4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 * \section intro_sec Introduction
36 * Talloc is a hierarchical, reference counted memory pool system with
37 * destructors. Quite a mouthful really, but not too bad once you get used to
40 * Perhaps the biggest difference from other memory pool systems is that there
41 * is no distinction between a "talloc context" and a "talloc pointer". Any
42 * pointer returned from talloc() is itself a valid talloc context. This means
46 * struct foo *X = talloc(mem_ctx, struct foo);
47 * X->name = talloc_strdup(X, "foo");
50 * and the pointer X->name would be a "child" of the talloc context "X" which
51 * is itself a child of mem_ctx. So if you do talloc_free(mem_ctx) then it is
52 * all destroyed, whereas if you do talloc_free(X) then just X and X->name are
53 * destroyed, and if you do talloc_free(X->name) then just the name element of
56 * If you think about this, then what this effectively gives you is an n-ary
57 * tree, where you can free any part of the tree with talloc_free().
59 * To start, you should probably first look at the definitions of
60 * ::TALLOC_CTX, talloc_init(), talloc() and talloc_free().
62 * \section named_blocks Named blocks
64 * Every talloc chunk has a name that can be used as a dynamic type-checking
65 * system. If for some reason like a callback function you had to cast a
66 * "struct foo *" to a "void *" variable, later you can safely reassign the
67 * "void *" pointer to a "struct foo *" by using the talloc_get_type() or
68 * talloc_get_type_abort() macros.
71 * struct foo *X = talloc_get_type_abort(ptr, struct foo);
74 * This will abort if "ptr" does not contain a pointer that has been created
75 * with talloc(mem_ctx, struct foo).
77 * \section multi_threading Multi-Threading
79 * talloc itself does not deal with threads. It is thread-safe (assuming the
80 * underlying "malloc" is), as long as each thread uses different memory
83 * If two threads uses the same context then they need to synchronize in order
84 * to be safe. In particular:
87 * - when using talloc_enable_leak_report(), giving directly NULL as a
88 * parent context implicitly refers to a hidden "null context" global
89 * variable, so this should not be used in a multi-threaded environment
90 * without proper synchronization
91 * - the context returned by talloc_autofree_context() is also global so
92 * shouldn't be used by several threads simultaneously without
96 /** \defgroup talloc_basic Basic Talloc Routines
98 * This module contains the basic talloc routines that are used in everyday
103 * \defgroup talloc_ref Talloc References
105 * This module contains the definitions around talloc references
109 * \defgroup talloc_array Array routines
111 * Talloc contains some handy helpers for handling Arrays conveniently
115 * \defgroup talloc_string String handling routines
117 * Talloc contains some handy string handling functions
121 * \defgroup talloc_debug Debugging support routines
123 * To aid memory debugging, talloc contains routines to inspect the currently
124 * allocated memory hierarchy.
128 * \defgroup talloc_internal Internal routines
130 * To achieve type-safety, talloc.h defines a lot of macros with type
131 * casts. These macros define the user interface to the internal routines you
132 * find here. You should not really use these routines directly but go through
137 * \defgroup talloc_undoc Default group of undocumented stuff
139 * This should be empty...
145 * \typedef TALLOC_CTX
146 * \brief Define a talloc parent type
147 * \ingroup talloc_basic
149 * As talloc is a hierarchial memory allocator, every talloc chunk is a
150 * potential parent to other talloc chunks. So defining a separate type for a
151 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
152 * as it provides an indicator for function arguments. You will frequently
156 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
158 * struct foo *result;
159 * result = talloc(mem_ctx, struct foo);
160 * if (result == NULL) return NULL;
161 * ... initialize foo ...
166 * In this type of allocating functions it is handy to have a general
167 * TALLOC_CTX type to indicate which parent to put allocated structures on.
169 typedef void TALLOC_CTX;
172 this uses a little trick to allow __LINE__ to be stringified
175 #define __TALLOC_STRING_LINE1__(s) #s
176 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
177 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
178 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
181 #ifndef TALLOC_DEPRECATED
182 #define TALLOC_DEPRECATED 0
185 #ifndef PRINTF_ATTRIBUTE
187 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
188 * the parameter containing the format, and a2 the index of the first
189 * argument. Note that some gcc 2.x versions don't handle this
191 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
193 #define PRINTF_ATTRIBUTE(a1, a2)
198 * \def talloc_set_destructor
199 * \brief Assign a function to be called when a chunk is freed
200 * \param ptr The talloc chunk to add a destructor to
201 * \param function The destructor function to be called
202 * \ingroup talloc_basic
204 * The function talloc_set_destructor() sets the "destructor" for the pointer
205 * "ptr". A destructor is a function that is called when the memory used by a
206 * pointer is about to be released. The destructor receives the pointer as an
207 * argument, and should return 0 for success and -1 for failure.
209 * The destructor can do anything it wants to, including freeing other pieces
210 * of memory. A common use for destructors is to clean up operating system
211 * resources (such as open file descriptors) contained in the structure the
212 * destructor is placed on.
214 * You can only place one destructor on a pointer. If you need more than one
215 * destructor then you can create a zero-length child of the pointer and place
216 * an additional destructor on that.
218 * To remove a destructor call talloc_set_destructor() with NULL for the
221 * If your destructor attempts to talloc_free() the pointer that it is the
222 * destructor for then talloc_free() will return -1 and the free will be
223 * ignored. This would be a pointless operation anyway, as the destructor is
224 * only called when the memory is just about to go away.
228 * \def talloc_steal(ctx, ptr)
229 * \brief Change a talloc chunk's parent
230 * \param ctx The new parent context
231 * \param ptr The talloc chunk to move
233 * \ingroup talloc_basic
235 * The talloc_steal() function changes the parent context of a talloc
236 * pointer. It is typically used when the context that the pointer is
237 * currently a child of is going to be freed and you wish to keep the
238 * memory for a longer time.
240 * The talloc_steal() function returns the pointer that you pass it. It
241 * does not have any failure modes.
243 * NOTE: It is possible to produce loops in the parent/child relationship
244 * if you are not careful with talloc_steal(). No guarantees are provided
245 * as to your sanity or the safety of your data if you do this.
247 * To make the changed hierarchy less error-prone, you might consider to use
250 * talloc_steal (ctx, NULL) will return NULL with no sideeffects.
253 /* try to make talloc_set_destructor() and talloc_steal() type safe,
254 if we have a recent gcc */
256 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
257 #define talloc_set_destructor(ptr, function) \
259 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
260 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
262 /* this extremely strange macro is to avoid some braindamaged warning
263 stupidity in gcc 4.1.x */
264 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)); __talloc_steal_ret; })
266 #define talloc_set_destructor(ptr, function) \
267 _talloc_set_destructor((ptr), (int (*)(void *))(function))
268 #define _TALLOC_TYPEOF(ptr) void *
269 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr))
273 * \def talloc_reference(ctx, ptr)
274 * \brief Create an additional talloc parent to a pointer
275 * \param ctx The additional parent
276 * \param ptr The pointer you want to create an additional parent for
278 * \ingroup talloc_ref
280 * The talloc_reference() function makes "context" an additional parent of
283 * The return value of talloc_reference() is always the original pointer
284 * "ptr", unless talloc ran out of memory in creating the reference in which
285 * case it will return NULL (each additional reference consumes around 48
286 * bytes of memory on intel x86 platforms).
288 * If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
290 * After creating a reference you can free it in one of the following ways:
292 * - you can talloc_free() any parent of the original pointer. That
293 * will reduce the number of parents of this pointer by 1, and will
294 * cause this pointer to be freed if it runs out of parents.
296 * - you can talloc_free() the pointer itself. That will destroy the
297 * most recently established parent to the pointer and leave the
298 * pointer as a child of its current parent.
300 * For more control on which parent to remove, see talloc_unlink()
302 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference((ctx),(ptr))
306 * \def talloc_move(ctx, ptr)
307 * \brief Change a talloc chunk's parent
308 * \param ctx The new parent context
309 * \param ptr Pointer to the talloc chunk to move
311 * \ingroup talloc_basic
313 * talloc_move() has the same effect as talloc_steal(), and additionally sets
314 * the source pointer to NULL. You would use it like this:
317 * struct foo *X = talloc(tmp_ctx, struct foo);
319 * Y = talloc_move(new_ctx, &X);
322 #define talloc_move(ctx, ptr) (_TALLOC_TYPEOF(*(ptr)))_talloc_move((ctx),(void *)(ptr))
324 /* useful macros for creating type checked pointers */
327 * \def talloc(ctx, type)
328 * \brief Main entry point to allocate structures
329 * \param ctx The talloc context to hang the result off
330 * \param type The type that we want to allocate
331 * \return Pointer to a piece of memory, properly cast to "type *"
332 * \ingroup talloc_basic
334 * The talloc() macro is the core of the talloc library. It takes a memory
335 * context and a type, and returns a pointer to a new area of memory of the
338 * The returned pointer is itself a talloc context, so you can use it as the
339 * context argument to more calls to talloc if you wish.
341 * The returned pointer is a "child" of the supplied context. This means that
342 * if you talloc_free() the context then the new child disappears as
343 * well. Alternatively you can free just the child.
345 * The context argument to talloc() can be NULL, in which case a new top
346 * level context is created.
348 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
351 * \def talloc_size(ctx, size)
352 * \brief Untyped allocation
353 * \param ctx The talloc context to hang the result off
354 * \param size Number of char's that you want to allocate
355 * \return The allocated memory chunk
356 * \ingroup talloc_basic
358 * The function talloc_size() should be used when you don't have a convenient
359 * type to pass to talloc(). Unlike talloc(), it is not type safe (as it
360 * returns a void *), so you are on your own for type checking.
362 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
365 * \def talloc_ptrtype(ctx, ptr)
366 * \brief Allocate into a typed pointer
367 * \param ctx The talloc context to hang the result off
368 * \param ptr The pointer you want to assign the result to
369 * \result The allocated memory chunk, properly cast
370 * \ingroup talloc_basic
372 * The talloc_ptrtype() macro should be used when you have a pointer and
373 * want to allocate memory to point at with this pointer. When compiling
374 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
375 * and talloc_get_name() will return the current location in the source file.
378 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
381 * \def talloc_new(ctx)
382 * \brief Allocate a new 0-sized talloc chunk
383 * \param ctx The talloc parent context
384 * \return A new talloc chunk
385 * \ingroup talloc_basic
387 * This is a utility macro that creates a new memory context hanging off an
388 * exiting context, automatically naming it "talloc_new: __location__" where
389 * __location__ is the source line it is called from. It is particularly
390 * useful for creating a new temporary working context.
392 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
395 * \def talloc_zero(ctx, type)
396 * \brief Allocate a 0-initizialized structure
397 * \param ctx The talloc context to hang the result off
398 * \param type The type that we want to allocate
399 * \return Pointer to a piece of memory, properly cast to "type *"
400 * \ingroup talloc_basic
402 * The talloc_zero() macro is equivalent to:
405 * ptr = talloc(ctx, type);
406 * if (ptr) memset(ptr, 0, sizeof(type));
409 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
412 * \def talloc_zero_size(ctx, size)
413 * \brief Untyped, 0-initialized allocation
414 * \param ctx The talloc context to hang the result off
415 * \param size Number of char's that you want to allocate
416 * \return The allocated memory chunk
417 * \ingroup talloc_basic
419 * The talloc_zero_size() macro is equivalent to:
422 * ptr = talloc_size(ctx, size);
423 * if (ptr) memset(ptr, 0, size);
427 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
430 * \def talloc_zero_array(ctx, type, count)
431 * \brief Allocate a 0-initialized array
432 * \param ctx The talloc context to hang the result off
433 * \param type The type that we want to allocate
434 * \param count The number of "type" elements you want to allocate
435 * \return The allocated result, properly cast to "type *"
436 * \ingroup talloc_array
438 * The talloc_zero_array() macro is equivalent to:
441 * ptr = talloc_array(ctx, type, count);
442 * if (ptr) memset(ptr, sizeof(type) * count);
445 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
448 * \def talloc_array(ctx, type, count)
449 * \brief Allocate an array
450 * \param ctx The talloc context to hang the result off
451 * \param type The type that we want to allocate
452 * \param count The number of "type" elements you want to allocate
453 * \return The allocated result, properly cast to "type *"
454 * \ingroup talloc_array
456 * The talloc_array() macro is equivalent to::
459 * (type *)talloc_size(ctx, sizeof(type) * count);
462 * except that it provides integer overflow protection for the multiply,
463 * returning NULL if the multiply overflows.
465 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
468 * \def talloc_array_size(ctx, size, count)
469 * \brief Allocate an array
470 * \param ctx The talloc context to hang the result off
471 * \param size The size of an array element
472 * \param count The number of "type" elements you want to allocate
473 * \return The allocated result, properly cast to "type *"
474 * \ingroup talloc_array
476 * The talloc_array_size() function is useful when the type is not
477 * known. It operates in the same way as talloc_array(), but takes a size
480 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
483 * \def talloc_array_ptrtype(ctx, ptr, count)
484 * \brief Allocate an array into a typed pointer
485 * \param ctx The talloc context to hang the result off
486 * \param ptr The pointer you want to assign the result to
487 * \param count The number of elements you want to allocate
488 * \result The allocated memory chunk, properly cast
489 * \ingroup talloc_array
491 * The talloc_array_ptrtype() macro should be used when you have a pointer to
492 * an array and want to allocate memory of an array to point at with this
493 * pointer. When compiling with gcc >= 3 it is typesafe. Note this is a
494 * wrapper of talloc_array_size() and talloc_get_name() will return the
495 * current location in the source file. and not the type.
497 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
500 * \def talloc_array_length(ctx)
501 * \brief Return the number of elements in a talloc'ed array
502 * \param ctx The talloc'ed array
503 * \return The number of elements in ctx
504 * \ingroup talloc_array
506 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
507 * necessary to store the number of elements explicitly.
509 #define talloc_array_length(ctx) ((ctx) ? talloc_get_size(ctx)/sizeof(*ctx) : 0)
512 * \def talloc_realloc(ctx, p, type, count)
513 * \brief Change the size of a talloc array
514 * \param ctx The parent context used if "p" is NULL
515 * \param p The chunk to be resized
516 * \param type The type of the array element inside p
517 * \param count The intended number of array elements
518 * \return The new array
519 * \ingroup talloc_array
521 * The talloc_realloc() macro changes the size of a talloc
522 * pointer. The "count" argument is the number of elements of type "type"
523 * that you want the resulting pointer to hold.
525 * talloc_realloc() has the following equivalences::
528 * talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
529 * talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
530 * talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
533 * The "context" argument is only used if "ptr" is NULL, otherwise it is
536 * talloc_realloc() returns the new pointer, or NULL on failure. The call
537 * will fail either due to a lack of memory, or because the pointer has
538 * more than one parent (see talloc_reference()).
540 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
543 * \def talloc_realloc_size(ctx, ptr, size)
544 * \brief Untyped realloc
545 * \param ctx The parent context used if "ptr" is NULL
546 * \param ptr The chunk to be resized
547 * \param size The new chunk size
548 * \return The new chunk
549 * \ingroup talloc_array
551 * The talloc_realloc_size() function is useful when the type is not known so
552 * the typesafe talloc_realloc() cannot be used.
554 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
557 * \def talloc_memdup(t, p, size)
558 * \brief Duplicate a memory area into a talloc chunk
559 * \param t The talloc context to hang the result off
560 * \param p The memory chunk you want to duplicate
561 * \param size Number of char's that you want copy
562 * \return The allocated memory chunk
563 * \ingroup talloc_basic
565 * The talloc_memdup() function is equivalent to::
568 * ptr = talloc_size(ctx, size);
569 * if (ptr) memcpy(ptr, p, size);
572 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
575 * \def talloc_set_type(ptr, type)
576 * \brief Assign a type to a talloc chunk
577 * \param ptr The talloc chunk to assign the type to
578 * \param type The type to assign
579 * \ingroup talloc_basic
581 * This macro allows you to force the name of a pointer to be a
582 * particular type. This can be used in conjunction with
583 * talloc_get_type() to do type checking on void* pointers.
585 * It is equivalent to this::
588 * talloc_set_name_const(ptr, #type)
591 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
594 * \def talloc_get_type(ptr, type)
595 * \brief Get a typed pointer out of a talloc pointer
596 * \param ptr The talloc pointer to check
597 * \param type The type to check against
598 * \return ptr, properly cast, or NULL
599 * \ingroup talloc_basic
601 * This macro allows you to do type checking on talloc pointers. It is
602 * particularly useful for void* private pointers. It is equivalent to
606 * (type *)talloc_check_name(ptr, #type)
610 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
613 * \def talloc_get_type_abort(ptr, type)
614 * \brief Helper macro to safely turn a void * into a typed pointer
615 * \param ptr The void * to convert
616 * \param type The type that this chunk contains
617 * \return Same value as ptr, type-checked and properly cast
618 * \ingroup talloc_basic
620 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
621 * assing the talloc chunk pointer to some void * variable,
622 * talloc_get_type_abort() is the recommended way to get the convert the void
623 * pointer back to a typed pointer.
625 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
628 * \def talloc_find_parent_bytype(ptr, type)
629 * \brief Find a parent context by type
630 * \param ptr The talloc chunk to start from
631 * \param type The type of the parent to look for
632 * \ingroup talloc_basic
634 * Find a parent memory context of the current context that has the given
635 * name. This can be very useful in complex programs where it may be
636 * difficult to pass all information down to the level you need, but you
637 * know the structure you want is a parent of another context.
639 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
641 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
643 #if TALLOC_DEPRECATED
644 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
645 #define talloc_p(ctx, type) talloc(ctx, type)
646 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
647 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
648 #define talloc_destroy(ctx) talloc_free(ctx)
649 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
653 * \def TALLOC_FREE(ctx)
654 * \brief talloc_free a chunk and NULL out the pointer
655 * \param ctx The chunk to be freed
656 * \ingroup talloc_basic
658 * TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
659 * immediate feedback (i.e. crash) if you use a pointer after having free'ed
662 #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
665 * \brief Allocate untyped, unnamed memory
666 * \param context The talloc context to hang the result off
667 * \param size Number of char's that you want to allocate
668 * \return The allocated memory chunk
669 * \ingroup talloc_internal
671 * Essentially the same as talloc_size() without setting the chunk name to the
672 * current file/line number.
674 void *_talloc(const void *context, size_t size);
677 * \brief Allocate a talloc pool
678 * \param context The talloc context to hang the result off
679 * \param size Size of the talloc pool
680 * \result The talloc pool
681 * \ingroup talloc_basic
683 * A talloc pool is a pure optimization for specific situations. In the
684 * release process for Samba 3.2 we found out that we had become considerably
685 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
686 * consumer in benchmarks. For Samba 3.2 we have internally converted many
687 * static buffers to dynamically allocated ones, so malloc(3) being beaten
688 * more was no surprise. But it made us slower.
690 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
691 * pattern Samba has: The SMB protocol is mainly a request/response protocol
692 * where we have to allocate a certain amount of memory per request and free
693 * that after the SMB reply is sent to the client.
695 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
696 * exactly as you would use any other ::TALLOC_CTX. The difference is that
697 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
698 * just increments a pointer inside the talloc_pool. This also works
699 * recursively. If you use the child of the talloc pool as a parent for
700 * grand-children, their memory is also taken from the talloc pool.
702 * If you talloc_free() children of a talloc pool, the memory is not given
703 * back to the system. Instead, free(3) is only called if the talloc_pool()
704 * itself is released with talloc_free().
706 * The downside of a talloc pool is that if you talloc_move() a child of a
707 * talloc pool to a talloc parent outside the pool, the whole pool memory is
708 * not free(3)'ed until that moved chunk is also talloc_free()ed.
710 void *talloc_pool(const void *context, size_t size);
711 void _talloc_set_destructor(const void *ptr, int (*destructor)(void *));
714 * \brief Increase the reference count of a talloc chunk
717 * \ingroup talloc_ref
719 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
722 * talloc_reference(NULL, ptr);
725 * You can use either syntax, depending on which you think is clearer in
728 * It returns 0 on success and -1 on failure.
730 int talloc_increase_ref_count(const void *ptr);
733 * \brief Return the number of references to a talloc chunk
734 * \param ptr The chunk you are interested in
735 * \return Number of refs
736 * \ingroup talloc_ref
738 size_t talloc_reference_count(const void *ptr);
739 void *_talloc_reference(const void *context, const void *ptr);
742 * \brief Remove a specific parent from a talloc chunk
743 * \param context The talloc parent to remove
744 * \param ptr The talloc ptr you want to remove the parent from
745 * \ingroup talloc_ref
747 * The talloc_unlink() function removes a specific parent from ptr. The
748 * context passed must either be a context used in talloc_reference() with
749 * this pointer, or must be a direct parent of ptr.
751 * Note that if the parent has already been removed using talloc_free() then
752 * this function will fail and will return -1. Likewise, if "ptr" is NULL,
753 * then the function will make no modifications and return -1.
755 * Usually you can just use talloc_free() instead of talloc_unlink(), but
756 * sometimes it is useful to have the additional control on which parent is
759 int talloc_unlink(const void *context, void *ptr);
762 * \brief Assign a name to a talloc chunk
763 * \param ptr The talloc chunk to assign a name to
764 * \param fmt Format string for the name
765 * \param ... printf-style additional arguments
766 * \return The assigned name
767 * \ingroup talloc_basic
769 * Each talloc pointer has a "name". The name is used principally for
770 * debugging purposes, although it is also possible to set and get the name on
771 * a pointer in as a way of "marking" pointers in your code.
773 * The main use for names on pointer is for "talloc reports". See
774 * talloc_report() and talloc_report_full() for details. Also see
775 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
777 * The talloc_set_name() function allocates memory as a child of the
778 * pointer. It is logically equivalent to:
781 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
784 * Note that multiple calls to talloc_set_name() will allocate more memory
785 * without releasing the name. All of the memory is released when the ptr is
786 * freed using talloc_free().
788 const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
791 * \brief Assign a name to a talloc chunk
792 * \param ptr The talloc chunk to assign a name to
793 * \param name Format string for the name
794 * \ingroup talloc_basic
796 * The function talloc_set_name_const() is just like talloc_set_name(), but it
797 * takes a string constant, and is much faster. It is extensively used by the
798 * "auto naming" macros, such as talloc_p().
800 * This function does not allocate any memory. It just copies the supplied
801 * pointer into the internal representation of the talloc ptr. This means you
802 * must not pass a name pointer to memory that will disappear before the ptr
803 * is freed with talloc_free().
805 void talloc_set_name_const(const void *ptr, const char *name);
808 * \brief Create a named talloc chunk
809 * \param context The talloc context to hang the result off
810 * \param size Number of char's that you want to allocate
811 * \param fmt Format string for the name
812 * \param ... printf-style additional arguments
813 * \return The allocated memory chunk
814 * \ingroup talloc_basic
816 * The talloc_named() function creates a named talloc pointer. It is
820 * ptr = talloc_size(context, size);
821 * talloc_set_name(ptr, fmt, ....);
825 void *talloc_named(const void *context, size_t size,
826 const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
829 * \brief Basic routine to allocate a chunk of memory
830 * \param context The parent context
831 * \param size The number of char's that we want to allocate
832 * \param name The name the talloc block has
833 * \return The allocated chunk
834 * \ingroup talloc_basic
836 * This is equivalent to:
839 * ptr = talloc_size(context, size);
840 * talloc_set_name_const(ptr, name);
843 void *talloc_named_const(const void *context, size_t size, const char *name);
846 * \brief Return the name of a talloc chunk
847 * \param ptr The talloc chunk
849 * \ingroup talloc_basic
851 * This returns the current name for the given talloc pointer. See
852 * talloc_set_name() for details.
854 const char *talloc_get_name(const void *ptr);
857 * \brief Verify that a talloc chunk carries a specified name
858 * \param ptr The talloc chunk to check
859 * \param name The name to check agains
860 * \ingroup talloc_basic
862 * This function checks if a pointer has the specified name. If it does
863 * then the pointer is returned. It it doesn't then NULL is returned.
865 void *talloc_check_name(const void *ptr, const char *name);
867 void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
870 * \brief Return the parent chunk of a pointer
871 * \param ptr The talloc pointer to inspect
872 * \return The talloc parent of "ptr"
873 * \ingroup talloc_basic
875 * Return the parent chunk of a pointer
877 void *talloc_parent(const void *ptr);
880 * \brief Return a talloc chunk's parent name
881 * \param ptr The talloc pointer to inspect
882 * \return The name of ptr's parent chunk
883 * \ingroup talloc_basic
885 * Return a talloc chunk's parent name
887 const char *talloc_parent_name(const void *ptr);
890 * \brief Create a new top level talloc context
891 * \param fmt Format string for the name
892 * \param ... printf-style additional arguments
893 * \return The allocated memory chunk
894 * \ingroup talloc_basic
896 * This function creates a zero length named talloc context as a top level
897 * context. It is equivalent to:
900 * talloc_named(NULL, 0, fmt, ...);
903 void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
906 * \brief Free a chunk of talloc memory
907 * \param ptr The chunk to be freed
909 * \ingroup talloc_basic
911 * The talloc_free() function frees a piece of talloc memory, and all its
912 * children. You can call talloc_free() on any pointer returned by talloc().
914 * The return value of talloc_free() indicates success or failure, with 0
915 * returned for success and -1 for failure. The only possible failure
916 * condition is if the pointer had a destructor attached to it and the
917 * destructor returned -1. See talloc_set_destructor() for details on
920 * If this pointer has an additional parent when talloc_free() is called
921 * then the memory is not actually released, but instead the most
922 * recently established parent is destroyed. See talloc_reference() for
923 * details on establishing additional parents.
925 * For more control on which parent is removed, see talloc_unlink()
927 * talloc_free() operates recursively on its children.
929 int talloc_free(void *ptr);
932 * \brief Free a talloc chunk's children
933 * \param ptr The chunk that you want to free the children of
935 * \ingroup talloc_basic
937 * The talloc_free_children() walks along the list of all children of a talloc
938 * context and talloc_free()s only the children, not the context itself.
940 void talloc_free_children(void *ptr);
941 void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
942 void *_talloc_steal(const void *new_ctx, const void *ptr);
943 void *_talloc_move(const void *new_ctx, const void *pptr);
946 * \brief Return the total size of a talloc chunk including its children
947 * \param ptr The talloc chunk
948 * \return The total size
949 * \ingroup talloc_basic
951 * The talloc_total_size() function returns the total size in bytes used
952 * by this pointer and all child pointers. Mostly useful for debugging.
954 * Passing NULL is allowed, but it will only give a meaningful result if
955 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
958 size_t talloc_total_size(const void *ptr);
961 * \brief Return the number of talloc chunks hanging off a chunk
962 * \param ptr The talloc chunk
963 * \return The total size
964 * \ingroup talloc_basic
966 * The talloc_total_blocks() function returns the total memory block
967 * count used by this pointer and all child pointers. Mostly useful for
970 * Passing NULL is allowed, but it will only give a meaningful result if
971 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
974 size_t talloc_total_blocks(const void *ptr);
977 * \brief Walk a complete talloc hierarchy
978 * \param ptr The talloc chunk
979 * \param depth Internal parameter to control recursion. Call with 0.
980 * \param max_depth Maximum recursion level.
981 * \param callback Function to be called on every chunk
982 * \param private_data Private pointer passed to callback
983 * \ingroup talloc_debug
985 * This provides a more flexible reports than talloc_report(). It
986 * will recursively call the callback for the entire tree of memory
987 * referenced by the pointer. References in the tree are passed with
988 * is_ref = 1 and the pointer that is referenced.
990 * You can pass NULL for the pointer, in which case a report is
991 * printed for the top level memory context, but only if
992 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
995 * The recursion is stopped when depth >= max_depth.
996 * max_depth = -1 means only stop at leaf nodes.
998 void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
999 void (*callback)(const void *ptr,
1000 int depth, int max_depth,
1002 void *private_data),
1003 void *private_data);
1006 * \brief Print a talloc hierarchy
1007 * \param ptr The talloc chunk
1008 * \param depth Internal parameter to control recursion. Call with 0.
1009 * \param max_depth Maximum recursion level.
1010 * \param f The file handle to print to
1011 * \ingroup talloc_debug
1013 * This provides a more flexible reports than talloc_report(). It
1014 * will let you specify the depth and max_depth.
1016 void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
1019 * \brief Print a summary report of all memory used by ptr
1020 * \param ptr The talloc chunk
1021 * \param f The file handle to print to
1022 * \ingroup talloc_debug
1024 * This provides a more detailed report than talloc_report(). It will
1025 * recursively print the ensire tree of memory referenced by the
1026 * pointer. References in the tree are shown by giving the name of the
1027 * pointer that is referenced.
1029 * You can pass NULL for the pointer, in which case a report is printed
1030 * for the top level memory context, but only if
1031 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1034 void talloc_report_full(const void *ptr, FILE *f);
1037 * \brief Print a summary report of all memory used by ptr
1038 * \param ptr The talloc chunk
1039 * \param f The file handle to print to
1040 * \ingroup talloc_debug
1042 * The talloc_report() function prints a summary report of all memory
1043 * used by ptr. One line of report is printed for each immediate child of
1044 * ptr, showing the total memory and number of blocks used by that child.
1046 * You can pass NULL for the pointer, in which case a report is printed
1047 * for the top level memory context, but only if
1048 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1051 void talloc_report(const void *ptr, FILE *f);
1054 * \brief Enable tracking the use of NULL memory contexts
1055 * \ingroup talloc_debug
1057 * This enables tracking of the NULL memory context without enabling leak
1058 * reporting on exit. Useful for when you want to do your own leak
1059 * reporting call via talloc_report_null_full();
1061 void talloc_enable_null_tracking(void);
1064 * \brief Disable tracking of the NULL memory context
1065 * \ingroup talloc_debug
1067 * This disables tracking of the NULL memory context.
1070 void talloc_disable_null_tracking(void);
1073 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
1074 * \ingroup talloc_debug
1076 * This enables calling of talloc_report(NULL, stderr) when the program
1077 * exits. In Samba4 this is enabled by using the --leak-report command
1080 * For it to be useful, this function must be called before any other
1081 * talloc function as it establishes a "null context" that acts as the
1082 * top of the tree. If you don't call this function first then passing
1083 * NULL to talloc_report() or talloc_report_full() won't give you the
1084 * full tree printout.
1086 * Here is a typical talloc report:
1089 talloc report on 'null_context' (total 267 bytes in 15 blocks)
1090 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1091 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1092 iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1093 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1094 iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1095 iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1096 iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1099 void talloc_enable_leak_report(void);
1102 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
1103 * \ingroup talloc_debug
1105 * This enables calling of talloc_report_full(NULL, stderr) when the
1106 * program exits. In Samba4 this is enabled by using the
1107 * --leak-report-full command line option.
1109 * For it to be useful, this function must be called before any other
1110 * talloc function as it establishes a "null context" that acts as the
1111 * top of the tree. If you don't call this function first then passing
1112 * NULL to talloc_report() or talloc_report_full() won't give you the
1113 * full tree printout.
1115 * Here is a typical full report:
1117 full talloc report on 'root' (total 18 bytes in 8 blocks)
1118 p1 contains 18 bytes in 7 blocks (ref 0)
1119 r1 contains 13 bytes in 2 blocks (ref 0)
1121 p2 contains 1 bytes in 1 blocks (ref 1)
1122 x3 contains 1 bytes in 1 blocks (ref 0)
1123 x2 contains 1 bytes in 1 blocks (ref 0)
1124 x1 contains 1 bytes in 1 blocks (ref 0)
1127 void talloc_enable_leak_report_full(void);
1128 void *_talloc_zero(const void *ctx, size_t size, const char *name);
1129 void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
1130 void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1131 void *_talloc_zero_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1132 void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
1135 * \brief Provide a function version of talloc_realloc_size
1136 * \param context The parent context used if "ptr" is NULL
1137 * \param ptr The chunk to be resized
1138 * \param size The new chunk size
1139 * \return The new chunk
1140 * \ingroup talloc_array
1142 * This is a non-macro version of talloc_realloc(), which is useful as
1143 * libraries sometimes want a ralloc function pointer. A realloc()
1144 * implementation encapsulates the functionality of malloc(), free() and
1145 * realloc() in one call, which is why it is useful to be able to pass around
1146 * a single function pointer.
1148 void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
1151 * \brief Provide a talloc context that is freed at program exit
1152 * \return A talloc context
1153 * \ingroup talloc_basic
1155 * This is a handy utility function that returns a talloc context
1156 * which will be automatically freed on program exit. This can be used
1157 * to reduce the noise in memory leak reports.
1159 void *talloc_autofree_context(void);
1162 * \brief Get the size of a talloc chunk
1163 * \param ctx The talloc chunk
1165 * \ingroup talloc_basic
1167 * This function lets you know the amount of memory alloced so far by
1168 * this context. It does NOT account for subcontext memory.
1169 * This can be used to calculate the size of an array.
1171 size_t talloc_get_size(const void *ctx);
1174 * \brief Find a parent context by name
1175 * \param ctx The talloc chunk to start from
1176 * \param name The name of the parent we look for
1177 * \ingroup talloc_basic
1179 * Find a parent memory context of the current context that has the given
1180 * name. This can be very useful in complex programs where it may be
1181 * difficult to pass all information down to the level you need, but you
1182 * know the structure you want is a parent of another context.
1184 void *talloc_find_parent_byname(const void *ctx, const char *name);
1185 void talloc_show_parents(const void *context, FILE *file);
1188 * \brief Check if a context is parent of a talloc chunk
1189 * \param context The assumed talloc context
1190 * \param ptr The talloc chunk to check
1191 * \return Is context an anchestor of ptr
1192 * \ingroup talloc_basic
1194 * talloc_is_parent() checks if context is referenced in the talloc
1195 * hierarchy above ptr. Return 1 if this is the case, 0 if not.
1197 int talloc_is_parent(const void *context, const void *ptr);
1200 * \brief Duplicate a string into a talloc chunk
1201 * \param t The talloc context to hang the result off
1202 * \param p The string you want to duplicate
1203 * \return The duplicated string
1204 * \ingroup talloc_string
1206 * The talloc_strdup() function is equivalent to:
1209 * ptr = talloc_size(ctx, strlen(p)+1);
1210 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1213 * This functions sets the name of the new pointer to the passed
1214 * string. This is equivalent to:
1217 * talloc_set_name_const(ptr, ptr)
1220 char *talloc_strdup(const void *t, const char *p);
1221 char *talloc_strdup_append(char *s, const char *a);
1222 char *talloc_strdup_append_buffer(char *s, const char *a);
1225 * \brief Duplicate a length-limited string into a talloc chunk
1226 * \param t The talloc context to hang the result off
1227 * \param p The string you want to duplicate
1228 * \param n The maximum string length to duplicate
1229 * \return The duplicated string
1230 * \ingroup talloc_string
1232 * The talloc_strndup() function is the talloc equivalent of the C
1233 * library function strndup()
1235 * This functions sets the name of the new pointer to the passed
1236 * string. This is equivalent to:
1239 * talloc_set_name_const(ptr, ptr)
1242 char *talloc_strndup(const void *t, const char *p, size_t n);
1243 char *talloc_strndup_append(char *s, const char *a, size_t n);
1244 char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
1247 * \brief Format a string given a va_list
1248 * \param t The talloc context to hang the result off
1249 * \param fmt The format string
1250 * \param ap The parameters used to fill fmt
1251 * \return The formatted string
1252 * \ingroup talloc_string
1254 * The talloc_vasprintf() function is the talloc equivalent of the C
1255 * library function vasprintf()
1257 * This functions sets the name of the new pointer to the new
1258 * string. This is equivalent to:
1261 * talloc_set_name_const(ptr, ptr)
1264 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1265 char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1266 char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1269 * \brief Format a string
1270 * \param t The talloc context to hang the result off
1271 * \param fmt The format string
1272 * \param ... The parameters used to fill fmt
1273 * \return The formatted string
1274 * \ingroup talloc_string
1276 * The talloc_asprintf() function is the talloc equivalent of the C
1277 * library function asprintf()
1279 * This functions sets the name of the new pointer to the new
1280 * string. This is equivalent to:
1283 * talloc_set_name_const(ptr, ptr)
1286 char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1289 * \brief Append a formatted string to another string
1290 * \param s The string to append to
1291 * \param fmt The format string
1292 * \param ... The parameters used to fill fmt
1293 * \return The formatted string
1294 * \ingroup talloc_string
1296 * The talloc_asprintf_append() function appends the given formatted string to
1297 * the given string. Use this varient when the string in the current talloc
1298 * buffer may have been truncated in length.
1300 * This functions sets the name of the new pointer to the new
1301 * string. This is equivalent to:
1304 * talloc_set_name_const(ptr, ptr)
1307 char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1310 * \brief Append a formatted string to another string
1311 * \param s The string to append to
1312 * \param fmt The format string
1313 * \param ... The parameters used to fill fmt
1314 * \return The formatted string
1315 * \ingroup talloc_string
1317 * The talloc_asprintf_append() function appends the given formatted string to
1318 * the end of the currently allocated talloc buffer. This routine should be
1319 * used if you create a large string step by step. talloc_asprintf() or
1320 * talloc_asprintf_append() call strlen() at every
1321 * step. talloc_asprintf_append_buffer() uses the existing buffer size of the
1322 * talloc chunk to calculate where to append the string.
1324 * This functions sets the name of the new pointer to the new
1325 * string. This is equivalent to:
1328 * talloc_set_name_const(ptr, ptr)
1331 char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1333 void talloc_set_abort_fn(void (*abort_fn)(const char *reason));