4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 * \section intro_sec Introduction
36 * Talloc is a hierarchical, reference counted memory pool system with
37 * destructors. Quite a mouthful really, but not too bad once you get used to
40 * Perhaps the biggest difference from other memory pool systems is that there
41 * is no distinction between a "talloc context" and a "talloc pointer". Any
42 * pointer returned from talloc() is itself a valid talloc context. This means
46 * struct foo *X = talloc(mem_ctx, struct foo);
47 * X->name = talloc_strdup(X, "foo");
50 * and the pointer X->name would be a "child" of the talloc context "X" which
51 * is itself a child of mem_ctx. So if you do talloc_free(mem_ctx) then it is
52 * all destroyed, whereas if you do talloc_free(X) then just X and X->name are
53 * destroyed, and if you do talloc_free(X->name) then just the name element of
56 * If you think about this, then what this effectively gives you is an n-ary
57 * tree, where you can free any part of the tree with talloc_free().
59 * To start, you should probably first look at the definitions of
60 * ::TALLOC_CTX, talloc_init(), talloc() and talloc_free().
62 * \section named_blocks Named blocks
64 * Every talloc chunk has a name that can be used as a dynamic type-checking
65 * system. If for some reason like a callback function you had to cast a
66 * "struct foo *" to a "void *" variable, later you can safely reassign the
67 * "void *" pointer to a "struct foo *" by using the talloc_get_type() or
68 * talloc_get_type_abort() macros.
71 * struct foo *X = talloc_get_type_abort(ptr, struct foo);
74 * This will abort if "ptr" does not contain a pointer that has been created
75 * with talloc(mem_ctx, struct foo).
77 * \section multi_threading Multi-Threading
79 * talloc itself does not deal with threads. It is thread-safe (assuming the
80 * underlying "malloc" is), as long as each thread uses different memory
83 * If two threads uses the same context then they need to synchronize in order
84 * to be safe. In particular:
87 * - when using talloc_enable_leak_report(), giving directly NULL as a
88 * parent context implicitly refers to a hidden "null context" global
89 * variable, so this should not be used in a multi-threaded environment
90 * without proper synchronization
91 * - the context returned by talloc_autofree_context() is also global so
92 * shouldn't be used by several threads simultaneously without
96 /** \defgroup talloc_basic Basic Talloc Routines
98 * This module contains the basic talloc routines that are used in everyday
103 * \defgroup talloc_ref Talloc References
105 * This module contains the definitions around talloc references
109 * \defgroup talloc_array Array routines
111 * Talloc contains some handy helpers for handling Arrays conveniently
115 * \defgroup talloc_string String handling routines
117 * Talloc contains some handy string handling functions
121 * \defgroup talloc_debug Debugging support routines
123 * To aid memory debugging, talloc contains routines to inspect the currently
124 * allocated memory hierarchy.
128 * \defgroup talloc_internal Internal routines
130 * To achieve type-safety, talloc.h defines a lot of macros with type
131 * casts. These macros define the user interface to the internal routines you
132 * find here. You should not really use these routines directly but go through
137 * \defgroup talloc_undoc Default group of undocumented stuff
139 * This should be empty...
145 * \typedef TALLOC_CTX
146 * \brief Define a talloc parent type
147 * \ingroup talloc_basic
149 * As talloc is a hierarchial memory allocator, every talloc chunk is a
150 * potential parent to other talloc chunks. So defining a separate type for a
151 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
152 * as it provides an indicator for function arguments. You will frequently
156 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
158 * struct foo *result;
159 * result = talloc(mem_ctx, struct foo);
160 * if (result == NULL) return NULL;
161 * ... initialize foo ...
166 * In this type of allocating functions it is handy to have a general
167 * TALLOC_CTX type to indicate which parent to put allocated structures on.
169 typedef void TALLOC_CTX;
172 this uses a little trick to allow __LINE__ to be stringified
175 #define __TALLOC_STRING_LINE1__(s) #s
176 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
177 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
178 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
181 #ifndef TALLOC_DEPRECATED
182 #define TALLOC_DEPRECATED 0
185 #ifndef PRINTF_ATTRIBUTE
187 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
188 * the parameter containing the format, and a2 the index of the first
189 * argument. Note that some gcc 2.x versions don't handle this
191 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
193 #define PRINTF_ATTRIBUTE(a1, a2)
198 * \def talloc_set_destructor
199 * \brief Assign a function to be called when a chunk is freed
200 * \param ptr The talloc chunk to add a destructor to
201 * \param function The destructor function to be called
202 * \ingroup talloc_basic
204 * The function talloc_set_destructor() sets the "destructor" for the pointer
205 * "ptr". A destructor is a function that is called when the memory used by a
206 * pointer is about to be released. The destructor receives the pointer as an
207 * argument, and should return 0 for success and -1 for failure.
209 * The destructor can do anything it wants to, including freeing other pieces
210 * of memory. A common use for destructors is to clean up operating system
211 * resources (such as open file descriptors) contained in the structure the
212 * destructor is placed on.
214 * You can only place one destructor on a pointer. If you need more than one
215 * destructor then you can create a zero-length child of the pointer and place
216 * an additional destructor on that.
218 * To remove a destructor call talloc_set_destructor() with NULL for the
221 * If your destructor attempts to talloc_free() the pointer that it is the
222 * destructor for then talloc_free() will return -1 and the free will be
223 * ignored. This would be a pointless operation anyway, as the destructor is
224 * only called when the memory is just about to go away.
228 * \def talloc_steal(ctx, ptr)
229 * \brief Change a talloc chunk's parent
230 * \param ctx The new parent context
231 * \param ptr The talloc chunk to move
233 * \ingroup talloc_basic
235 * The talloc_steal() function changes the parent context of a talloc
236 * pointer. It is typically used when the context that the pointer is
237 * currently a child of is going to be freed and you wish to keep the
238 * memory for a longer time.
240 * The talloc_steal() function returns the pointer that you pass it. It
241 * does not have any failure modes.
243 * NOTE: It is possible to produce loops in the parent/child relationship
244 * if you are not careful with talloc_steal(). No guarantees are provided
245 * as to your sanity or the safety of your data if you do this.
247 * To make the changed hierarchy less error-prone, you might consider to use
250 * talloc_steal (ctx, NULL) will return NULL with no sideeffects.
253 /* try to make talloc_set_destructor() and talloc_steal() type safe,
254 if we have a recent gcc */
256 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
257 #define talloc_set_destructor(ptr, function) \
259 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
260 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
262 /* this extremely strange macro is to avoid some braindamaged warning
263 stupidity in gcc 4.1.x */
264 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)); __talloc_steal_ret; })
266 #define talloc_set_destructor(ptr, function) \
267 _talloc_set_destructor((ptr), (int (*)(void *))(function))
268 #define _TALLOC_TYPEOF(ptr) void *
269 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr))
273 * \def talloc_reference(ctx, ptr)
274 * \brief Create an additional talloc parent to a pointer
275 * \param ctx The additional parent
276 * \param ptr The pointer you want to create an additional parent for
278 * \ingroup talloc_ref
280 * The talloc_reference() function makes "context" an additional parent of
283 * The return value of talloc_reference() is always the original pointer
284 * "ptr", unless talloc ran out of memory in creating the reference in which
285 * case it will return NULL (each additional reference consumes around 48
286 * bytes of memory on intel x86 platforms).
288 * If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
290 * After creating a reference you can free it in one of the following ways:
292 * - you can talloc_free() any parent of the original pointer. That
293 * will reduce the number of parents of this pointer by 1, and will
294 * cause this pointer to be freed if it runs out of parents.
296 * - you can talloc_free() the pointer itself. That will destroy the
297 * most recently established parent to the pointer and leave the
298 * pointer as a child of its current parent.
300 * For more control on which parent to remove, see talloc_unlink()
302 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference((ctx),(ptr))
306 * \def talloc_move(ctx, ptr)
307 * \brief Change a talloc chunk's parent
308 * \param ctx The new parent context
309 * \param ptr Pointer to the talloc chunk to move
311 * \ingroup talloc_basic
313 * talloc_move() has the same effect as talloc_steal(), and additionally sets
314 * the source pointer to NULL. You would use it like this:
317 * struct foo *X = talloc(tmp_ctx, struct foo);
319 * Y = talloc_move(new_ctx, &X);
322 #define talloc_move(ctx, ptr) (_TALLOC_TYPEOF(*(ptr)))_talloc_move((ctx),(void *)(ptr))
324 /* useful macros for creating type checked pointers */
327 * \def talloc(ctx, type)
328 * \brief Main entry point to allocate structures
329 * \param ctx The talloc context to hang the result off
330 * \param type The type that we want to allocate
331 * \return Pointer to a piece of memory, properly cast to "type *"
332 * \ingroup talloc_basic
334 * The talloc() macro is the core of the talloc library. It takes a memory
335 * context and a type, and returns a pointer to a new area of memory of the
338 * The returned pointer is itself a talloc context, so you can use it as the
339 * context argument to more calls to talloc if you wish.
341 * The returned pointer is a "child" of the supplied context. This means that
342 * if you talloc_free() the context then the new child disappears as
343 * well. Alternatively you can free just the child.
345 * The context argument to talloc() can be NULL, in which case a new top
346 * level context is created.
348 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
351 * \def talloc_size(ctx, size)
352 * \brief Untyped allocation
353 * \param ctx The talloc context to hang the result off
354 * \param size Number of char's that you want to allocate
355 * \return The allocated memory chunk
356 * \ingroup talloc_basic
358 * The function talloc_size() should be used when you don't have a convenient
359 * type to pass to talloc(). Unlike talloc(), it is not type safe (as it
360 * returns a void *), so you are on your own for type checking.
362 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
365 * \def talloc_ptrtype(ctx, ptr)
366 * \brief Allocate into a typed pointer
367 * \param ctx The talloc context to hang the result off
368 * \param ptr The pointer you want to assign the result to
369 * \result The allocated memory chunk, properly cast
370 * \ingroup talloc_basic
372 * The talloc_ptrtype() macro should be used when you have a pointer and
373 * want to allocate memory to point at with this pointer. When compiling
374 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
375 * and talloc_get_name() will return the current location in the source file.
378 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
381 * \def talloc_new(ctx)
382 * \brief Allocate a new 0-sized talloc chunk
383 * \param ctx The talloc parent context
384 * \return A new talloc chunk
385 * \ingroup talloc_basic
387 * This is a utility macro that creates a new memory context hanging off an
388 * exiting context, automatically naming it "talloc_new: __location__" where
389 * __location__ is the source line it is called from. It is particularly
390 * useful for creating a new temporary working context.
392 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
395 * \def talloc_zero(ctx, type)
396 * \brief Allocate a 0-initizialized structure
397 * \param ctx The talloc context to hang the result off
398 * \param type The type that we want to allocate
399 * \return Pointer to a piece of memory, properly cast to "type *"
400 * \ingroup talloc_basic
402 * The talloc_zero() macro is equivalent to:
405 * ptr = talloc(ctx, type);
406 * if (ptr) memset(ptr, 0, sizeof(type));
409 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
412 * \def talloc_zero_size(ctx, size)
413 * \brief Untyped, 0-initialized allocation
414 * \param ctx The talloc context to hang the result off
415 * \param size Number of char's that you want to allocate
416 * \return The allocated memory chunk
417 * \ingroup talloc_basic
419 * The talloc_zero_size() macro is equivalent to:
422 * ptr = talloc_size(ctx, size);
423 * if (ptr) memset(ptr, 0, size);
427 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
429 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
432 * \def talloc_array(ctx, type, count)
433 * \brief Allocate an array
434 * \param ctx The talloc context to hang the result off
435 * \param type The type that we want to allocate
436 * \param count The number of "type" elements you want to allocate
437 * \return The allocated result, properly cast to "type *"
438 * \ingroup talloc_array
440 * The talloc_array() macro is equivalent to::
443 * (type *)talloc_size(ctx, sizeof(type) * count);
446 * except that it provides integer overflow protection for the multiply,
447 * returning NULL if the multiply overflows.
449 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
452 * \def talloc_array_size(ctx, size, count)
453 * \brief Allocate an array
454 * \param ctx The talloc context to hang the result off
455 * \param size The size of an array element
456 * \param count The number of "type" elements you want to allocate
457 * \return The allocated result, properly cast to "type *"
458 * \ingroup talloc_array
460 * The talloc_array_size() function is useful when the type is not
461 * known. It operates in the same way as talloc_array(), but takes a size
464 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
467 * \def talloc_array_ptrtype(ctx, ptr, count)
468 * \brief Allocate an array into a typed pointer
469 * \param ctx The talloc context to hang the result off
470 * \param ptr The pointer you want to assign the result to
471 * \param count The number of elements you want to allocate
472 * \result The allocated memory chunk, properly cast
473 * \ingroup talloc_array
475 * The talloc_array_ptrtype() macro should be used when you have a pointer to
476 * an array and want to allocate memory of an array to point at with this
477 * pointer. When compiling with gcc >= 3 it is typesafe. Note this is a
478 * wrapper of talloc_array_size() and talloc_get_name() will return the
479 * current location in the source file. and not the type.
481 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
484 * \def talloc_array_length(ctx)
485 * \brief Return the number of elements in a talloc'ed array
486 * \param ctx The talloc'ed array
487 * \return The number of elements in ctx
488 * \ingroup talloc_array
490 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
491 * necessary to store the number of elements explicitly.
493 #define talloc_array_length(ctx) ((ctx) ? talloc_get_size(ctx)/sizeof(*ctx) : 0)
496 * \def talloc_realloc(ctx, p, type, count)
497 * \brief Change the size of a talloc array
498 * \param ctx The parent context used if "p" is NULL
499 * \param p The chunk to be resized
500 * \param type The type of the array element inside p
501 * \param count The intended number of array elements
502 * \return The new array
503 * \ingroup talloc_array
505 * The talloc_realloc() macro changes the size of a talloc
506 * pointer. The "count" argument is the number of elements of type "type"
507 * that you want the resulting pointer to hold.
509 * talloc_realloc() has the following equivalences::
512 * talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
513 * talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
514 * talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
517 * The "context" argument is only used if "ptr" is NULL, otherwise it is
520 * talloc_realloc() returns the new pointer, or NULL on failure. The call
521 * will fail either due to a lack of memory, or because the pointer has
522 * more than one parent (see talloc_reference()).
524 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
527 * \def talloc_realloc_size(ctx, ptr, size)
528 * \brief Untyped realloc
529 * \param ctx The parent context used if "ptr" is NULL
530 * \param ptr The chunk to be resized
531 * \param size The new chunk size
532 * \return The new chunk
533 * \ingroup talloc_array
535 * The talloc_realloc_size() function is useful when the type is not known so
536 * the typesafe talloc_realloc() cannot be used.
538 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
541 * \def talloc_memdup(t, p, size)
542 * \brief Duplicate a memory area into a talloc chunk
543 * \param t The talloc context to hang the result off
544 * \param p The memory chunk you want to duplicate
545 * \param size Number of char's that you want copy
546 * \return The allocated memory chunk
547 * \ingroup talloc_basic
549 * The talloc_memdup() function is equivalent to::
552 * ptr = talloc_size(ctx, size);
553 * if (ptr) memcpy(ptr, p, size);
556 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
559 * \def talloc_set_type(ptr, type)
560 * \brief Assign a type to a talloc chunk
561 * \param ptr The talloc chunk to assign the type to
562 * \param type The type to assign
563 * \ingroup talloc_basic
565 * This macro allows you to force the name of a pointer to be a
566 * particular type. This can be used in conjunction with
567 * talloc_get_type() to do type checking on void* pointers.
569 * It is equivalent to this::
572 * talloc_set_name_const(ptr, #type)
575 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
578 * \def talloc_get_type(ptr, type)
579 * \brief Get a typed pointer out of a talloc pointer
580 * \param ptr The talloc pointer to check
581 * \param type The type to check against
582 * \return ptr, properly cast, or NULL
583 * \ingroup talloc_basic
585 * This macro allows you to do type checking on talloc pointers. It is
586 * particularly useful for void* private pointers. It is equivalent to
590 * (type *)talloc_check_name(ptr, #type)
594 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
597 * \def talloc_get_type_abort(ptr, type)
598 * \brief Helper macro to safely turn a void * into a typed pointer
599 * \param ptr The void * to convert
600 * \param type The type that this chunk contains
601 * \return Same value as ptr, type-checked and properly cast
602 * \ingroup talloc_basic
604 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
605 * assing the talloc chunk pointer to some void * variable,
606 * talloc_get_type_abort() is the recommended way to get the convert the void
607 * pointer back to a typed pointer.
609 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
612 * \def talloc_find_parent_bytype(ptr, type)
613 * \brief Find a parent context by type
614 * \param ptr The talloc chunk to start from
615 * \param type The type of the parent to look for
616 * \ingroup talloc_basic
618 * Find a parent memory context of the current context that has the given
619 * name. This can be very useful in complex programs where it may be
620 * difficult to pass all information down to the level you need, but you
621 * know the structure you want is a parent of another context.
623 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
625 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
627 #if TALLOC_DEPRECATED
628 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
629 #define talloc_p(ctx, type) talloc(ctx, type)
630 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
631 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
632 #define talloc_destroy(ctx) talloc_free(ctx)
633 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
637 * \def TALLOC_FREE(ctx)
638 * \brief talloc_free a chunk and NULL out the pointer
639 * \param ctx The chunk to be freed
640 * \ingroup talloc_basic
642 * TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
643 * immediate feedback (i.e. crash) if you use a pointer after having free'ed
646 #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
649 * \brief Allocate untyped, unnamed memory
650 * \param context The talloc context to hang the result off
651 * \param size Number of char's that you want to allocate
652 * \return The allocated memory chunk
653 * \ingroup talloc_internal
655 * Essentially the same as talloc_size() without setting the chunk name to the
656 * current file/line number.
658 void *_talloc(const void *context, size_t size);
661 * \brief Allocate a talloc pool
662 * \param context The talloc context to hang the result off
663 * \param size Size of the talloc pool
664 * \result The talloc pool
665 * \ingroup talloc_basic
667 * A talloc pool is a pure optimization for specific situations. In the
668 * release process for Samba 3.2 we found out that we had become considerably
669 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
670 * consumer in benchmarks. For Samba 3.2 we have internally converted many
671 * static buffers to dynamically allocated ones, so malloc(3) being beaten
672 * more was no surprise. But it made us slower.
674 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
675 * pattern Samba has: The SMB protocol is mainly a request/response protocol
676 * where we have to allocate a certain amount of memory per request and free
677 * that after the SMB reply is sent to the client.
679 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
680 * exactly as you would use any other ::TALLOC_CTX. The difference is that
681 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
682 * just increments a pointer inside the talloc_pool. This also works
683 * recursively. If you use the child of the talloc pool as a parent for
684 * grand-children, their memory is also taken from the talloc pool.
686 * If you talloc_free() children of a talloc pool, the memory is not given
687 * back to the system. Instead, free(3) is only called if the talloc_pool()
688 * itself is released with talloc_free().
690 * The downside of a talloc pool is that if you talloc_move() a child of a
691 * talloc pool to a talloc parent outside the pool, the whole pool memory is
692 * not free(3)'ed until that moved chunk is also talloc_free()ed.
694 void *talloc_pool(const void *context, size_t size);
695 void _talloc_set_destructor(const void *ptr, int (*destructor)(void *));
698 * \brief Increase the reference count of a talloc chunk
701 * \ingroup talloc_ref
703 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
706 * talloc_reference(NULL, ptr);
709 * You can use either syntax, depending on which you think is clearer in
712 * It returns 0 on success and -1 on failure.
714 int talloc_increase_ref_count(const void *ptr);
717 * \brief Return the number of references to a talloc chunk
718 * \param ptr The chunk you are interested in
719 * \return Number of refs
720 * \ingroup talloc_ref
722 size_t talloc_reference_count(const void *ptr);
723 void *_talloc_reference(const void *context, const void *ptr);
726 * \brief Remove a specific parent from a talloc chunk
727 * \param context The talloc parent to remove
728 * \param ptr The talloc ptr you want to remove the parent from
729 * \ingroup talloc_ref
731 * The talloc_unlink() function removes a specific parent from ptr. The
732 * context passed must either be a context used in talloc_reference() with
733 * this pointer, or must be a direct parent of ptr.
735 * Note that if the parent has already been removed using talloc_free() then
736 * this function will fail and will return -1. Likewise, if "ptr" is NULL,
737 * then the function will make no modifications and return -1.
739 * Usually you can just use talloc_free() instead of talloc_unlink(), but
740 * sometimes it is useful to have the additional control on which parent is
743 int talloc_unlink(const void *context, void *ptr);
746 * \brief Assign a name to a talloc chunk
747 * \param ptr The talloc chunk to assign a name to
748 * \param fmt Format string for the name
749 * \param ... printf-style additional arguments
750 * \return The assigned name
751 * \ingroup talloc_basic
753 * Each talloc pointer has a "name". The name is used principally for
754 * debugging purposes, although it is also possible to set and get the name on
755 * a pointer in as a way of "marking" pointers in your code.
757 * The main use for names on pointer is for "talloc reports". See
758 * talloc_report() and talloc_report_full() for details. Also see
759 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
761 * The talloc_set_name() function allocates memory as a child of the
762 * pointer. It is logically equivalent to:
765 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
768 * Note that multiple calls to talloc_set_name() will allocate more memory
769 * without releasing the name. All of the memory is released when the ptr is
770 * freed using talloc_free().
772 const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
775 * \brief Assign a name to a talloc chunk
776 * \param ptr The talloc chunk to assign a name to
777 * \param name Format string for the name
778 * \ingroup talloc_basic
780 * The function talloc_set_name_const() is just like talloc_set_name(), but it
781 * takes a string constant, and is much faster. It is extensively used by the
782 * "auto naming" macros, such as talloc_p().
784 * This function does not allocate any memory. It just copies the supplied
785 * pointer into the internal representation of the talloc ptr. This means you
786 * must not pass a name pointer to memory that will disappear before the ptr
787 * is freed with talloc_free().
789 void talloc_set_name_const(const void *ptr, const char *name);
792 * \brief Create a named talloc chunk
793 * \param context The talloc context to hang the result off
794 * \param size Number of char's that you want to allocate
795 * \param fmt Format string for the name
796 * \param ... printf-style additional arguments
797 * \return The allocated memory chunk
798 * \ingroup talloc_basic
800 * The talloc_named() function creates a named talloc pointer. It is
804 * ptr = talloc_size(context, size);
805 * talloc_set_name(ptr, fmt, ....);
809 void *talloc_named(const void *context, size_t size,
810 const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
813 * \brief Basic routine to allocate a chunk of memory
814 * \param context The parent context
815 * \param size The number of char's that we want to allocate
816 * \param name The name the talloc block has
817 * \return The allocated chunk
818 * \ingroup talloc_basic
820 * This is equivalent to:
823 * ptr = talloc_size(context, size);
824 * talloc_set_name_const(ptr, name);
827 void *talloc_named_const(const void *context, size_t size, const char *name);
830 * \brief Return the name of a talloc chunk
831 * \param ptr The talloc chunk
833 * \ingroup talloc_basic
835 * This returns the current name for the given talloc pointer. See
836 * talloc_set_name() for details.
838 const char *talloc_get_name(const void *ptr);
841 * \brief Verify that a talloc chunk carries a specified name
842 * \param ptr The talloc chunk to check
843 * \param name The name to check agains
844 * \ingroup talloc_basic
846 * This function checks if a pointer has the specified name. If it does
847 * then the pointer is returned. It it doesn't then NULL is returned.
849 void *talloc_check_name(const void *ptr, const char *name);
851 void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
852 void *talloc_parent(const void *ptr);
853 const char *talloc_parent_name(const void *ptr);
856 * \brief Create a new top level talloc context
857 * \param fmt Format string for the name
858 * \param ... printf-style additional arguments
859 * \return The allocated memory chunk
860 * \ingroup talloc_basic
862 * This function creates a zero length named talloc context as a top level
863 * context. It is equivalent to:
866 * talloc_named(NULL, 0, fmt, ...);
869 void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
872 * \brief Free a chunk of talloc memory
873 * \param ptr The chunk to be freed
875 * \ingroup talloc_basic
877 * The talloc_free() function frees a piece of talloc memory, and all its
878 * children. You can call talloc_free() on any pointer returned by talloc().
880 * The return value of talloc_free() indicates success or failure, with 0
881 * returned for success and -1 for failure. The only possible failure
882 * condition is if the pointer had a destructor attached to it and the
883 * destructor returned -1. See talloc_set_destructor() for details on
886 * If this pointer has an additional parent when talloc_free() is called
887 * then the memory is not actually released, but instead the most
888 * recently established parent is destroyed. See talloc_reference() for
889 * details on establishing additional parents.
891 * For more control on which parent is removed, see talloc_unlink()
893 * talloc_free() operates recursively on its children.
895 int talloc_free(void *ptr);
898 * \brief Free a talloc chunk's children
899 * \param ptr The chunk that you want to free the children of
901 * \ingroup talloc_basic
903 * The talloc_free_children() walks along the list of all children of a talloc
904 * context and talloc_free()s only the children, not the context itself.
906 void talloc_free_children(void *ptr);
907 void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
908 void *_talloc_steal(const void *new_ctx, const void *ptr);
909 void *_talloc_move(const void *new_ctx, const void *pptr);
912 * \brief Return the total size of a talloc chunk including its children
913 * \param ptr The talloc chunk
914 * \return The total size
915 * \ingroup talloc_basic
917 * The talloc_total_size() function returns the total size in bytes used
918 * by this pointer and all child pointers. Mostly useful for debugging.
920 * Passing NULL is allowed, but it will only give a meaningful result if
921 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
924 size_t talloc_total_size(const void *ptr);
927 * \brief Return the number of talloc chunks hanging off a chunk
928 * \param ptr The talloc chunk
929 * \return The total size
930 * \ingroup talloc_basic
932 * The talloc_total_blocks() function returns the total memory block
933 * count used by this pointer and all child pointers. Mostly useful for
936 * Passing NULL is allowed, but it will only give a meaningful result if
937 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
940 size_t talloc_total_blocks(const void *ptr);
943 * \brief Walk a complete talloc hierarchy
944 * \param ptr The talloc chunk
945 * \param depth Internal parameter to control recursion. Call with 0.
946 * \param max_depth Maximum recursion level.
947 * \param callback Function to be called on every chunk
948 * \param private_data Private pointer passed to callback
949 * \ingroup talloc_debug
951 * This provides a more flexible reports than talloc_report(). It
952 * will recursively call the callback for the entire tree of memory
953 * referenced by the pointer. References in the tree are passed with
954 * is_ref = 1 and the pointer that is referenced.
956 * You can pass NULL for the pointer, in which case a report is
957 * printed for the top level memory context, but only if
958 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
961 * The recursion is stopped when depth >= max_depth.
962 * max_depth = -1 means only stop at leaf nodes.
964 void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
965 void (*callback)(const void *ptr,
966 int depth, int max_depth,
972 * \brief Print a talloc hierarchy
973 * \param ptr The talloc chunk
974 * \param depth Internal parameter to control recursion. Call with 0.
975 * \param max_depth Maximum recursion level.
976 * \param f The file handle to print to
977 * \ingroup talloc_debug
979 * This provides a more flexible reports than talloc_report(). It
980 * will let you specify the depth and max_depth.
982 void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
985 * \brief Print a summary report of all memory used by ptr
986 * \param ptr The talloc chunk
987 * \param f The file handle to print to
988 * \ingroup talloc_debug
990 * This provides a more detailed report than talloc_report(). It will
991 * recursively print the ensire tree of memory referenced by the
992 * pointer. References in the tree are shown by giving the name of the
993 * pointer that is referenced.
995 * You can pass NULL for the pointer, in which case a report is printed
996 * for the top level memory context, but only if
997 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1000 void talloc_report_full(const void *ptr, FILE *f);
1003 * \brief Print a summary report of all memory used by ptr
1004 * \param ptr The talloc chunk
1005 * \param f The file handle to print to
1006 * \ingroup talloc_debug
1008 * The talloc_report() function prints a summary report of all memory
1009 * used by ptr. One line of report is printed for each immediate child of
1010 * ptr, showing the total memory and number of blocks used by that child.
1012 * You can pass NULL for the pointer, in which case a report is printed
1013 * for the top level memory context, but only if
1014 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1017 void talloc_report(const void *ptr, FILE *f);
1020 * \brief Enable tracking the use of NULL memory contexts
1021 * \ingroup talloc_debug
1023 * This enables tracking of the NULL memory context without enabling leak
1024 * reporting on exit. Useful for when you want to do your own leak
1025 * reporting call via talloc_report_null_full();
1027 void talloc_enable_null_tracking(void);
1030 * \brief Disable tracking of the NULL memory context
1031 * \ingroup talloc_debug
1033 * This disables tracking of the NULL memory context.
1036 void talloc_disable_null_tracking(void);
1039 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
1040 * \ingroup talloc_debug
1042 * This enables calling of talloc_report(NULL, stderr) when the program
1043 * exits. In Samba4 this is enabled by using the --leak-report command
1046 * For it to be useful, this function must be called before any other
1047 * talloc function as it establishes a "null context" that acts as the
1048 * top of the tree. If you don't call this function first then passing
1049 * NULL to talloc_report() or talloc_report_full() won't give you the
1050 * full tree printout.
1052 * Here is a typical talloc report:
1055 talloc report on 'null_context' (total 267 bytes in 15 blocks)
1056 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1057 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1058 iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1059 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1060 iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1061 iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1062 iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1065 void talloc_enable_leak_report(void);
1068 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
1069 * \ingroup talloc_debug
1071 * This enables calling of talloc_report_full(NULL, stderr) when the
1072 * program exits. In Samba4 this is enabled by using the
1073 * --leak-report-full command line option.
1075 * For it to be useful, this function must be called before any other
1076 * talloc function as it establishes a "null context" that acts as the
1077 * top of the tree. If you don't call this function first then passing
1078 * NULL to talloc_report() or talloc_report_full() won't give you the
1079 * full tree printout.
1081 * Here is a typical full report:
1083 full talloc report on 'root' (total 18 bytes in 8 blocks)
1084 p1 contains 18 bytes in 7 blocks (ref 0)
1085 r1 contains 13 bytes in 2 blocks (ref 0)
1087 p2 contains 1 bytes in 1 blocks (ref 1)
1088 x3 contains 1 bytes in 1 blocks (ref 0)
1089 x2 contains 1 bytes in 1 blocks (ref 0)
1090 x1 contains 1 bytes in 1 blocks (ref 0)
1093 void talloc_enable_leak_report_full(void);
1094 void *_talloc_zero(const void *ctx, size_t size, const char *name);
1095 void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
1096 void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1097 void *_talloc_zero_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1098 void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
1101 * \brief Provide a function version of talloc_realloc_size
1102 * \param context The parent context used if "ptr" is NULL
1103 * \param ptr The chunk to be resized
1104 * \param size The new chunk size
1105 * \return The new chunk
1106 * \ingroup talloc_array
1108 * This is a non-macro version of talloc_realloc(), which is useful as
1109 * libraries sometimes want a ralloc function pointer. A realloc()
1110 * implementation encapsulates the functionality of malloc(), free() and
1111 * realloc() in one call, which is why it is useful to be able to pass around
1112 * a single function pointer.
1114 void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
1117 * \brief Provide a talloc context that is freed at program exit
1118 * \return A talloc context
1119 * \ingroup talloc_basic
1121 * This is a handy utility function that returns a talloc context
1122 * which will be automatically freed on program exit. This can be used
1123 * to reduce the noise in memory leak reports.
1125 void *talloc_autofree_context(void);
1128 * \brief Get the size of a talloc chunk
1129 * \param ctx The talloc chunk
1131 * \ingroup talloc_basic
1133 * This function lets you know the amount of memory alloced so far by
1134 * this context. It does NOT account for subcontext memory.
1135 * This can be used to calculate the size of an array.
1137 size_t talloc_get_size(const void *ctx);
1140 * \brief Find a parent context by name
1141 * \param ctx The talloc chunk to start from
1142 * \param name The name of the parent we look for
1143 * \ingroup talloc_basic
1145 * Find a parent memory context of the current context that has the given
1146 * name. This can be very useful in complex programs where it may be
1147 * difficult to pass all information down to the level you need, but you
1148 * know the structure you want is a parent of another context.
1150 void *talloc_find_parent_byname(const void *ctx, const char *name);
1151 void talloc_show_parents(const void *context, FILE *file);
1152 int talloc_is_parent(const void *context, const void *ptr);
1155 * \brief Duplicate a string into a talloc chunk
1156 * \param t The talloc context to hang the result off
1157 * \param p The string you want to duplicate
1158 * \return The duplicated string
1159 * \ingroup talloc_string
1161 * The talloc_strdup() function is equivalent to:
1164 * ptr = talloc_size(ctx, strlen(p)+1);
1165 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1168 * This functions sets the name of the new pointer to the passed
1169 * string. This is equivalent to:
1172 * talloc_set_name_const(ptr, ptr)
1175 char *talloc_strdup(const void *t, const char *p);
1176 char *talloc_strdup_append(char *s, const char *a);
1177 char *talloc_strdup_append_buffer(char *s, const char *a);
1180 * \brief Duplicate a length-limited string into a talloc chunk
1181 * \param t The talloc context to hang the result off
1182 * \param p The string you want to duplicate
1183 * \param n The maximum string length to duplicate
1184 * \return The duplicated string
1185 * \ingroup talloc_string
1187 * The talloc_strndup() function is the talloc equivalent of the C
1188 * library function strndup()
1190 * This functions sets the name of the new pointer to the passed
1191 * string. This is equivalent to:
1194 * talloc_set_name_const(ptr, ptr)
1197 char *talloc_strndup(const void *t, const char *p, size_t n);
1198 char *talloc_strndup_append(char *s, const char *a, size_t n);
1199 char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
1202 * \brief Format a string given a va_list
1203 * \param t The talloc context to hang the result off
1204 * \param fmt The format string
1205 * \param ap The parameters used to fill fmt
1206 * \return The formatted string
1207 * \ingroup talloc_string
1209 * The talloc_vasprintf() function is the talloc equivalent of the C
1210 * library function vasprintf()
1212 * This functions sets the name of the new pointer to the new
1213 * string. This is equivalent to:
1216 * talloc_set_name_const(ptr, ptr)
1219 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1220 char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1221 char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1224 * \brief Format a string
1225 * \param t The talloc context to hang the result off
1226 * \param fmt The format string
1227 * \param ... The parameters used to fill fmt
1228 * \return The formatted string
1229 * \ingroup talloc_string
1231 * The talloc_asprintf() function is the talloc equivalent of the C
1232 * library function asprintf()
1234 * This functions sets the name of the new pointer to the new
1235 * string. This is equivalent to:
1238 * talloc_set_name_const(ptr, ptr)
1241 char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1244 * \brief Append a formatted string to another string
1245 * \param s The string to append to
1246 * \param fmt The format string
1247 * \param ... The parameters used to fill fmt
1248 * \return The formatted string
1249 * \ingroup talloc_string
1251 * The talloc_asprintf_append() function appends the given formatted string to
1252 * the given string. Use this varient when the string in the current talloc
1253 * buffer may have been truncated in length.
1255 * This functions sets the name of the new pointer to the new
1256 * string. This is equivalent to:
1259 * talloc_set_name_const(ptr, ptr)
1262 char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1265 * \brief Append a formatted string to another string
1266 * \param s The string to append to
1267 * \param fmt The format string
1268 * \param ... The parameters used to fill fmt
1269 * \return The formatted string
1270 * \ingroup talloc_string
1272 * The talloc_asprintf_append() function appends the given formatted string to
1273 * the end of the currently allocated talloc buffer. This routine should be
1274 * used if you create a large string step by step. talloc_asprintf() or
1275 * talloc_asprintf_append() call strlen() at every
1276 * step. talloc_asprintf_append_buffer() uses the existing buffer size of the
1277 * talloc chunk to calculate where to append the string.
1279 * This functions sets the name of the new pointer to the new
1280 * string. This is equivalent to:
1283 * talloc_set_name_const(ptr, ptr)
1286 char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1288 void talloc_set_abort_fn(void (*abort_fn)(const char *reason));