x86: CPA no alias checking for _NX
[sfrench/cifs-2.6.git] / arch / x86 / mm / pageattr.c
index e297bd65e513308fd1c2a26ee59126c8c077e04b..b8f53233151dd6d6548e4062c88bb5086eb576e5 100644 (file)
@@ -8,6 +8,7 @@
 #include <linux/sched.h>
 #include <linux/slab.h>
 #include <linux/mm.h>
+#include <linux/interrupt.h>
 
 #include <asm/e820.h>
 #include <asm/processor.h>
 #include <asm/sections.h>
 #include <asm/uaccess.h>
 #include <asm/pgalloc.h>
+#include <asm/proto.h>
+
+/*
+ * The current flushing context - we pass it instead of 5 arguments:
+ */
+struct cpa_data {
+       unsigned long   vaddr;
+       pgprot_t        mask_set;
+       pgprot_t        mask_clr;
+       int             numpages;
+       int             flushtlb;
+       unsigned long   pfn;
+};
+
+#ifdef CONFIG_X86_64
+
+static inline unsigned long highmap_start_pfn(void)
+{
+       return __pa(_text) >> PAGE_SHIFT;
+}
+
+static inline unsigned long highmap_end_pfn(void)
+{
+       return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
+}
+
+#endif
 
 static inline int
 within(unsigned long addr, unsigned long start, unsigned long end)
@@ -52,21 +80,23 @@ void clflush_cache_range(void *vaddr, unsigned int size)
 
 static void __cpa_flush_all(void *arg)
 {
+       unsigned long cache = (unsigned long)arg;
+
        /*
         * Flush all to work around Errata in early athlons regarding
         * large page flushing.
         */
        __flush_tlb_all();
 
-       if (boot_cpu_data.x86_model >= 4)
+       if (cache && boot_cpu_data.x86_model >= 4)
                wbinvd();
 }
 
-static void cpa_flush_all(void)
+static void cpa_flush_all(unsigned long cache)
 {
        BUG_ON(irqs_disabled());
 
-       on_each_cpu(__cpa_flush_all, NULL, 1, 1);
+       on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
 }
 
 static void __cpa_flush_range(void *arg)
@@ -79,7 +109,7 @@ static void __cpa_flush_range(void *arg)
        __flush_tlb_all();
 }
 
-static void cpa_flush_range(unsigned long start, int numpages)
+static void cpa_flush_range(unsigned long start, int numpages, int cache)
 {
        unsigned int i, level;
        unsigned long addr;
@@ -89,6 +119,9 @@ static void cpa_flush_range(unsigned long start, int numpages)
 
        on_each_cpu(__cpa_flush_range, NULL, 1, 1);
 
+       if (!cache)
+               return;
+
        /*
         * We only need to flush on one CPU,
         * clflush is a MESI-coherent instruction that
@@ -101,7 +134,7 @@ static void cpa_flush_range(unsigned long start, int numpages)
                /*
                 * Only flush present addresses:
                 */
-               if (pte && pte_present(*pte))
+               if (pte && (pte_val(*pte) & _PAGE_PRESENT))
                        clflush_cache_range((void *) addr, PAGE_SIZE);
        }
 }
@@ -112,7 +145,8 @@ static void cpa_flush_range(unsigned long start, int numpages)
  * right (again, ioremap() on BIOS memory is not uncommon) so this function
  * checks and fixes these known static required protection bits.
  */
-static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
+static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
+                                  unsigned long pfn)
 {
        pgprot_t forbidden = __pgprot(0);
 
@@ -120,29 +154,39 @@ static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
         * The BIOS area between 640k and 1Mb needs to be executable for
         * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
         */
-       if (within(__pa(address), BIOS_BEGIN, BIOS_END))
+       if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
                pgprot_val(forbidden) |= _PAGE_NX;
 
        /*
         * The kernel text needs to be executable for obvious reasons
-        * Does not cover __inittext since that is gone later on
+        * Does not cover __inittext since that is gone later on. On
+        * 64bit we do not enforce !NX on the low mapping
         */
        if (within(address, (unsigned long)_text, (unsigned long)_etext))
                pgprot_val(forbidden) |= _PAGE_NX;
 
-#ifdef CONFIG_DEBUG_RODATA
-       /* The .rodata section needs to be read-only */
-       if (within(address, (unsigned long)__start_rodata,
-                               (unsigned long)__end_rodata))
+       /*
+        * The .rodata section needs to be read-only. Using the pfn
+        * catches all aliases.
+        */
+       if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
+                  __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
                pgprot_val(forbidden) |= _PAGE_RW;
-#endif
 
        prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 
        return prot;
 }
 
-pte_t *lookup_address(unsigned long address, int *level)
+/*
+ * Lookup the page table entry for a virtual address. Return a pointer
+ * to the entry and the level of the mapping.
+ *
+ * Note: We return pud and pmd either when the entry is marked large
+ * or when the present bit is not set. Otherwise we would return a
+ * pointer to a nonexisting mapping.
+ */
+pte_t *lookup_address(unsigned long address, unsigned int *level)
 {
        pgd_t *pgd = pgd_offset_k(address);
        pud_t *pud;
@@ -152,21 +196,31 @@ pte_t *lookup_address(unsigned long address, int *level)
 
        if (pgd_none(*pgd))
                return NULL;
+
        pud = pud_offset(pgd, address);
        if (pud_none(*pud))
                return NULL;
+
+       *level = PG_LEVEL_1G;
+       if (pud_large(*pud) || !pud_present(*pud))
+               return (pte_t *)pud;
+
        pmd = pmd_offset(pud, address);
        if (pmd_none(*pmd))
                return NULL;
 
        *level = PG_LEVEL_2M;
-       if (pmd_large(*pmd))
+       if (pmd_large(*pmd) || !pmd_present(*pmd))
                return (pte_t *)pmd;
 
        *level = PG_LEVEL_4K;
+
        return pte_offset_kernel(pmd, address);
 }
 
+/*
+ * Set the new pmd in all the pgds we know about:
+ */
 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 {
        /* change init_mm */
@@ -189,192 +243,474 @@ static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 #endif
 }
 
+static int
+try_preserve_large_page(pte_t *kpte, unsigned long address,
+                       struct cpa_data *cpa)
+{
+       unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
+       pte_t new_pte, old_pte, *tmp;
+       pgprot_t old_prot, new_prot;
+       int i, do_split = 1;
+       unsigned int level;
+
+       spin_lock_irqsave(&pgd_lock, flags);
+       /*
+        * Check for races, another CPU might have split this page
+        * up already:
+        */
+       tmp = lookup_address(address, &level);
+       if (tmp != kpte)
+               goto out_unlock;
+
+       switch (level) {
+       case PG_LEVEL_2M:
+               psize = PMD_PAGE_SIZE;
+               pmask = PMD_PAGE_MASK;
+               break;
+#ifdef CONFIG_X86_64
+       case PG_LEVEL_1G:
+               psize = PUD_PAGE_SIZE;
+               pmask = PUD_PAGE_MASK;
+               break;
+#endif
+       default:
+               do_split = -EINVAL;
+               goto out_unlock;
+       }
+
+       /*
+        * Calculate the number of pages, which fit into this large
+        * page starting at address:
+        */
+       nextpage_addr = (address + psize) & pmask;
+       numpages = (nextpage_addr - address) >> PAGE_SHIFT;
+       if (numpages < cpa->numpages)
+               cpa->numpages = numpages;
+
+       /*
+        * We are safe now. Check whether the new pgprot is the same:
+        */
+       old_pte = *kpte;
+       old_prot = new_prot = pte_pgprot(old_pte);
+
+       pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
+       pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
+
+       /*
+        * old_pte points to the large page base address. So we need
+        * to add the offset of the virtual address:
+        */
+       pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
+       cpa->pfn = pfn;
+
+       new_prot = static_protections(new_prot, address, pfn);
+
+       /*
+        * We need to check the full range, whether
+        * static_protection() requires a different pgprot for one of
+        * the pages in the range we try to preserve:
+        */
+       addr = address + PAGE_SIZE;
+       pfn++;
+       for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
+               pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
+
+               if (pgprot_val(chk_prot) != pgprot_val(new_prot))
+                       goto out_unlock;
+       }
+
+       /*
+        * If there are no changes, return. maxpages has been updated
+        * above:
+        */
+       if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
+               do_split = 0;
+               goto out_unlock;
+       }
+
+       /*
+        * We need to change the attributes. Check, whether we can
+        * change the large page in one go. We request a split, when
+        * the address is not aligned and the number of pages is
+        * smaller than the number of pages in the large page. Note
+        * that we limited the number of possible pages already to
+        * the number of pages in the large page.
+        */
+       if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
+               /*
+                * The address is aligned and the number of pages
+                * covers the full page.
+                */
+               new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
+               __set_pmd_pte(kpte, address, new_pte);
+               cpa->flushtlb = 1;
+               do_split = 0;
+       }
+
+out_unlock:
+       spin_unlock_irqrestore(&pgd_lock, flags);
+
+       return do_split;
+}
+
+static LIST_HEAD(page_pool);
+static unsigned long pool_size, pool_pages, pool_low;
+static unsigned long pool_used, pool_failed, pool_refill;
+
+static void cpa_fill_pool(void)
+{
+       struct page *p;
+       gfp_t gfp = GFP_KERNEL;
+
+       /* Do not allocate from interrupt context */
+       if (in_irq() || irqs_disabled())
+               return;
+       /*
+        * Check unlocked. I does not matter when we have one more
+        * page in the pool. The bit lock avoids recursive pool
+        * allocations:
+        */
+       if (pool_pages >= pool_size || test_and_set_bit_lock(0, &pool_refill))
+               return;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+       /*
+        * We could do:
+        * gfp = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
+        * but this fails on !PREEMPT kernels
+        */
+       gfp =  GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
+#endif
+
+       while (pool_pages < pool_size) {
+               p = alloc_pages(gfp, 0);
+               if (!p) {
+                       pool_failed++;
+                       break;
+               }
+               spin_lock_irq(&pgd_lock);
+               list_add(&p->lru, &page_pool);
+               pool_pages++;
+               spin_unlock_irq(&pgd_lock);
+       }
+       clear_bit_unlock(0, &pool_refill);
+}
+
+#define SHIFT_MB               (20 - PAGE_SHIFT)
+#define ROUND_MB_GB            ((1 << 10) - 1)
+#define SHIFT_MB_GB            10
+#define POOL_PAGES_PER_GB      16
+
+void __init cpa_init(void)
+{
+       struct sysinfo si;
+       unsigned long gb;
+
+       si_meminfo(&si);
+       /*
+        * Calculate the number of pool pages:
+        *
+        * Convert totalram (nr of pages) to MiB and round to the next
+        * GiB. Shift MiB to Gib and multiply the result by
+        * POOL_PAGES_PER_GB:
+        */
+       gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
+       pool_size = POOL_PAGES_PER_GB * gb;
+       pool_low = pool_size;
+
+       cpa_fill_pool();
+       printk(KERN_DEBUG
+              "CPA: page pool initialized %lu of %lu pages preallocated\n",
+              pool_pages, pool_size);
+}
+
 static int split_large_page(pte_t *kpte, unsigned long address)
 {
-       pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte));
-       gfp_t gfp_flags = GFP_KERNEL;
-       unsigned long flags;
-       unsigned long addr;
+       unsigned long flags, pfn, pfninc = 1;
+       unsigned int i, level;
        pte_t *pbase, *tmp;
+       pgprot_t ref_prot;
        struct page *base;
-       unsigned int i, level;
 
-#ifdef CONFIG_DEBUG_PAGEALLOC
-       gfp_flags = __GFP_HIGH | __GFP_NOFAIL | __GFP_NOWARN;
-       gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
-#endif
-       base = alloc_pages(gfp_flags, 0);
-       if (!base)
+       /*
+        * Get a page from the pool. The pool list is protected by the
+        * pgd_lock, which we have to take anyway for the split
+        * operation:
+        */
+       spin_lock_irqsave(&pgd_lock, flags);
+       if (list_empty(&page_pool)) {
+               spin_unlock_irqrestore(&pgd_lock, flags);
                return -ENOMEM;
+       }
+
+       base = list_first_entry(&page_pool, struct page, lru);
+       list_del(&base->lru);
+       pool_pages--;
+
+       if (pool_pages < pool_low)
+               pool_low = pool_pages;
 
-       spin_lock_irqsave(&pgd_lock, flags);
        /*
         * Check for races, another CPU might have split this page
         * up for us already:
         */
        tmp = lookup_address(address, &level);
-       if (tmp != kpte) {
-               WARN_ON_ONCE(1);
+       if (tmp != kpte)
                goto out_unlock;
-       }
 
-       address = __pa(address);
-       addr = address & LARGE_PAGE_MASK;
        pbase = (pte_t *)page_address(base);
 #ifdef CONFIG_X86_32
        paravirt_alloc_pt(&init_mm, page_to_pfn(base));
 #endif
+       ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 
-       pgprot_val(ref_prot) &= ~_PAGE_NX;
-       for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE)
-               set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot));
+#ifdef CONFIG_X86_64
+       if (level == PG_LEVEL_1G) {
+               pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
+               pgprot_val(ref_prot) |= _PAGE_PSE;
+       }
+#endif
 
        /*
-        * Install the new, split up pagetable. Important detail here:
+        * Get the target pfn from the original entry:
+        */
+       pfn = pte_pfn(*kpte);
+       for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
+               set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
+
+       /*
+        * Install the new, split up pagetable. Important details here:
         *
         * On Intel the NX bit of all levels must be cleared to make a
         * page executable. See section 4.13.2 of Intel 64 and IA-32
         * Architectures Software Developer's Manual).
+        *
+        * Mark the entry present. The current mapping might be
+        * set to not present, which we preserved above.
         */
        ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
+       pgprot_val(ref_prot) |= _PAGE_PRESENT;
        __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
        base = NULL;
 
 out_unlock:
+       /*
+        * If we dropped out via the lookup_address check under
+        * pgd_lock then stick the page back into the pool:
+        */
+       if (base) {
+               list_add(&base->lru, &page_pool);
+               pool_pages++;
+       } else
+               pool_used++;
        spin_unlock_irqrestore(&pgd_lock, flags);
 
-       if (base)
-               __free_pages(base, 0);
-
        return 0;
 }
 
-static int
-__change_page_attr(unsigned long address, unsigned long pfn,
-                  pgprot_t mask_set, pgprot_t mask_clr)
+static int __change_page_attr(struct cpa_data *cpa, int primary)
 {
+       unsigned long address = cpa->vaddr;
+       int do_split, err;
+       unsigned int level;
        struct page *kpte_page;
-       int level, err = 0;
-       pte_t *kpte;
-
-#ifdef CONFIG_X86_32
-       BUG_ON(pfn > max_low_pfn);
-#endif
+       pte_t *kpte, old_pte;
 
 repeat:
        kpte = lookup_address(address, &level);
        if (!kpte)
+               return primary ? -EINVAL : 0;
+
+       old_pte = *kpte;
+       if (!pte_val(old_pte)) {
+               if (!primary)
+                       return 0;
+               printk(KERN_WARNING "CPA: called for zero pte. "
+                      "vaddr = %lx cpa->vaddr = %lx\n", address,
+                      cpa->vaddr);
+               WARN_ON(1);
                return -EINVAL;
+       }
 
        kpte_page = virt_to_page(kpte);
        BUG_ON(PageLRU(kpte_page));
        BUG_ON(PageCompound(kpte_page));
 
        if (level == PG_LEVEL_4K) {
-               pgprot_t new_prot = pte_pgprot(*kpte);
-               pte_t new_pte, old_pte = *kpte;
+               pte_t new_pte;
+               pgprot_t new_prot = pte_pgprot(old_pte);
+               unsigned long pfn = pte_pfn(old_pte);
 
-               pgprot_val(new_prot) &= ~pgprot_val(mask_clr);
-               pgprot_val(new_prot) |= pgprot_val(mask_set);
+               pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
+               pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 
-               new_prot = static_protections(new_prot, address);
+               new_prot = static_protections(new_prot, address, pfn);
 
+               /*
+                * We need to keep the pfn from the existing PTE,
+                * after all we're only going to change it's attributes
+                * not the memory it points to
+                */
                new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
-               BUG_ON(pte_pfn(new_pte) != pte_pfn(old_pte));
+               cpa->pfn = pfn;
+               /*
+                * Do we really change anything ?
+                */
+               if (pte_val(old_pte) != pte_val(new_pte)) {
+                       set_pte_atomic(kpte, new_pte);
+                       cpa->flushtlb = 1;
+               }
+               cpa->numpages = 1;
+               return 0;
+       }
 
-               set_pte_atomic(kpte, new_pte);
-       } else {
-               err = split_large_page(kpte, address);
-               if (!err)
-                       goto repeat;
+       /*
+        * Check, whether we can keep the large page intact
+        * and just change the pte:
+        */
+       do_split = try_preserve_large_page(kpte, address, cpa);
+       /*
+        * When the range fits into the existing large page,
+        * return. cp->numpages and cpa->tlbflush have been updated in
+        * try_large_page:
+        */
+       if (do_split <= 0)
+               return do_split;
+
+       /*
+        * We have to split the large page:
+        */
+       err = split_large_page(kpte, address);
+       if (!err) {
+               cpa->flushtlb = 1;
+               goto repeat;
        }
+
        return err;
 }
 
-/**
- * change_page_attr_addr - Change page table attributes in linear mapping
- * @address: Virtual address in linear mapping.
- * @prot:    New page table attribute (PAGE_*)
- *
- * Change page attributes of a page in the direct mapping. This is a variant
- * of change_page_attr() that also works on memory holes that do not have
- * mem_map entry (pfn_valid() is false).
- *
- * See change_page_attr() documentation for more details.
- *
- * Modules and drivers should use the set_memory_* APIs instead.
- */
-
-#define HIGH_MAP_START __START_KERNEL_map
-#define HIGH_MAP_END   (__START_KERNEL_map + KERNEL_TEXT_SIZE)
+static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 
-static int
-change_page_attr_addr(unsigned long address, pgprot_t mask_set,
-                     pgprot_t mask_clr)
+static int cpa_process_alias(struct cpa_data *cpa)
 {
-       unsigned long phys_addr = __pa(address);
-       unsigned long pfn = phys_addr >> PAGE_SHIFT;
-       int err;
+       struct cpa_data alias_cpa;
+       int ret;
 
-#ifdef CONFIG_X86_64
-       /*
-        * If we are inside the high mapped kernel range, then we
-        * fixup the low mapping first. __va() returns the virtual
-        * address in the linear mapping:
-        */
-       if (within(address, HIGH_MAP_START, HIGH_MAP_END))
-               address = (unsigned long) __va(phys_addr);
-#endif
+       if (cpa->pfn > max_pfn_mapped)
+               return 0;
+
+       alias_cpa = *cpa;
+       alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
 
-       err = __change_page_attr(address, pfn, mask_set, mask_clr);
-       if (err)
-               return err;
+       ret = __change_page_attr_set_clr(&alias_cpa, 0);
 
 #ifdef CONFIG_X86_64
+       if (ret)
+               return ret;
        /*
         * If the physical address is inside the kernel map, we need
         * to touch the high mapped kernel as well:
         */
-       if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
-               /*
-                * Calc the high mapping address. See __phys_addr()
-                * for the non obvious details.
-                */
-               address = phys_addr + HIGH_MAP_START - phys_base;
-               /* Make sure the kernel mappings stay executable */
-               pgprot_val(mask_clr) |= _PAGE_NX;
+       if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
+               return 0;
 
-               /*
-                * Our high aliases are imprecise, because we check
-                * everything between 0 and KERNEL_TEXT_SIZE, so do
-                * not propagate lookup failures back to users:
-                */
-               __change_page_attr(address, pfn, mask_set, mask_clr);
-       }
+       alias_cpa = *cpa;
+       alias_cpa.vaddr =
+               (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
+
+       /*
+        * The high mapping range is imprecise, so ignore the return value.
+        */
+       __change_page_attr_set_clr(&alias_cpa, 0);
 #endif
-       return err;
+       return ret;
 }
 
-static int __change_page_attr_set_clr(unsigned long addr, int numpages,
-                                     pgprot_t mask_set, pgprot_t mask_clr)
+static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 {
-       unsigned int i;
-       int ret;
+       int ret, numpages = cpa->numpages;
+
+       while (numpages) {
+               /*
+                * Store the remaining nr of pages for the large page
+                * preservation check.
+                */
+               cpa->numpages = numpages;
 
-       for (i = 0; i < numpages ; i++, addr += PAGE_SIZE) {
-               ret = change_page_attr_addr(addr, mask_set, mask_clr);
+               ret = __change_page_attr(cpa, checkalias);
                if (ret)
                        return ret;
-       }
 
+               if (checkalias) {
+                       ret = cpa_process_alias(cpa);
+                       if (ret)
+                               return ret;
+               }
+
+               /*
+                * Adjust the number of pages with the result of the
+                * CPA operation. Either a large page has been
+                * preserved or a single page update happened.
+                */
+               BUG_ON(cpa->numpages > numpages);
+               numpages -= cpa->numpages;
+               cpa->vaddr += cpa->numpages * PAGE_SIZE;
+       }
        return 0;
 }
 
+static inline int cache_attr(pgprot_t attr)
+{
+       return pgprot_val(attr) &
+               (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
+}
+
 static int change_page_attr_set_clr(unsigned long addr, int numpages,
                                    pgprot_t mask_set, pgprot_t mask_clr)
 {
-       int ret = __change_page_attr_set_clr(addr, numpages, mask_set,
-                                            mask_clr);
+       struct cpa_data cpa;
+       int ret, cache, checkalias;
+
+       /*
+        * Check, if we are requested to change a not supported
+        * feature:
+        */
+       mask_set = canon_pgprot(mask_set);
+       mask_clr = canon_pgprot(mask_clr);
+       if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
+               return 0;
+
+       /* Ensure we are PAGE_SIZE aligned */
+       if (addr & ~PAGE_MASK) {
+               addr &= PAGE_MASK;
+               /*
+                * People should not be passing in unaligned addresses:
+                */
+               WARN_ON_ONCE(1);
+       }
+
+       cpa.vaddr = addr;
+       cpa.numpages = numpages;
+       cpa.mask_set = mask_set;
+       cpa.mask_clr = mask_clr;
+       cpa.flushtlb = 0;
+
+       /* No alias checking for _NX bit modifications */
+       checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
+
+       ret = __change_page_attr_set_clr(&cpa, checkalias);
+
+       /*
+        * Check whether we really changed something:
+        */
+       if (!cpa.flushtlb)
+               goto out;
+
+       /*
+        * No need to flush, when we did not set any of the caching
+        * attributes:
+        */
+       cache = cache_attr(mask_set);
 
        /*
         * On success we use clflush, when the CPU supports it to
@@ -383,10 +719,12 @@ static int change_page_attr_set_clr(unsigned long addr, int numpages,
         * wbindv):
         */
        if (!ret && cpu_has_clflush)
-               cpa_flush_range(addr, numpages);
+               cpa_flush_range(addr, numpages, cache);
        else
-               cpa_flush_all();
+               cpa_flush_all(cache);
 
+out:
+       cpa_fill_pool();
        return ret;
 }
 
@@ -489,37 +827,26 @@ int set_pages_rw(struct page *page, int numpages)
        return set_memory_rw(addr, numpages);
 }
 
-
-#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_CPA_DEBUG)
-static inline int __change_page_attr_set(unsigned long addr, int numpages,
-                                        pgprot_t mask)
-{
-       return __change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
-}
-
-static inline int __change_page_attr_clear(unsigned long addr, int numpages,
-                                          pgprot_t mask)
-{
-       return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
-}
-#endif
-
 #ifdef CONFIG_DEBUG_PAGEALLOC
 
 static int __set_pages_p(struct page *page, int numpages)
 {
-       unsigned long addr = (unsigned long)page_address(page);
+       struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
+                               .numpages = numpages,
+                               .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
+                               .mask_clr = __pgprot(0)};
 
-       return __change_page_attr_set(addr, numpages,
-                                     __pgprot(_PAGE_PRESENT | _PAGE_RW));
+       return __change_page_attr_set_clr(&cpa, 1);
 }
 
 static int __set_pages_np(struct page *page, int numpages)
 {
-       unsigned long addr = (unsigned long)page_address(page);
+       struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
+                               .numpages = numpages,
+                               .mask_set = __pgprot(0),
+                               .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
 
-       return __change_page_attr_clear(addr, numpages,
-                                       __pgprot(_PAGE_PRESENT));
+       return __change_page_attr_set_clr(&cpa, 1);
 }
 
 void kernel_map_pages(struct page *page, int numpages, int enable)
@@ -538,8 +865,12 @@ void kernel_map_pages(struct page *page, int numpages, int enable)
                return;
 
        /*
-        * The return value is ignored - the calls cannot fail,
-        * large pages are disabled at boot time:
+        * The return value is ignored as the calls cannot fail.
+        * Large pages are kept enabled at boot time, and are
+        * split up quickly with DEBUG_PAGEALLOC. If a splitup
+        * fails here (due to temporary memory shortage) no damage
+        * is done because we just keep the largepage intact up
+        * to the next attempt when it will likely be split up:
         */
        if (enable)
                __set_pages_p(page, numpages);
@@ -551,6 +882,12 @@ void kernel_map_pages(struct page *page, int numpages, int enable)
         * but that can deadlock->flush only current cpu:
         */
        __flush_tlb_all();
+
+       /*
+        * Try to refill the page pool here. We can do this only after
+        * the tlb flush.
+        */
+       cpa_fill_pool();
 }
 #endif