_str(&conn->dst_addr)));
3124                 return;
3125         }
3126
3127         /* if the array is empty we cant remove it
3128            and we dont need to do anything
3129          */
3130         if (vnn->tcp_array == NULL) {
3131                 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist (array is empty) %s:%u\n",
3132                         ctdb_addr_to_str(&conn->dst_addr),
3133                         ntohs(conn->dst_addr.ip.sin_port)));
3134                 return;
3135         }
3136
3137
3138         /* See if we know this connection
3139            if we dont know this connection  then we dont need to do anything
3140          */
3141         tcpp = ctdb_tcp_find(vnn->tcp_array, conn);
3142         if (tcpp == NULL) {
3143                 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist %s:%u\n",
3144                         ctdb_addr_to_str(&conn->dst_addr),
3145                         ntohs(conn->dst_addr.ip.sin_port)));
3146                 return;
3147         }
3148
3149
3150         /* We need to remove this entry from the array.
3151            Instead of allocating a new array and copying data to it
3152            we cheat and just copy the last entry in the existing array
3153            to the entry that is to be removed and just shring the 
3154            ->num field
3155          */
3156         *tcpp = vnn->tcp_array->connections[vnn->tcp_array->num - 1];
3157         vnn->tcp_array->num--;
3158
3159         /* If we deleted the last entry we also need to remove the entire array
3160          */
3161         if (vnn->tcp_array->num == 0) {
3162                 talloc_free(vnn->tcp_array);
3163                 vnn->tcp_array = NULL;
3164         }               
3165
3166         vnn->tcp_update_needed = true;
3167
3168         DEBUG(DEBUG_INFO,("Removed tickle info for %s:%u\n",
3169                 ctdb_addr_to_str(&conn->src_addr),
3170                 ntohs(conn->src_addr.ip.sin_port)));
3171 }
3172
3173
3174 /*
3175   called by a daemon to inform us of a TCP connection that one of its
3176   clients used are no longer needed in the tickle database
3177  */
3178 int32_t ctdb_control_tcp_remove(struct ctdb_context *ctdb, TDB_DATA indata)
3179 {
3180         struct ctdb_tcp_connection *conn = (struct ctdb_tcp_connection *)indata.dptr;
3181
3182         ctdb_remove_tcp_connection(ctdb, conn);
3183
3184         return 0;
3185 }
3186
3187
3188 /*
3189   called when a daemon restarts - send all tickes for all public addresses
3190   we are serving immediately to the new node.
3191  */
3192 int32_t ctdb_control_startup(struct ctdb_context *ctdb, uint32_t vnn)
3193 {
3194 /*XXX here we should send all tickes we are serving to the new node */
3195         return 0;
3196 }
3197
3198
3199 /*
3200   called when a client structure goes away - hook to remove
3201   elements from the tcp_list in all daemons
3202  */
3203 void ctdb_takeover_client_destructor_hook(struct ctdb_client *client)
3204 {
3205         while (client->tcp_list) {
3206                 struct ctdb_tcp_list *tcp = client->tcp_list;
3207                 DLIST_REMOVE(client->tcp_list, tcp);
3208                 ctdb_remove_tcp_connection(client->ctdb, &tcp->connection);
3209         }
3210 }
3211
3212
3213 /*
3214   release all IPs on shutdown
3215  */
3216 void ctdb_release_all_ips(struct ctdb_context *ctdb)
3217 {
3218         struct ctdb_vnn *vnn;
3219         int count = 0;
3220
3221         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3222                 if (!ctdb_sys_have_ip(&vnn->public_address)) {
3223                         ctdb_vnn_unassign_iface(ctdb, vnn);
3224                         continue;
3225                 }
3226                 if (!vnn->iface) {
3227                         continue;
3228                 }
3229
3230                 DEBUG(DEBUG_INFO,("Release of IP %s/%u on interface %s node:-1\n",
3231                                     ctdb_addr_to_str(&vnn->public_address),
3232                                     vnn->public_netmask_bits,
3233                                     ctdb_vnn_iface_string(vnn)));
3234
3235                 ctdb_event_script_args(ctdb, CTDB_EVENT_RELEASE_IP, "%s %s %u",
3236                                   ctdb_vnn_iface_string(vnn),
3237                                   ctdb_addr_to_str(&vnn->public_address),
3238                                   vnn->public_netmask_bits);
3239                 release_kill_clients(ctdb, &vnn->public_address);
3240                 ctdb_vnn_unassign_iface(ctdb, vnn);
3241                 count++;
3242         }
3243
3244         DEBUG(DEBUG_NOTICE,(__location__ " Released %d public IPs\n", count));
3245 }
3246
3247
3248 /*
3249   get list of public IPs
3250  */
3251 int32_t ctdb_control_get_public_ips(struct ctdb_context *ctdb, 
3252                                     struct ctdb_req_control *c, TDB_DATA *outdata)
3253 {
3254         int i, num, len;
3255         struct ctdb_all_public_ips *ips;
3256         struct ctdb_vnn *vnn;
3257         bool only_available = false;
3258
3259         if (c->flags & CTDB_PUBLIC_IP_FLAGS_ONLY_AVAILABLE) {
3260                 only_available = true;
3261         }
3262
3263         /* count how many public ip structures we have */
3264         num = 0;
3265         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3266                 num++;
3267         }
3268
3269         len = offsetof(struct ctdb_all_public_ips, ips) + 
3270                 num*sizeof(struct ctdb_public_ip);
3271         ips = talloc_zero_size(outdata, len);
3272         CTDB_NO_MEMORY(ctdb, ips);
3273
3274         i = 0;
3275         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3276                 if (only_available && !ctdb_vnn_available(ctdb, vnn)) {
3277                         continue;
3278                 }
3279                 ips->ips[i].pnn  = vnn->pnn;
3280                 ips->ips[i].addr = vnn->public_address;
3281                 i++;
3282         }
3283         ips->num = i;
3284         len = offsetof(struct ctdb_all_public_ips, ips) +
3285                 i*sizeof(struct ctdb_public_ip);
3286
3287         outdata->dsize = len;
3288         outdata->dptr  = (uint8_t *)ips;
3289
3290         return 0;
3291 }
3292
3293
3294 /*
3295   get list of public IPs, old ipv4 style.  only returns ipv4 addresses
3296  */
3297 int32_t ctdb_control_get_public_ipsv4(struct ctdb_context *ctdb, 
3298                                     struct ctdb_req_control *c, TDB_DATA *outdata)
3299 {
3300         int i, num, len;
3301         struct ctdb_all_public_ipsv4 *ips;
3302         struct ctdb_vnn *vnn;
3303
3304         /* count how many public ip structures we have */
3305         num = 0;
3306         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3307                 if (vnn->public_address.sa.sa_family != AF_INET) {
3308                         continue;
3309                 }
3310                 num++;
3311         }
3312
3313         len = offsetof(struct ctdb_all_public_ipsv4, ips) + 
3314                 num*sizeof(struct ctdb_public_ipv4);
3315         ips = talloc_zero_size(outdata, len);
3316         CTDB_NO_MEMORY(ctdb, ips);
3317
3318         outdata->dsize = len;
3319         outdata->dptr  = (uint8_t *)ips;
3320
3321         ips->num = num;
3322         i = 0;
3323         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3324                 if (vnn->public_address.sa.sa_family != AF_INET) {
3325                         continue;
3326                 }
3327                 ips->ips[i].pnn = vnn->pnn;
3328                 ips->ips[i].sin = vnn->public_address.ip;
3329                 i++;
3330         }
3331
3332         return 0;
3333 }
3334
3335 int32_t ctdb_control_get_public_ip_info(struct ctdb_context *ctdb,
3336                                         struct ctdb_req_control *c,
3337                                         TDB_DATA indata,
3338                                         TDB_DATA *outdata)
3339 {
3340         int i, num, len;
3341         ctdb_sock_addr *addr;
3342         struct ctdb_control_public_ip_info *info;
3343         struct ctdb_vnn *vnn;
3344
3345         addr = (ctdb_sock_addr *)indata.dptr;
3346
3347         vnn = find_public_ip_vnn(ctdb, addr);
3348         if (vnn == NULL) {
3349                 /* if it is not a public ip   it could be our 'single ip' */
3350                 if (ctdb->single_ip_vnn) {
3351                         if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, addr)) {
3352                                 vnn = ctdb->single_ip_vnn;
3353                         }
3354                 }
3355         }
3356         if (vnn == NULL) {
3357                 DEBUG(DEBUG_ERR,(__location__ " Could not get public ip info, "
3358                                  "'%s'not a public address\n",
3359                                  ctdb_addr_to_str(addr)));
3360                 return -1;
3361         }
3362
3363         /* count how many public ip structures we have */
3364         num = 0;
3365         for (;vnn->ifaces[num];) {
3366                 num++;
3367         }
3368
3369         len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3370                 num*sizeof(struct ctdb_control_iface_info);
3371         info = talloc_zero_size(outdata, len);
3372         CTDB_NO_MEMORY(ctdb, info);
3373
3374         info->ip.addr = vnn->public_address;
3375         info->ip.pnn = vnn->pnn;
3376         info->active_idx = 0xFFFFFFFF;
3377
3378         for (i=0; vnn->ifaces[i]; i++) {
3379                 struct ctdb_iface *cur;
3380
3381                 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
3382                 if (cur == NULL) {
3383                         DEBUG(DEBUG_CRIT, (__location__ " internal error iface[%s] unknown\n",
3384                                            vnn->ifaces[i]));
3385                         return -1;
3386                 }
3387                 if (vnn->iface == cur) {
3388                         info->active_idx = i;
3389                 }
3390                 strncpy(info->ifaces[i].name, cur->name, sizeof(info->ifaces[i].name)-1);
3391                 info->ifaces[i].link_state = cur->link_up;
3392                 info->ifaces[i].references = cur->references;
3393         }
3394         info->num = i;
3395         len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3396                 i*sizeof(struct ctdb_control_iface_info);
3397
3398         outdata->dsize = len;
3399         outdata->dptr  = (uint8_t *)info;
3400
3401         return 0;
3402 }
3403
3404 int32_t ctdb_control_get_ifaces(struct ctdb_context *ctdb,
3405                                 struct ctdb_req_control *c,
3406                                 TDB_DATA *outdata)
3407 {
3408         int i, num, len;
3409         struct ctdb_control_get_ifaces *ifaces;
3410         struct ctdb_iface *cur;
3411
3412         /* count how many public ip structures we have */
3413         num = 0;
3414         for (cur=ctdb->ifaces;cur;cur=cur->next) {
3415                 num++;
3416         }
3417
3418         len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3419                 num*sizeof(struct ctdb_control_iface_info);
3420         ifaces = talloc_zero_size(outdata, len);
3421         CTDB_NO_MEMORY(ctdb, ifaces);
3422
3423         i = 0;
3424         for (cur=ctdb->ifaces;cur;cur=cur->next) {
3425                 strcpy(ifaces->ifaces[i].name, cur->name);
3426                 ifaces->ifaces[i].link_state = cur->link_up;
3427                 ifaces->ifaces[i].references = cur->references;
3428                 i++;
3429         }
3430         ifaces->num = i;
3431         len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3432                 i*sizeof(struct ctdb_control_iface_info);
3433
3434         outdata->dsize = len;
3435         outdata->dptr  = (uint8_t *)ifaces;
3436
3437         return 0;
3438 }
3439
3440 int32_t ctdb_control_set_iface_link(struct ctdb_context *ctdb,
3441                                     struct ctdb_req_control *c,
3442                                     TDB_DATA indata)
3443 {
3444         struct ctdb_control_iface_info *info;
3445         struct ctdb_iface *iface;
3446         bool link_up = false;
3447
3448         info = (struct ctdb_control_iface_info *)indata.dptr;
3449
3450         if (info->name[CTDB_IFACE_SIZE] != '\0') {
3451                 int len = strnlen(info->name, CTDB_IFACE_SIZE);
3452                 DEBUG(DEBUG_ERR, (__location__ " name[%*.*s] not terminated\n",
3453                                   len, len, info->name));
3454                 return -1;
3455         }
3456
3457         switch (info->link_state) {
3458         case 0:
3459                 link_up = false;
3460                 break;
3461         case 1:
3462                 link_up = true;
3463                 break;
3464         default:
3465                 DEBUG(DEBUG_ERR, (__location__ " link_state[%u] invalid\n",
3466                                   (unsigned int)info->link_state));
3467                 return -1;
3468         }
3469
3470         if (info->references != 0) {
3471                 DEBUG(DEBUG_ERR, (__location__ " references[%u] should be 0\n",
3472                                   (unsigned int)info->references));
3473                 return -1;
3474         }
3475
3476         iface = ctdb_find_iface(ctdb, info->name);
3477         if (iface == NULL) {
3478                 return -1;
3479         }
3480
3481         if (link_up == iface->link_up) {
3482                 return 0;
3483         }
3484
3485         DEBUG(iface->link_up?DEBUG_ERR:DEBUG_NOTICE,
3486               ("iface[%s] has changed it's link status %s => %s\n",
3487                iface->name,
3488                iface->link_up?"up":"down",
3489                link_up?"up":"down"));
3490
3491         iface->link_up = link_up;
3492         return 0;
3493 }
3494
3495
3496 /* 
3497    structure containing the listening socket and the list of tcp connections
3498    that the ctdb daemon is to kill
3499 */
3500 struct ctdb_kill_tcp {
3501         struct ctdb_vnn *vnn;
3502         struct ctdb_context *ctdb;
3503         int capture_fd;
3504         struct fd_event *fde;
3505         trbt_tree_t *connections;
3506         void *private_data;
3507 };
3508
3509 /*
3510   a tcp connection that is to be killed
3511  */
3512 struct ctdb_killtcp_con {
3513         ctdb_sock_addr src_addr;
3514         ctdb_sock_addr dst_addr;
3515         int count;
3516         struct ctdb_kill_tcp *killtcp;
3517 };
3518
3519 /* this function is used to create a key to represent this socketpair
3520    in the killtcp tree.
3521    this key is used to insert and lookup matching socketpairs that are
3522    to be tickled and RST
3523 */
3524 #define KILLTCP_KEYLEN  10
3525 static uint32_t *killtcp_key(ctdb_sock_addr *src, ctdb_sock_addr *dst)
3526 {
3527         static uint32_t key[KILLTCP_KEYLEN];
3528
3529         bzero(key, sizeof(key));
3530
3531         if (src->sa.sa_family != dst->sa.sa_family) {
3532                 DEBUG(DEBUG_ERR, (__location__ " ERROR, different families passed :%u vs %u\n", src->sa.sa_family, dst->sa.sa_family));
3533                 return key;
3534         }
3535         
3536         switch (src->sa.sa_family) {
3537         case AF_INET:
3538                 key[0]  = dst->ip.sin_addr.s_addr;
3539                 key[1]  = src->ip.sin_addr.s_addr;
3540                 key[2]  = dst->ip.sin_port;
3541                 key[3]  = src->ip.sin_port;
3542                 break;
3543         case AF_INET6: {
3544                 uint32_t *dst6_addr32 =
3545                         (uint32_t *)&(dst->ip6.sin6_addr.s6_addr);
3546                 uint32_t *src6_addr32 =
3547                         (uint32_t *)&(src->ip6.sin6_addr.s6_addr);
3548                 key[0]  = dst6_addr32[3];
3549                 key[1]  = src6_addr32[3];
3550                 key[2]  = dst6_addr32[2];
3551                 key[3]  = src6_addr32[2];
3552                 key[4]  = dst6_addr32[1];
3553                 key[5]  = src6_addr32[1];
3554                 key[6]  = dst6_addr32[0];
3555                 key[7]  = src6_addr32[0];
3556                 key[8]  = dst->ip6.sin6_port;
3557                 key[9]  = src->ip6.sin6_port;
3558                 break;
3559         }
3560         default:
3561                 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", src->sa.sa_family));
3562                 return key;
3563         }
3564
3565         return key;
3566 }
3567
3568 /*
3569   called when we get a read event on the raw socket
3570  */
3571 static void capture_tcp_handler(struct event_context *ev, struct fd_event *fde, 
3572                                 uint16_t flags, void *private_data)
3573 {
3574         struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3575         struct ctdb_killtcp_con *con;
3576         ctdb_sock_addr src, dst;
3577         uint32_t ack_seq, seq;
3578
3579         if (!(flags & EVENT_FD_READ)) {
3580                 return;
3581         }
3582
3583         if (ctdb_sys_read_tcp_packet(killtcp->capture_fd,
3584                                 killtcp->private_data,
3585                                 &src, &dst,
3586                                 &ack_seq, &seq) != 0) {
3587                 /* probably a non-tcp ACK packet */
3588                 return;
3589         }
3590
3591         /* check if we have this guy in our list of connections
3592            to kill
3593         */
3594         con = trbt_lookuparray32(killtcp->connections, 
3595                         KILLTCP_KEYLEN, killtcp_key(&src, &dst));
3596         if (con == NULL) {
3597                 /* no this was some other packet we can just ignore */
3598                 return;
3599         }
3600
3601         /* This one has been tickled !
3602            now reset him and remove him from the list.
3603          */
3604         DEBUG(DEBUG_INFO, ("sending a tcp reset to kill connection :%d -> %s:%d\n",
3605                 ntohs(con->dst_addr.ip.sin_port),
3606                 ctdb_addr_to_str(&con->src_addr),
3607                 ntohs(con->src_addr.ip.sin_port)));
3608
3609         ctdb_sys_send_tcp(&con->dst_addr, &con->src_addr, ack_seq, seq, 1);
3610         talloc_free(con);
3611 }
3612
3613
3614 /* when traversing the list of all tcp connections to send tickle acks to
3615    (so that we can capture the ack coming back and kill the connection
3616     by a RST)
3617    this callback is called for each connection we are currently trying to kill
3618 */
3619 static int tickle_connection_traverse(void *param, void *data)
3620 {
3621         struct ctdb_killtcp_con *con = talloc_get_type(data, struct ctdb_killtcp_con);
3622
3623         /* have tried too many times, just give up */
3624         if (con->count >= 5) {
3625                 /* can't delete in traverse: reparent to delete_cons */
3626                 talloc_steal(param, con);
3627                 return 0;
3628         }
3629
3630         /* othervise, try tickling it again */
3631         con->count++;
3632         ctdb_sys_send_tcp(
3633                 (ctdb_sock_addr *)&con->dst_addr,
3634                 (ctdb_sock_addr *)&con->src_addr,
3635                 0, 0, 0);
3636         return 0;
3637 }
3638
3639
3640 /* 
3641    called every second until all sentenced connections have been reset
3642  */
3643 static void ctdb_tickle_sentenced_connections(struct event_context *ev, struct timed_event *te, 
3644                                               struct timeval t, void *private_data)
3645 {
3646         struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3647         void *delete_cons = talloc_new(NULL);
3648
3649         /* loop over all connections sending tickle ACKs */
3650         trbt_traversearray32(killtcp->connections, KILLTCP_KEYLEN, tickle_connection_traverse, delete_cons);
3651
3652         /* now we've finished traverse, it's safe to do deletion. */
3653         talloc_free(delete_cons);
3654
3655         /* If there are no more connections to kill we can remove the
3656            entire killtcp structure
3657          */
3658         if ( (killtcp->connections == NULL) || 
3659              (killtcp->connections->root == NULL) ) {
3660                 talloc_free(killtcp);
3661                 return;
3662         }
3663
3664         /* try tickling them again in a seconds time
3665          */
3666         event_add_timed(killtcp->ctdb->ev, killtcp, timeval_current_ofs(1, 0), 
3667                         ctdb_tickle_sentenced_connections, killtcp);
3668 }
3669
3670 /*
3671   destroy the killtcp structure
3672  */
3673 static int ctdb_killtcp_destructor(struct ctdb_kill_tcp *killtcp)
3674 {
3675         struct ctdb_vnn *tmpvnn;
3676
3677         /* verify that this vnn is still active */
3678         for (tmpvnn = killtcp->ctdb->vnn; tmpvnn; tmpvnn = tmpvnn->next) {
3679                 if (tmpvnn == killtcp->vnn) {
3680                         break;
3681                 }
3682         }
3683
3684         if (tmpvnn == NULL) {
3685                 return 0;
3686         }
3687
3688         if (killtcp->vnn->killtcp != killtcp) {
3689                 return 0;
3690         }
3691
3692         killtcp->vnn->killtcp = NULL;
3693
3694         return 0;
3695 }
3696
3697
3698 /* nothing fancy here, just unconditionally replace any existing
3699    connection structure with the new one.
3700
3701    dont even free the old one if it did exist, that one is talloc_stolen
3702    by the same node in the tree anyway and will be deleted when the new data 
3703    is deleted
3704 */
3705 static void *add_killtcp_callback(void *parm, void *data)
3706 {
3707         return parm;
3708 }
3709
3710 /*
3711   add a tcp socket to the list of connections we want to RST
3712  */
3713 static int ctdb_killtcp_add_connection(struct ctdb_context *ctdb, 
3714                                        ctdb_sock_addr *s,
3715                                        ctdb_sock_addr *d)
3716 {
3717         ctdb_sock_addr src, dst;
3718         struct ctdb_kill_tcp *killtcp;
3719         struct ctdb_killtcp_con *con;
3720         struct ctdb_vnn *vnn;
3721
3722         ctdb_canonicalize_ip(s, &src);
3723         ctdb_canonicalize_ip(d, &dst);
3724
3725         vnn = find_public_ip_vnn(ctdb, &dst);
3726         if (vnn == NULL) {
3727                 vnn = find_public_ip_vnn(ctdb, &src);
3728         }
3729         if (vnn == NULL) {
3730                 /* if it is not a public ip   it could be our 'single ip' */
3731                 if (ctdb->single_ip_vnn) {
3732                         if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, &dst)) {
3733                                 vnn = ctdb->single_ip_vnn;
3734                         }
3735                 }
3736         }
3737         if (vnn == NULL) {
3738                 DEBUG(DEBUG_ERR,(__location__ " Could not killtcp, not a public address\n")); 
3739                 return -1;
3740         }
3741
3742         killtcp = vnn->killtcp;
3743         
3744         /* If this is the first connection to kill we must allocate
3745            a new structure
3746          */
3747         if (killtcp == NULL) {
3748                 killtcp = talloc_zero(vnn, struct ctdb_kill_tcp);
3749                 CTDB_NO_MEMORY(ctdb, killtcp);
3750
3751                 killtcp->vnn         = vnn;
3752                 killtcp->ctdb        = ctdb;
3753                 killtcp->capture_fd  = -1;
3754                 killtcp->connections = trbt_create(killtcp, 0);
3755
3756                 vnn->killtcp         = killtcp;
3757                 talloc_set_destructor(killtcp, ctdb_killtcp_destructor);
3758         }
3759
3760
3761
3762         /* create a structure that describes this connection we want to
3763            RST and store it in killtcp->connections
3764         */
3765         con = talloc(killtcp, struct ctdb_killtcp_con);
3766         CTDB_NO_MEMORY(ctdb, con);
3767         con->src_addr = src;
3768         con->dst_addr = dst;
3769         con->count    = 0;
3770         con->killtcp  = killtcp;
3771
3772
3773         trbt_insertarray32_callback(killtcp->connections,
3774                         KILLTCP_KEYLEN, killtcp_key(&con->dst_addr, &con->src_addr),
3775                         add_killtcp_callback, con);
3776
3777         /* 
3778            If we dont have a socket to listen on yet we must create it
3779          */
3780         if (killtcp->capture_fd == -1) {
3781                 const char *iface = ctdb_vnn_iface_string(vnn);
3782                 killtcp->capture_fd = ctdb_sys_open_capture_socket(iface, &killtcp->private_data);
3783                 if (killtcp->capture_fd == -1) {
3784                         DEBUG(DEBUG_CRIT,(__location__ " Failed to open capturing "
3785                                           "socket on iface '%s' for killtcp (%s)\n",
3786                                           iface, strerror(errno)));
3787                         goto failed;
3788                 }
3789         }
3790
3791
3792         if (killtcp->fde == NULL) {
3793                 killtcp->fde = event_add_fd(ctdb->ev, killtcp, killtcp->capture_fd, 
3794                                             EVENT_FD_READ,
3795                                             capture_tcp_handler, killtcp);
3796                 tevent_fd_set_auto_close(killtcp->fde);
3797
3798                 /* We also need to set up some events to tickle all these connections
3799                    until they are all reset
3800                 */
3801                 event_add_timed(ctdb->ev, killtcp, timeval_current_ofs(1, 0), 
3802                                 ctdb_tickle_sentenced_connections, killtcp);
3803         }
3804
3805         /* tickle him once now */
3806         ctdb_sys_send_tcp(
3807                 &con->dst_addr,
3808                 &con->src_addr,
3809                 0, 0, 0);
3810
3811         return 0;
3812
3813 failed:
3814         talloc_free(vnn->killtcp);
3815         vnn->killtcp = NULL;
3816         return -1;
3817 }
3818
3819 /*
3820   kill a TCP connection.
3821  */
3822 int32_t ctdb_control_kill_tcp(struct ctdb_context *ctdb, TDB_DATA indata)
3823 {
3824         struct ctdb_control_killtcp *killtcp = (struct ctdb_control_killtcp *)indata.dptr;
3825
3826         return ctdb_killtcp_add_connection(ctdb, &killtcp->src_addr, &killtcp->dst_addr);
3827 }
3828
3829 /*
3830   called by a daemon to inform us of the entire list of TCP tickles for
3831   a particular public address.
3832   this control should only be sent by the node that is currently serving
3833   that public address.
3834  */
3835 int32_t ctdb_control_set_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata)
3836 {
3837         struct ctdb_control_tcp_tickle_list *list = (struct ctdb_control_tcp_tickle_list *)indata.dptr;
3838         struct ctdb_tcp_array *tcparray;
3839         struct ctdb_vnn *vnn;
3840
3841         /* We must at least have tickles.num or else we cant verify the size
3842            of the received data blob
3843          */
3844         if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list, 
3845                                         tickles.connections)) {
3846                 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list. Not enough data for the tickle.num field\n"));
3847                 return -1;
3848         }
3849
3850         /* verify that the size of data matches what we expect */
3851         if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list, 
3852                                 tickles.connections)
3853                          + sizeof(struct ctdb_tcp_connection)
3854                                  * list->tickles.num) {
3855                 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list\n"));
3856                 return -1;
3857         }       
3858
3859         vnn = find_public_ip_vnn(ctdb, &list->addr);
3860         if (vnn == NULL) {
3861                 DEBUG(DEBUG_INFO,(__location__ " Could not set tcp tickle list, '%s' is not a public address\n", 
3862                         ctdb_addr_to_str(&list->addr)));
3863
3864                 return 1;
3865         }
3866
3867         /* remove any old ticklelist we might have */
3868         talloc_free(vnn->tcp_array);
3869         vnn->tcp_array = NULL;
3870
3871         tcparray = talloc(ctdb->nodes, struct ctdb_tcp_array);
3872         CTDB_NO_MEMORY(ctdb, tcparray);
3873
3874         tcparray->num = list->tickles.num;
3875
3876         tcparray->connections = talloc_array(tcparray, struct ctdb_tcp_connection, tcparray->num);
3877         CTDB_NO_MEMORY(ctdb, tcparray->connections);
3878
3879         memcpy(tcparray->connections, &list->tickles.connections[0], 
3880                sizeof(struct ctdb_tcp_connection)*tcparray->num);
3881
3882         /* We now have a new fresh tickle list array for this vnn */
3883         vnn->tcp_array = talloc_steal(vnn, tcparray);
3884         
3885         return 0;
3886 }
3887
3888 /*
3889   called to return the full list of tickles for the puclic address associated 
3890   with the provided vnn
3891  */
3892 int32_t ctdb_control_get_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
3893 {
3894         ctdb_sock_addr *addr = (ctdb_sock_addr *)indata.dptr;
3895         struct ctdb_control_tcp_tickle_list *list;
3896         struct ctdb_tcp_array *tcparray;
3897         int num;
3898         struct ctdb_vnn *vnn;
3899
3900         vnn = find_public_ip_vnn(ctdb, addr);
3901         if (vnn == NULL) {
3902                 DEBUG(DEBUG_ERR,(__location__ " Could not get tcp tickle list, '%s' is not a public address\n", 
3903                         ctdb_addr_to_str(addr)));
3904
3905                 return 1;
3906         }
3907
3908         tcparray = vnn->tcp_array;
3909         if (tcparray) {
3910                 num = tcparray->num;
3911         } else {
3912                 num = 0;
3913         }
3914
3915         outdata->dsize = offsetof(struct ctdb_control_tcp_tickle_list, 
3916                                 tickles.connections)
3917                         + sizeof(struct ctdb_tcp_connection) * num;
3918
3919         outdata->dptr  = talloc_size(outdata, outdata->dsize);
3920         CTDB_NO_MEMORY(ctdb, outdata->dptr);
3921         list = (struct ctdb_control_tcp_tickle_list *)outdata->dptr;
3922
3923         list->addr = *addr;
3924         list->tickles.num = num;
3925         if (num) {
3926                 memcpy(&list->tickles.connections[0], tcparray->connections, 
3927                         sizeof(struct ctdb_tcp_connection) * num);
3928         }
3929
3930         return 0;
3931 }
3932
3933
3934 /*
3935   set the list of all tcp tickles for a public address
3936  */
3937 static int ctdb_ctrl_set_tcp_tickles(struct ctdb_context *ctdb, 
3938                               struct timeval timeout, uint32_t destnode, 
3939                               ctdb_sock_addr *addr,
3940                               struct ctdb_tcp_array *tcparray)
3941 {
3942         int ret, num;
3943         TDB_DATA data;
3944         struct ctdb_control_tcp_tickle_list *list;
3945
3946         if (tcparray) {
3947                 num = tcparray->num;
3948         } else {
3949                 num = 0;
3950         }
3951
3952         data.dsize = offsetof(struct ctdb_control_tcp_tickle_list, 
3953                                 tickles.connections) +
3954                         sizeof(struct ctdb_tcp_connection) * num;
3955         data.dptr = talloc_size(ctdb, data.dsize);
3956         CTDB_NO_MEMORY(ctdb, data.dptr);
3957
3958         list = (struct ctdb_control_tcp_tickle_list *)data.dptr;
3959         list->addr = *addr;
3960         list->tickles.num = num;
3961         if (tcparray) {
3962                 memcpy(&list->tickles.connections[0], tcparray->connections, sizeof(struct ctdb_tcp_connection) * num);
3963         }
3964
3965         ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0, 
3966                                        CTDB_CONTROL_SET_TCP_TICKLE_LIST,
3967                                        0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
3968         if (ret != 0) {
3969                 DEBUG(DEBUG_ERR,(__location__ " ctdb_control for set tcp tickles failed\n"));
3970                 return -1;
3971         }
3972
3973         talloc_free(data.dptr);
3974
3975         return ret;
3976 }
3977
3978
3979 /*
3980   perform tickle updates if required
3981  */
3982 static void ctdb_update_tcp_tickles(struct event_context *ev, 
3983                                 struct timed_event *te, 
3984                                 struct timeval t, void *private_data)
3985 {
3986         struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
3987         int ret;
3988         struct ctdb_vnn *vnn;
3989
3990         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3991                 /* we only send out updates for public addresses that 
3992                    we have taken over
3993                  */
3994                 if (ctdb->pnn != vnn->pnn) {
3995                         continue;
3996                 }
3997                 /* We only send out the updates if we need to */
3998                 if (!vnn->tcp_update_needed) {
3999                         continue;
4000                 }
4001                 ret = ctdb_ctrl_set_tcp_tickles(ctdb, 
4002                                 TAKEOVER_TIMEOUT(),
4003                                 CTDB_BROADCAST_CONNECTED,
4004                                 &vnn->public_address,
4005                                 vnn->tcp_array);
4006                 if (ret != 0) {
4007                         DEBUG(DEBUG_ERR,("Failed to send the tickle update for public address %s\n",
4008                                 ctdb_addr_to_str(&vnn->public_address)));
4009                 }
4010         }
4011
4012         event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4013                              timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0), 
4014                              ctdb_update_tcp_tickles, ctdb);
4015 }               
4016         
4017
4018 /*
4019   start periodic update of tcp tickles
4020  */
4021 void ctdb_start_tcp_tickle_update(struct ctdb_context *ctdb)
4022 {
4023         ctdb->tickle_update_context = talloc_new(ctdb);
4024
4025         event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4026                              timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0), 
4027                              ctdb_update_tcp_tickles, ctdb);
4028 }
4029
4030
4031
4032
4033 struct control_gratious_arp {
4034         struct ctdb_context *ctdb;
4035         ctdb_sock_addr addr;
4036         const char *iface;
4037         int count;
4038 };
4039
4040 /*
4041   send a control_gratuitous arp
4042  */
4043 static void send_gratious_arp(struct event_context *ev, struct timed_event *te, 
4044                                   struct timeval t, void *private_data)
4045 {
4046         int ret;
4047         struct control_gratious_arp *arp = talloc_get_type(private_data, 
4048                                                         struct control_gratious_arp);
4049
4050         ret = ctdb_sys_send_arp(&arp->addr, arp->iface);
4051         if (ret != 0) {
4052                 DEBUG(DEBUG_ERR,(__location__ " sending of gratious arp on iface '%s' failed (%s)\n",
4053                                  arp->iface, strerror(errno)));
4054         }
4055
4056
4057         arp->count++;
4058         if (arp->count == CTDB_ARP_REPEAT) {
4059                 talloc_free(arp);
4060                 return;
4061         }
4062
4063         event_add_timed(arp->ctdb->ev, arp, 
4064                         timeval_current_ofs(CTDB_ARP_INTERVAL, 0), 
4065                         send_gratious_arp, arp);
4066 }
4067
4068
4069 /*
4070   send a gratious arp 
4071  */
4072 int32_t ctdb_control_send_gratious_arp(struct ctdb_context *ctdb, TDB_DATA indata)
4073 {
4074         struct ctdb_control_gratious_arp *gratious_arp = (struct ctdb_control_gratious_arp *)indata.dptr;
4075         struct control_gratious_arp *arp;
4076
4077         /* verify the size of indata */
4078         if (indata.dsize < offsetof(struct ctdb_control_gratious_arp, iface)) {
4079                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_gratious_arp structure. Got %u require %u bytes\n", 
4080                                  (unsigned)indata.dsize, 
4081                                  (unsigned)offsetof(struct ctdb_control_gratious_arp, iface)));
4082                 return -1;
4083         }
4084         if (indata.dsize != 
4085                 ( offsetof(struct ctdb_control_gratious_arp, iface)
4086                 + gratious_arp->len ) ){
4087
4088                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4089                         "but should be %u bytes\n", 
4090                          (unsigned)indata.dsize, 
4091                          (unsigned)(offsetof(struct ctdb_control_gratious_arp, iface)+gratious_arp->len)));
4092                 return -1;
4093         }
4094
4095
4096         arp = talloc(ctdb, struct control_gratious_arp);
4097         CTDB_NO_MEMORY(ctdb, arp);
4098
4099         arp->ctdb  = ctdb;
4100         arp->addr   = gratious_arp->addr;
4101         arp->iface = talloc_strdup(arp, gratious_arp->iface);
4102         CTDB_NO_MEMORY(ctdb, arp->iface);
4103         arp->count = 0;
4104         
4105         event_add_timed(arp->ctdb->ev, arp, 
4106                         timeval_zero(), send_gratious_arp, arp);
4107
4108         return 0;
4109 }
4110
4111 int32_t ctdb_control_add_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4112 {
4113         struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4114         int ret;
4115
4116         /* verify the size of indata */
4117         if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4118                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4119                 return -1;
4120         }
4121         if (indata.dsize != 
4122                 ( offsetof(struct ctdb_control_ip_iface, iface)
4123                 + pub->len ) ){
4124
4125                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4126                         "but should be %u bytes\n", 
4127                          (unsigned)indata.dsize, 
4128                          (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4129                 return -1;
4130         }
4131
4132         DEBUG(DEBUG_NOTICE,("Add IP %s\n", ctdb_addr_to_str(&pub->addr)));
4133
4134         ret = ctdb_add_public_address(ctdb, &pub->addr, pub->mask, &pub->iface[0], true);
4135
4136         if (ret != 0) {
4137                 DEBUG(DEBUG_ERR,(__location__ " Failed to add public address\n"));
4138                 return -1;
4139         }
4140
4141         return 0;
4142 }
4143
4144 /*
4145   called when releaseip event finishes for del_public_address
4146  */
4147 static void delete_ip_callback(struct ctdb_context *ctdb, int status, 
4148                                 void *private_data)
4149 {
4150         talloc_free(private_data);
4151 }
4152
4153 int32_t ctdb_control_del_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4154 {
4155         struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4156         struct ctdb_vnn *vnn;
4157         int ret;
4158
4159         /* verify the size of indata */
4160         if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4161                 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4162                 return -1;
4163         }
4164         if (indata.dsize != 
4165                 ( offsetof(struct ctdb_control_ip_iface, iface)
4166                 + pub->len ) ){
4167
4168                 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4169                         "but should be %u bytes\n", 
4170                          (unsigned)indata.dsize, 
4171                          (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4172                 return -1;
4173         }
4174
4175         DEBUG(DEBUG_NOTICE,("Delete IP %s\n", ctdb_addr_to_str(&pub->addr)));
4176
4177         /* walk over all public addresses until we find a match */
4178         for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
4179                 if (ctdb_same_ip(&vnn->public_address, &pub->addr)) {
4180                         TALLOC_CTX *mem_ctx = talloc_new(ctdb);
4181
4182                         DLIST_REMOVE(ctdb->vnn, vnn);
4183                         talloc_steal(mem_ctx, vnn);
4184                         ctdb_remove_orphaned_ifaces(ctdb, vnn, mem_ctx);
4185                         if (vnn->pnn != ctdb->pnn) {
4186                                 if (vnn->iface != NULL) {
4187                                         ctdb_vnn_unassign_iface(ctdb, vnn);
4188                                 }
4189                                 talloc_free(mem_ctx);
4190                                 return 0;
4191                         }
4192                         vnn->pnn = -1;
4193
4194                         ret = ctdb_event_script_callback(ctdb, 
4195                                          mem_ctx, delete_ip_callback, mem_ctx,
4196                                          CTDB_EVENT_RELEASE_IP,
4197                                          "%s %s %u",
4198                                          ctdb_vnn_iface_string(vnn),
4199                                          ctdb_addr_to_str(&vnn->public_address),
4200                                          vnn->public_netmask_bits);
4201                         if (vnn->iface != NULL) {
4202                                 ctdb_vnn_unassign_iface(ctdb, vnn);
4203                         }
4204                         if (ret != 0) {
4205                                 return -1;
4206                         }
4207                         return 0;
4208                 }
4209         }
4210
4211         return -1;
4212 }
4213
4214
4215 struct ipreallocated_callback_state {
4216         struct ctdb_req_control *c;
4217 };
4218
4219 static void ctdb_ipreallocated_callback(struct ctdb_context *ctdb,
4220                                         int status, void *p)
4221 {
4222         struct ipreallocated_callback_state *state =
4223                 talloc_get_type(p, struct ipreallocated_callback_state);
4224
4225         if (status != 0) {
4226                 DEBUG(DEBUG_ERR,
4227                       (" \"ipreallocated\" event script failed (status %d)\n",
4228                        status));
4229                 if (status == -ETIME) {
4230                         ctdb_ban_self(ctdb);
4231                 }
4232         }
4233
4234         ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
4235         talloc_free(state);
4236 }
4237
4238 /* A control to run the ipreallocated event */
4239 int32_t ctdb_control_ipreallocated(struct ctdb_context *ctdb,
4240                                    struct ctdb_req_control *c,
4241                                    bool *async_reply)
4242 {
4243         int ret;
4244         struct ipreallocated_callback_state *state;
4245
4246         state = talloc(ctdb, struct ipreallocated_callback_state);
4247         CTDB_NO_MEMORY(ctdb, state);
4248
4249         DEBUG(DEBUG_INFO,(__location__ " Running \"ipreallocated\" event\n"));
4250
4251         ret = ctdb_event_script_callback(ctdb, state,
4252                                          ctdb_ipreallocated_callback, state,
4253                                          CTDB_EVENT_IPREALLOCATED,
4254                                          "%s", "");
4255
4256         if (ret != 0) {
4257                 DEBUG(DEBUG_ERR,("Failed to run \"ipreallocated\" event \n"));
4258                 talloc_free(state);
4259                 return -1;
4260         }
4261
4262         /* tell the control that we will be reply asynchronously */
4263         state->c    = talloc_steal(state, c);
4264         *async_reply = true;
4265
4266         return 0;
4267 }
4268
4269
4270 /* This function is called from the recovery daemon to verify that a remote
4271    node has the expected ip allocation.
4272    This is verified against ctdb->ip_tree
4273 */
4274 int verify_remote_ip_allocation(struct ctdb_context *ctdb,
4275                                 struct ctdb_all_public_ips *ips,
4276                                 uint32_t pnn)
4277 {
4278         struct ctdb_public_ip_list *tmp_ip; 
4279         int i;
4280
4281         if (ctdb->ip_tree == NULL) {
4282                 /* dont know the expected allocation yet, assume remote node
4283                    is correct. */
4284                 return 0;
4285         }
4286
4287         if (ips == NULL) {
4288                 return 0;
4289         }
4290
4291         for (i=0; i<ips->num; i++) {
4292                 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ips->ips[i].addr));
4293                 if (tmp_ip == NULL) {
4294                         DEBUG(DEBUG_ERR,("Node %u has new or unknown public IP %s\n", pnn, ctdb_addr_to_str(&ips->ips[i].addr)));
4295                         return -1;
4296                 }
4297
4298                 if (tmp_ip->pnn == -1 || ips->ips[i].pnn == -1) {
4299                         continue;
4300                 }
4301
4302                 if (tmp_ip->pnn != ips->ips[i].pnn) {
4303                         DEBUG(DEBUG_ERR,
4304                               ("Inconsistent IP allocation - node %u thinks %s is held by node %u while it is assigned to node %u\n",
4305                                pnn,
4306                                ctdb_addr_to_str(&ips->ips[i].addr),
4307                                ips->ips[i].pnn, tmp_ip->pnn));
4308                         return -1;
4309                 }
4310         }
4311
4312         return 0;
4313 }
4314
4315 int update_ip_assignment_tree(struct ctdb_context *ctdb, struct ctdb_public_ip *ip)
4316 {
4317         struct ctdb_public_ip_list *tmp_ip; 
4318
4319         if (ctdb->ip_tree == NULL) {
4320                 DEBUG(DEBUG_ERR,("No ctdb->ip_tree yet. Failed to update ip assignment\n"));
4321                 return -1;
4322         }
4323
4324         tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ip->addr));
4325         if (tmp_ip == NULL) {
4326                 DEBUG(DEBUG_ERR,(__location__ " Could not find record for address %s, update ip\n", ctdb_addr_to_str(&ip->addr)));
4327                 return -1;
4328         }
4329
4330         DEBUG(DEBUG_NOTICE,("Updated ip assignment tree for ip : %s from node %u to node %u\n", ctdb_addr_to_str(&ip->addr), tmp_ip->pnn, ip->pnn));
4331         tmp_ip->pnn = ip->pnn;
4332
4333         return 0;
4334 }
4335
4336
4337 struct ctdb_reloadips_handle {
4338         struct ctdb_context *ctdb;
4339         struct ctdb_req_control *c;
4340         int status;
4341         int fd[2];
4342         pid_t child;
4343         struct fd_event *fde;
4344 };
4345
4346 static int ctdb_reloadips_destructor(struct ctdb_reloadips_handle *h)
4347 {
4348         if (h == h->ctdb->reload_ips) {
4349                 h->ctdb->reload_ips = NULL;
4350         }
4351         if (h->c != NULL) {
4352                 ctdb_request_control_reply(h->ctdb, h->c, NULL, h->status, NULL);
4353                 h->c = NULL;
4354         }
4355         ctdb_kill(h->ctdb, h->child, SIGKILL);
4356         return 0;
4357 }
4358
4359 static void ctdb_reloadips_timeout_event(struct event_context *ev,
4360                                 struct timed_event *te,
4361                                 struct timeval t, void *private_data)
4362 {
4363         struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4364
4365         talloc_free(h);
4366 }       
4367
4368 static void ctdb_reloadips_child_handler(struct event_context *ev, struct fd_event *fde, 
4369                              uint16_t flags, void *private_data)
4370 {
4371         struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4372
4373         char res;
4374         int ret;
4375
4376         ret = read(h->fd[0], &res, 1);
4377         if (ret < 1 || res != 0) {
4378                 DEBUG(DEBUG_ERR, (__location__ " Reloadips child process returned error\n"));
4379                 res = 1;
4380         }
4381         h->status = res;
4382
4383         talloc_free(h);
4384 }
4385
4386 static int ctdb_reloadips_child(struct ctdb_context *ctdb)
4387 {
4388         TALLOC_CTX *mem_ctx = talloc_new(NULL);
4389         struct ctdb_all_public_ips *ips;
4390         struct ctdb_vnn *vnn;
4391         struct client_async_data *async_data;
4392         struct timeval timeout;
4393         TDB_DATA data;
4394         struct ctdb_client_control_state *state;
4395         bool first_add;
4396         int i, ret;
4397
4398         CTDB_NO_MEMORY(ctdb, mem_ctx);
4399
4400         /* Read IPs from local node */
4401         ret = ctdb_ctrl_get_public_ips(ctdb, TAKEOVER_TIMEOUT(),
4402                                        CTDB_CURRENT_NODE, mem_ctx, &ips);
4403         if (ret != 0) {
4404                 DEBUG(DEBUG_ERR,
4405                       ("Unable to fetch public IPs from local node\n"));
4406                 talloc_free(mem_ctx);
4407                 return -1;
4408         }
4409
4410         /* Read IPs file - this is safe since this is a child process */
4411         ctdb->vnn = NULL;
4412         if (ctdb_set_public_addresses(ctdb, false) != 0) {
4413                 DEBUG(DEBUG_ERR,("Failed to re-read public addresses file\n"));
4414                 talloc_free(mem_ctx);
4415                 return -1;
4416         }
4417
4418         async_data = talloc_zero(mem_ctx, struct client_async_data);
4419         CTDB_NO_MEMORY(ctdb, async_data);
4420
4421         /* Compare IPs between node and file for IPs to be deleted */
4422         for (i = 0; i < ips->num; i++) {
4423                 /* */
4424                 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4425                         if (ctdb_same_ip(&vnn->public_address,
4426                                          &ips->ips[i].addr)) {
4427                                 /* IP is still in file */
4428                                 break;
4429                         }
4430                 }
4431
4432                 if (vnn == NULL) {
4433                         /* Delete IP ips->ips[i] */
4434                         struct ctdb_control_ip_iface *pub;
4435
4436                         DEBUG(DEBUG_NOTICE,
4437                               ("IP %s no longer configured, deleting it\n",
4438                                ctdb_addr_to_str(&ips->ips[i].addr)));
4439
4440                         pub = talloc_zero(mem_ctx,
4441                                           struct ctdb_control_ip_iface);
4442                         CTDB_NO_MEMORY(ctdb, pub);
4443
4444                         pub->addr  = ips->ips[i].addr;
4445                         pub->mask  = 0;
4446                         pub->len   = 0;
4447
4448                         timeout = TAKEOVER_TIMEOUT();
4449
4450                         data.dsize = offsetof(struct ctdb_control_ip_iface,
4451                                               iface) + pub->len;
4452                         data.dptr = (uint8_t *)pub;
4453
4454                         state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4455                                                   CTDB_CONTROL_DEL_PUBLIC_IP,
4456                                                   0, data, async_data,
4457                                                   &timeout, NULL);
4458                         if (state == NULL) {
4459                                 DEBUG(DEBUG_ERR,
4460                                       (__location__
4461                                        " failed sending CTDB_CONTROL_DEL_PUBLIC_IP\n"));
4462                                 goto failed;
4463                         }
4464
4465                         ctdb_client_async_add(async_data, state);
4466                 }
4467         }
4468
4469         /* Compare IPs between node and file for IPs to be added */
4470         first_add = true;
4471         for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4472                 for (i = 0; i < ips->num; i++) {
4473                         if (ctdb_same_ip(&vnn->public_address,
4474                                          &ips->ips[i].addr)) {
4475                                 /* IP already on node */
4476                                 break;
4477                         }
4478                 }
4479                 if (i == ips->num) {
4480                         /* Add IP ips->ips[i] */
4481                         struct ctdb_control_ip_iface *pub;
4482                         const char *ifaces = NULL;
4483                         uint32_t len;
4484                         int iface = 0;
4485
4486                         DEBUG(DEBUG_NOTICE,
4487                               ("New IP %s configured, adding it\n",
4488                                ctdb_addr_to_str(&vnn->public_address)));
4489                         if (first_add) {
4490                                 uint32_t pnn = ctdb_get_pnn(ctdb);
4491
4492                                 data.dsize = sizeof(pnn);
4493                                 data.dptr  = (uint8_t *)&pnn;
4494
4495                                 ret = ctdb_client_send_message(
4496                                         ctdb,
4497                                         CTDB_BROADCAST_CONNECTED,
4498                                         CTDB_SRVID_REBALANCE_NODE,
4499                                         data);
4500                                 if (ret != 0) {
4501                                         DEBUG(DEBUG_WARNING,
4502                                               ("Failed to send message to force node reallocation - IPs may be unbalanced\n"));
4503                                 }
4504
4505                                 first_add = false;
4506                         }
4507
4508                         ifaces = vnn->ifaces[0];
4509                         iface = 1;
4510                         while (vnn->ifaces[iface] != NULL) {
4511                                 ifaces = talloc_asprintf(vnn, "%s,%s", ifaces,
4512                                                          vnn->ifaces[iface]);
4513                                 iface++;
4514                         }
4515
4516                         len   = strlen(ifaces) + 1;
4517                         pub = talloc_zero_size(mem_ctx,
4518                                                offsetof(struct ctdb_control_ip_iface, iface) + len);
4519                         CTDB_NO_MEMORY(ctdb, pub);
4520
4521                         pub->addr  = vnn->public_address;
4522                         pub->mask  = vnn->public_netmask_bits;
4523                         pub->len   = len;
4524                         memcpy(&pub->iface[0], ifaces, pub->len);
4525
4526                         timeout = TAKEOVER_TIMEOUT();
4527
4528                         data.dsize = offsetof(struct ctdb_control_ip_iface,
4529                                               iface) + pub->len;
4530                         data.dptr = (uint8_t *)pub;
4531
4532                         state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4533                                                   CTDB_CONTROL_ADD_PUBLIC_IP,
4534                                                   0, data, async_data,
4535                                                   &timeout, NULL);
4536                         if (state == NULL) {
4537                                 DEBUG(DEBUG_ERR,
4538                                       (__location__
4539                                        " failed sending CTDB_CONTROL_ADD_PUBLIC_IP\n"));
4540                                 goto failed;
4541                         }
4542
4543                         ctdb_client_async_add(async_data, state);
4544                 }
4545         }
4546
4547         if (ctdb_client_async_wait(ctdb, async_data) != 0) {
4548                 DEBUG(DEBUG_ERR,(__location__ " Add/delete IPs failed\n"));
4549                 goto failed;
4550         }
4551
4552         talloc_free(mem_ctx);
4553         return 0;
4554
4555 failed:
4556         talloc_free(mem_ctx);
4557         return -1;
4558 }
4559
4560 /* This control is sent to force the node to re-read the public addresses file
4561    and drop any addresses we should nnot longer host, and add new addresses
4562    that we are now able to host
4563 */
4564 int32_t ctdb_control_reload_public_ips(struct ctdb_context *ctdb, struct ctdb_req_control *c, bool *async_reply)
4565 {
4566         struct ctdb_reloadips_handle *h;
4567         pid_t parent = getpid();
4568
4569         if (ctdb->reload_ips != NULL) {
4570                 talloc_free(ctdb->reload_ips);
4571                 ctdb->reload_ips = NULL;
4572         }
4573
4574         h = talloc(ctdb, struct ctdb_reloadips_handle);
4575         CTDB_NO_MEMORY(ctdb, h);
4576         h->ctdb     = ctdb;
4577         h->c        = NULL;
4578         h->status   = -1;
4579         
4580         if (pipe(h->fd) == -1) {
4581                 DEBUG(DEBUG_ERR,("Failed to create pipe for ctdb_freeze_lock\n"));
4582                 talloc_free(h);
4583                 return -1;
4584         }
4585
4586         h->child = ctdb_fork(ctdb);
4587         if (h->child == (pid_t)-1) {
4588                 DEBUG(DEBUG_ERR, ("Failed to fork a child for reloadips\n"));
4589                 close(h->fd[0]);
4590                 close(h->fd[1]);
4591                 talloc_free(h);
4592                 return -1;
4593         }
4594
4595         /* child process */
4596         if (h->child == 0) {
4597                 signed char res = 0;
4598
4599                 close(h->fd[0]);
4600                 debug_extra = talloc_asprintf(NULL, "reloadips:");
4601
4602                 ctdb_set_process_name("ctdb_reloadips");
4603                 if (switch_from_server_to_client(ctdb, "reloadips-child") != 0) {
4604                         DEBUG(DEBUG_CRIT,("ERROR: Failed to switch reloadips child into client mode\n"));
4605                         res = -1;
4606                 } else {
4607                         res = ctdb_reloadips_child(ctdb);
4608                         if (res != 0) {
4609                                 DEBUG(DEBUG_ERR,("Failed to reload ips on local node\n"));
4610                         }
4611                 }
4612
4613                 write(h->fd[1], &res, 1);
4614                 /* make sure we die when our parent dies */
4615                 while (ctdb_kill(ctdb, parent, 0) == 0 || errno != ESRCH) {
4616                         sleep(5);
4617                 }
4618                 _exit(0);
4619         }
4620
4621         h->c             = talloc_steal(h, c);
4622
4623         close(h->fd[1]);
4624         set_close_on_exec(h->fd[0]);
4625
4626         talloc_set_destructor(h, ctdb_reloadips_destructor);
4627
4628
4629         h->fde = event_add_fd(ctdb->ev, h, h->fd[0],
4630                         EVENT_FD_READ, ctdb_reloadips_child_handler,
4631                         (void *)h);
4632         tevent_fd_set_auto_close(h->fde);
4633
4634         event_add_timed(ctdb->ev, h,
4635                         timeval_current_ofs(120, 0),
4636                         ctdb_reloadips_timeout_event, h);
4637
4638         /* we reply later */
4639         *async_reply = true;
4640         return 0;
4641 }