Merge tag 'drm-misc-next-fixes-2019-11-13' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125                                 unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137
138 static bool largepages_enabled = true;
139
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147                 unsigned long start, unsigned long end, bool blockable)
148 {
149         return 0;
150 }
151
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154         if (pfn_valid(pfn))
155                 return PageReserved(pfn_to_page(pfn));
156
157         return true;
158 }
159
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165         int cpu = get_cpu();
166         preempt_notifier_register(&vcpu->preempt_notifier);
167         kvm_arch_vcpu_load(vcpu, cpu);
168         put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174         preempt_disable();
175         kvm_arch_vcpu_put(vcpu);
176         preempt_notifier_unregister(&vcpu->preempt_notifier);
177         preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185
186         /*
187          * We need to wait for the VCPU to reenable interrupts and get out of
188          * READING_SHADOW_PAGE_TABLES mode.
189          */
190         if (req & KVM_REQUEST_WAIT)
191                 return mode != OUTSIDE_GUEST_MODE;
192
193         /*
194          * Need to kick a running VCPU, but otherwise there is nothing to do.
195          */
196         return mode == IN_GUEST_MODE;
197 }
198
199 static void ack_flush(void *_completed)
200 {
201 }
202
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205         if (unlikely(!cpus))
206                 cpus = cpu_online_mask;
207
208         if (cpumask_empty(cpus))
209                 return false;
210
211         smp_call_function_many(cpus, ack_flush, NULL, wait);
212         return true;
213 }
214
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218         int i, cpu, me;
219         struct kvm_vcpu *vcpu;
220         bool called;
221
222         me = get_cpu();
223
224         kvm_for_each_vcpu(i, vcpu, kvm) {
225                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226                         continue;
227
228                 kvm_make_request(req, vcpu);
229                 cpu = vcpu->cpu;
230
231                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232                         continue;
233
234                 if (tmp != NULL && cpu != -1 && cpu != me &&
235                     kvm_request_needs_ipi(vcpu, req))
236                         __cpumask_set_cpu(cpu, tmp);
237         }
238
239         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240         put_cpu();
241
242         return called;
243 }
244
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247         cpumask_var_t cpus;
248         bool called;
249
250         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251
252         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253
254         free_cpumask_var(cpus);
255         return called;
256 }
257
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261         /*
262          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263          * kvm_make_all_cpus_request.
264          */
265         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266
267         /*
268          * We want to publish modifications to the page tables before reading
269          * mode. Pairs with a memory barrier in arch-specific code.
270          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271          * and smp_mb in walk_shadow_page_lockless_begin/end.
272          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273          *
274          * There is already an smp_mb__after_atomic() before
275          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276          * barrier here.
277          */
278         if (!kvm_arch_flush_remote_tlb(kvm)
279             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280                 ++kvm->stat.remote_tlb_flush;
281         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293         struct page *page;
294         int r;
295
296         mutex_init(&vcpu->mutex);
297         vcpu->cpu = -1;
298         vcpu->kvm = kvm;
299         vcpu->vcpu_id = id;
300         vcpu->pid = NULL;
301         init_swait_queue_head(&vcpu->wq);
302         kvm_async_pf_vcpu_init(vcpu);
303
304         vcpu->pre_pcpu = -1;
305         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306
307         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308         if (!page) {
309                 r = -ENOMEM;
310                 goto fail;
311         }
312         vcpu->run = page_address(page);
313
314         kvm_vcpu_set_in_spin_loop(vcpu, false);
315         kvm_vcpu_set_dy_eligible(vcpu, false);
316         vcpu->preempted = false;
317         vcpu->ready = false;
318
319         r = kvm_arch_vcpu_init(vcpu);
320         if (r < 0)
321                 goto fail_free_run;
322         return 0;
323
324 fail_free_run:
325         free_page((unsigned long)vcpu->run);
326 fail:
327         return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333         /*
334          * no need for rcu_read_lock as VCPU_RUN is the only place that
335          * will change the vcpu->pid pointer and on uninit all file
336          * descriptors are already gone.
337          */
338         put_pid(rcu_dereference_protected(vcpu->pid, 1));
339         kvm_arch_vcpu_uninit(vcpu);
340         free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347         return container_of(mn, struct kvm, mmu_notifier);
348 }
349
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351                                         struct mm_struct *mm,
352                                         unsigned long address,
353                                         pte_t pte)
354 {
355         struct kvm *kvm = mmu_notifier_to_kvm(mn);
356         int idx;
357
358         idx = srcu_read_lock(&kvm->srcu);
359         spin_lock(&kvm->mmu_lock);
360         kvm->mmu_notifier_seq++;
361
362         if (kvm_set_spte_hva(kvm, address, pte))
363                 kvm_flush_remote_tlbs(kvm);
364
365         spin_unlock(&kvm->mmu_lock);
366         srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370                                         const struct mmu_notifier_range *range)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373         int need_tlb_flush = 0, idx;
374         int ret;
375
376         idx = srcu_read_lock(&kvm->srcu);
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * The count increase must become visible at unlock time as no
380          * spte can be established without taking the mmu_lock and
381          * count is also read inside the mmu_lock critical section.
382          */
383         kvm->mmu_notifier_count++;
384         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385         need_tlb_flush |= kvm->tlbs_dirty;
386         /* we've to flush the tlb before the pages can be freed */
387         if (need_tlb_flush)
388                 kvm_flush_remote_tlbs(kvm);
389
390         spin_unlock(&kvm->mmu_lock);
391
392         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393                                         range->end,
394                                         mmu_notifier_range_blockable(range));
395
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return ret;
399 }
400
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402                                         const struct mmu_notifier_range *range)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * This sequence increase will notify the kvm page fault that
409          * the page that is going to be mapped in the spte could have
410          * been freed.
411          */
412         kvm->mmu_notifier_seq++;
413         smp_wmb();
414         /*
415          * The above sequence increase must be visible before the
416          * below count decrease, which is ensured by the smp_wmb above
417          * in conjunction with the smp_rmb in mmu_notifier_retry().
418          */
419         kvm->mmu_notifier_count--;
420         spin_unlock(&kvm->mmu_lock);
421
422         BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426                                               struct mm_struct *mm,
427                                               unsigned long start,
428                                               unsigned long end)
429 {
430         struct kvm *kvm = mmu_notifier_to_kvm(mn);
431         int young, idx;
432
433         idx = srcu_read_lock(&kvm->srcu);
434         spin_lock(&kvm->mmu_lock);
435
436         young = kvm_age_hva(kvm, start, end);
437         if (young)
438                 kvm_flush_remote_tlbs(kvm);
439
440         spin_unlock(&kvm->mmu_lock);
441         srcu_read_unlock(&kvm->srcu, idx);
442
443         return young;
444 }
445
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447                                         struct mm_struct *mm,
448                                         unsigned long start,
449                                         unsigned long end)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         /*
457          * Even though we do not flush TLB, this will still adversely
458          * affect performance on pre-Haswell Intel EPT, where there is
459          * no EPT Access Bit to clear so that we have to tear down EPT
460          * tables instead. If we find this unacceptable, we can always
461          * add a parameter to kvm_age_hva so that it effectively doesn't
462          * do anything on clear_young.
463          *
464          * Also note that currently we never issue secondary TLB flushes
465          * from clear_young, leaving this job up to the regular system
466          * cadence. If we find this inaccurate, we might come up with a
467          * more sophisticated heuristic later.
468          */
469         young = kvm_age_hva(kvm, start, end);
470         spin_unlock(&kvm->mmu_lock);
471         srcu_read_unlock(&kvm->srcu, idx);
472
473         return young;
474 }
475
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477                                        struct mm_struct *mm,
478                                        unsigned long address)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         young = kvm_test_age_hva(kvm, address);
486         spin_unlock(&kvm->mmu_lock);
487         srcu_read_unlock(&kvm->srcu, idx);
488
489         return young;
490 }
491
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493                                      struct mm_struct *mm)
494 {
495         struct kvm *kvm = mmu_notifier_to_kvm(mn);
496         int idx;
497
498         idx = srcu_read_lock(&kvm->srcu);
499         kvm_arch_flush_shadow_all(kvm);
500         srcu_read_unlock(&kvm->srcu, idx);
501 }
502
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
506         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
507         .clear_young            = kvm_mmu_notifier_clear_young,
508         .test_young             = kvm_mmu_notifier_test_young,
509         .change_pte             = kvm_mmu_notifier_change_pte,
510         .release                = kvm_mmu_notifier_release,
511 };
512
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523         return 0;
524 }
525
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530         int i;
531         struct kvm_memslots *slots;
532
533         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534         if (!slots)
535                 return NULL;
536
537         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538                 slots->id_to_index[i] = slots->memslots[i].id = i;
539
540         return slots;
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545         if (!memslot->dirty_bitmap)
546                 return;
547
548         kvfree(memslot->dirty_bitmap);
549         memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556                               struct kvm_memory_slot *dont)
557 {
558         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559                 kvm_destroy_dirty_bitmap(free);
560
561         kvm_arch_free_memslot(kvm, free, dont);
562
563         free->npages = 0;
564 }
565
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568         struct kvm_memory_slot *memslot;
569
570         if (!slots)
571                 return;
572
573         kvm_for_each_memslot(memslot, slots)
574                 kvm_free_memslot(kvm, memslot, NULL);
575
576         kvfree(slots);
577 }
578
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581         int i;
582
583         if (!kvm->debugfs_dentry)
584                 return;
585
586         debugfs_remove_recursive(kvm->debugfs_dentry);
587
588         if (kvm->debugfs_stat_data) {
589                 for (i = 0; i < kvm_debugfs_num_entries; i++)
590                         kfree(kvm->debugfs_stat_data[i]);
591                 kfree(kvm->debugfs_stat_data);
592         }
593 }
594
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597         char dir_name[ITOA_MAX_LEN * 2];
598         struct kvm_stat_data *stat_data;
599         struct kvm_stats_debugfs_item *p;
600
601         if (!debugfs_initialized())
602                 return 0;
603
604         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606
607         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608                                          sizeof(*kvm->debugfs_stat_data),
609                                          GFP_KERNEL_ACCOUNT);
610         if (!kvm->debugfs_stat_data)
611                 return -ENOMEM;
612
613         for (p = debugfs_entries; p->name; p++) {
614                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615                 if (!stat_data)
616                         return -ENOMEM;
617
618                 stat_data->kvm = kvm;
619                 stat_data->offset = p->offset;
620                 stat_data->mode = p->mode ? p->mode : 0644;
621                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
623                                     stat_data, stat_fops_per_vm[p->kind]);
624         }
625         return 0;
626 }
627
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630         struct kvm *kvm = kvm_arch_alloc_vm();
631         int r = -ENOMEM;
632         int i;
633
634         if (!kvm)
635                 return ERR_PTR(-ENOMEM);
636
637         spin_lock_init(&kvm->mmu_lock);
638         mmgrab(current->mm);
639         kvm->mm = current->mm;
640         kvm_eventfd_init(kvm);
641         mutex_init(&kvm->lock);
642         mutex_init(&kvm->irq_lock);
643         mutex_init(&kvm->slots_lock);
644         INIT_LIST_HEAD(&kvm->devices);
645
646         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
647
648         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
649                 struct kvm_memslots *slots = kvm_alloc_memslots();
650
651                 if (!slots)
652                         goto out_err_no_arch_destroy_vm;
653                 /* Generations must be different for each address space. */
654                 slots->generation = i;
655                 rcu_assign_pointer(kvm->memslots[i], slots);
656         }
657
658         for (i = 0; i < KVM_NR_BUSES; i++) {
659                 rcu_assign_pointer(kvm->buses[i],
660                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
661                 if (!kvm->buses[i])
662                         goto out_err_no_arch_destroy_vm;
663         }
664
665         refcount_set(&kvm->users_count, 1);
666         r = kvm_arch_init_vm(kvm, type);
667         if (r)
668                 goto out_err_no_arch_destroy_vm;
669
670         r = hardware_enable_all();
671         if (r)
672                 goto out_err_no_disable;
673
674 #ifdef CONFIG_HAVE_KVM_IRQFD
675         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
676 #endif
677
678         if (init_srcu_struct(&kvm->srcu))
679                 goto out_err_no_srcu;
680         if (init_srcu_struct(&kvm->irq_srcu))
681                 goto out_err_no_irq_srcu;
682
683         r = kvm_init_mmu_notifier(kvm);
684         if (r)
685                 goto out_err;
686
687         mutex_lock(&kvm_lock);
688         list_add(&kvm->vm_list, &vm_list);
689         mutex_unlock(&kvm_lock);
690
691         preempt_notifier_inc();
692
693         return kvm;
694
695 out_err:
696         cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698         cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700         hardware_disable_all();
701 out_err_no_disable:
702         kvm_arch_destroy_vm(kvm);
703         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
704 out_err_no_arch_destroy_vm:
705         for (i = 0; i < KVM_NR_BUSES; i++)
706                 kfree(kvm_get_bus(kvm, i));
707         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
708                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
709         kvm_arch_free_vm(kvm);
710         mmdrop(current->mm);
711         return ERR_PTR(r);
712 }
713
714 static void kvm_destroy_devices(struct kvm *kvm)
715 {
716         struct kvm_device *dev, *tmp;
717
718         /*
719          * We do not need to take the kvm->lock here, because nobody else
720          * has a reference to the struct kvm at this point and therefore
721          * cannot access the devices list anyhow.
722          */
723         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
724                 list_del(&dev->vm_node);
725                 dev->ops->destroy(dev);
726         }
727 }
728
729 static void kvm_destroy_vm(struct kvm *kvm)
730 {
731         int i;
732         struct mm_struct *mm = kvm->mm;
733
734         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
735         kvm_destroy_vm_debugfs(kvm);
736         kvm_arch_sync_events(kvm);
737         mutex_lock(&kvm_lock);
738         list_del(&kvm->vm_list);
739         mutex_unlock(&kvm_lock);
740         kvm_free_irq_routing(kvm);
741         for (i = 0; i < KVM_NR_BUSES; i++) {
742                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
743
744                 if (bus)
745                         kvm_io_bus_destroy(bus);
746                 kvm->buses[i] = NULL;
747         }
748         kvm_coalesced_mmio_free(kvm);
749 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
750         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
751 #else
752         kvm_arch_flush_shadow_all(kvm);
753 #endif
754         kvm_arch_destroy_vm(kvm);
755         kvm_destroy_devices(kvm);
756         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
757                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
758         cleanup_srcu_struct(&kvm->irq_srcu);
759         cleanup_srcu_struct(&kvm->srcu);
760         kvm_arch_free_vm(kvm);
761         preempt_notifier_dec();
762         hardware_disable_all();
763         mmdrop(mm);
764 }
765
766 void kvm_get_kvm(struct kvm *kvm)
767 {
768         refcount_inc(&kvm->users_count);
769 }
770 EXPORT_SYMBOL_GPL(kvm_get_kvm);
771
772 void kvm_put_kvm(struct kvm *kvm)
773 {
774         if (refcount_dec_and_test(&kvm->users_count))
775                 kvm_destroy_vm(kvm);
776 }
777 EXPORT_SYMBOL_GPL(kvm_put_kvm);
778
779
780 static int kvm_vm_release(struct inode *inode, struct file *filp)
781 {
782         struct kvm *kvm = filp->private_data;
783
784         kvm_irqfd_release(kvm);
785
786         kvm_put_kvm(kvm);
787         return 0;
788 }
789
790 /*
791  * Allocation size is twice as large as the actual dirty bitmap size.
792  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
793  */
794 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
795 {
796         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
797
798         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
799         if (!memslot->dirty_bitmap)
800                 return -ENOMEM;
801
802         return 0;
803 }
804
805 /*
806  * Insert memslot and re-sort memslots based on their GFN,
807  * so binary search could be used to lookup GFN.
808  * Sorting algorithm takes advantage of having initially
809  * sorted array and known changed memslot position.
810  */
811 static void update_memslots(struct kvm_memslots *slots,
812                             struct kvm_memory_slot *new,
813                             enum kvm_mr_change change)
814 {
815         int id = new->id;
816         int i = slots->id_to_index[id];
817         struct kvm_memory_slot *mslots = slots->memslots;
818
819         WARN_ON(mslots[i].id != id);
820         switch (change) {
821         case KVM_MR_CREATE:
822                 slots->used_slots++;
823                 WARN_ON(mslots[i].npages || !new->npages);
824                 break;
825         case KVM_MR_DELETE:
826                 slots->used_slots--;
827                 WARN_ON(new->npages || !mslots[i].npages);
828                 break;
829         default:
830                 break;
831         }
832
833         while (i < KVM_MEM_SLOTS_NUM - 1 &&
834                new->base_gfn <= mslots[i + 1].base_gfn) {
835                 if (!mslots[i + 1].npages)
836                         break;
837                 mslots[i] = mslots[i + 1];
838                 slots->id_to_index[mslots[i].id] = i;
839                 i++;
840         }
841
842         /*
843          * The ">=" is needed when creating a slot with base_gfn == 0,
844          * so that it moves before all those with base_gfn == npages == 0.
845          *
846          * On the other hand, if new->npages is zero, the above loop has
847          * already left i pointing to the beginning of the empty part of
848          * mslots, and the ">=" would move the hole backwards in this
849          * case---which is wrong.  So skip the loop when deleting a slot.
850          */
851         if (new->npages) {
852                 while (i > 0 &&
853                        new->base_gfn >= mslots[i - 1].base_gfn) {
854                         mslots[i] = mslots[i - 1];
855                         slots->id_to_index[mslots[i].id] = i;
856                         i--;
857                 }
858         } else
859                 WARN_ON_ONCE(i != slots->used_slots);
860
861         mslots[i] = *new;
862         slots->id_to_index[mslots[i].id] = i;
863 }
864
865 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
866 {
867         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
868
869 #ifdef __KVM_HAVE_READONLY_MEM
870         valid_flags |= KVM_MEM_READONLY;
871 #endif
872
873         if (mem->flags & ~valid_flags)
874                 return -EINVAL;
875
876         return 0;
877 }
878
879 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
880                 int as_id, struct kvm_memslots *slots)
881 {
882         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
883         u64 gen = old_memslots->generation;
884
885         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
886         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
887
888         rcu_assign_pointer(kvm->memslots[as_id], slots);
889         synchronize_srcu_expedited(&kvm->srcu);
890
891         /*
892          * Increment the new memslot generation a second time, dropping the
893          * update in-progress flag and incrementing then generation based on
894          * the number of address spaces.  This provides a unique and easily
895          * identifiable generation number while the memslots are in flux.
896          */
897         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
898
899         /*
900          * Generations must be unique even across address spaces.  We do not need
901          * a global counter for that, instead the generation space is evenly split
902          * across address spaces.  For example, with two address spaces, address
903          * space 0 will use generations 0, 2, 4, ... while address space 1 will
904          * use generations 1, 3, 5, ...
905          */
906         gen += KVM_ADDRESS_SPACE_NUM;
907
908         kvm_arch_memslots_updated(kvm, gen);
909
910         slots->generation = gen;
911
912         return old_memslots;
913 }
914
915 /*
916  * Allocate some memory and give it an address in the guest physical address
917  * space.
918  *
919  * Discontiguous memory is allowed, mostly for framebuffers.
920  *
921  * Must be called holding kvm->slots_lock for write.
922  */
923 int __kvm_set_memory_region(struct kvm *kvm,
924                             const struct kvm_userspace_memory_region *mem)
925 {
926         int r;
927         gfn_t base_gfn;
928         unsigned long npages;
929         struct kvm_memory_slot *slot;
930         struct kvm_memory_slot old, new;
931         struct kvm_memslots *slots = NULL, *old_memslots;
932         int as_id, id;
933         enum kvm_mr_change change;
934
935         r = check_memory_region_flags(mem);
936         if (r)
937                 goto out;
938
939         r = -EINVAL;
940         as_id = mem->slot >> 16;
941         id = (u16)mem->slot;
942
943         /* General sanity checks */
944         if (mem->memory_size & (PAGE_SIZE - 1))
945                 goto out;
946         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
947                 goto out;
948         /* We can read the guest memory with __xxx_user() later on. */
949         if ((id < KVM_USER_MEM_SLOTS) &&
950             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
951              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
952                         mem->memory_size)))
953                 goto out;
954         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
955                 goto out;
956         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
957                 goto out;
958
959         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
960         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
961         npages = mem->memory_size >> PAGE_SHIFT;
962
963         if (npages > KVM_MEM_MAX_NR_PAGES)
964                 goto out;
965
966         new = old = *slot;
967
968         new.id = id;
969         new.base_gfn = base_gfn;
970         new.npages = npages;
971         new.flags = mem->flags;
972
973         if (npages) {
974                 if (!old.npages)
975                         change = KVM_MR_CREATE;
976                 else { /* Modify an existing slot. */
977                         if ((mem->userspace_addr != old.userspace_addr) ||
978                             (npages != old.npages) ||
979                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
980                                 goto out;
981
982                         if (base_gfn != old.base_gfn)
983                                 change = KVM_MR_MOVE;
984                         else if (new.flags != old.flags)
985                                 change = KVM_MR_FLAGS_ONLY;
986                         else { /* Nothing to change. */
987                                 r = 0;
988                                 goto out;
989                         }
990                 }
991         } else {
992                 if (!old.npages)
993                         goto out;
994
995                 change = KVM_MR_DELETE;
996                 new.base_gfn = 0;
997                 new.flags = 0;
998         }
999
1000         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1001                 /* Check for overlaps */
1002                 r = -EEXIST;
1003                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1004                         if (slot->id == id)
1005                                 continue;
1006                         if (!((base_gfn + npages <= slot->base_gfn) ||
1007                               (base_gfn >= slot->base_gfn + slot->npages)))
1008                                 goto out;
1009                 }
1010         }
1011
1012         /* Free page dirty bitmap if unneeded */
1013         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1014                 new.dirty_bitmap = NULL;
1015
1016         r = -ENOMEM;
1017         if (change == KVM_MR_CREATE) {
1018                 new.userspace_addr = mem->userspace_addr;
1019
1020                 if (kvm_arch_create_memslot(kvm, &new, npages))
1021                         goto out_free;
1022         }
1023
1024         /* Allocate page dirty bitmap if needed */
1025         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1026                 if (kvm_create_dirty_bitmap(&new) < 0)
1027                         goto out_free;
1028         }
1029
1030         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1031         if (!slots)
1032                 goto out_free;
1033         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1034
1035         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1036                 slot = id_to_memslot(slots, id);
1037                 slot->flags |= KVM_MEMSLOT_INVALID;
1038
1039                 old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041                 /* From this point no new shadow pages pointing to a deleted,
1042                  * or moved, memslot will be created.
1043                  *
1044                  * validation of sp->gfn happens in:
1045                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1046                  *      - kvm_is_visible_gfn (mmu_check_roots)
1047                  */
1048                 kvm_arch_flush_shadow_memslot(kvm, slot);
1049
1050                 /*
1051                  * We can re-use the old_memslots from above, the only difference
1052                  * from the currently installed memslots is the invalid flag.  This
1053                  * will get overwritten by update_memslots anyway.
1054                  */
1055                 slots = old_memslots;
1056         }
1057
1058         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1059         if (r)
1060                 goto out_slots;
1061
1062         /* actual memory is freed via old in kvm_free_memslot below */
1063         if (change == KVM_MR_DELETE) {
1064                 new.dirty_bitmap = NULL;
1065                 memset(&new.arch, 0, sizeof(new.arch));
1066         }
1067
1068         update_memslots(slots, &new, change);
1069         old_memslots = install_new_memslots(kvm, as_id, slots);
1070
1071         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1072
1073         kvm_free_memslot(kvm, &old, &new);
1074         kvfree(old_memslots);
1075         return 0;
1076
1077 out_slots:
1078         kvfree(slots);
1079 out_free:
1080         kvm_free_memslot(kvm, &new, &old);
1081 out:
1082         return r;
1083 }
1084 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1085
1086 int kvm_set_memory_region(struct kvm *kvm,
1087                           const struct kvm_userspace_memory_region *mem)
1088 {
1089         int r;
1090
1091         mutex_lock(&kvm->slots_lock);
1092         r = __kvm_set_memory_region(kvm, mem);
1093         mutex_unlock(&kvm->slots_lock);
1094         return r;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1097
1098 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1099                                           struct kvm_userspace_memory_region *mem)
1100 {
1101         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1102                 return -EINVAL;
1103
1104         return kvm_set_memory_region(kvm, mem);
1105 }
1106
1107 int kvm_get_dirty_log(struct kvm *kvm,
1108                         struct kvm_dirty_log *log, int *is_dirty)
1109 {
1110         struct kvm_memslots *slots;
1111         struct kvm_memory_slot *memslot;
1112         int i, as_id, id;
1113         unsigned long n;
1114         unsigned long any = 0;
1115
1116         as_id = log->slot >> 16;
1117         id = (u16)log->slot;
1118         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1119                 return -EINVAL;
1120
1121         slots = __kvm_memslots(kvm, as_id);
1122         memslot = id_to_memslot(slots, id);
1123         if (!memslot->dirty_bitmap)
1124                 return -ENOENT;
1125
1126         n = kvm_dirty_bitmap_bytes(memslot);
1127
1128         for (i = 0; !any && i < n/sizeof(long); ++i)
1129                 any = memslot->dirty_bitmap[i];
1130
1131         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1132                 return -EFAULT;
1133
1134         if (any)
1135                 *is_dirty = 1;
1136         return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1139
1140 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1141 /**
1142  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1143  *      and reenable dirty page tracking for the corresponding pages.
1144  * @kvm:        pointer to kvm instance
1145  * @log:        slot id and address to which we copy the log
1146  * @flush:      true if TLB flush is needed by caller
1147  *
1148  * We need to keep it in mind that VCPU threads can write to the bitmap
1149  * concurrently. So, to avoid losing track of dirty pages we keep the
1150  * following order:
1151  *
1152  *    1. Take a snapshot of the bit and clear it if needed.
1153  *    2. Write protect the corresponding page.
1154  *    3. Copy the snapshot to the userspace.
1155  *    4. Upon return caller flushes TLB's if needed.
1156  *
1157  * Between 2 and 4, the guest may write to the page using the remaining TLB
1158  * entry.  This is not a problem because the page is reported dirty using
1159  * the snapshot taken before and step 4 ensures that writes done after
1160  * exiting to userspace will be logged for the next call.
1161  *
1162  */
1163 int kvm_get_dirty_log_protect(struct kvm *kvm,
1164                         struct kvm_dirty_log *log, bool *flush)
1165 {
1166         struct kvm_memslots *slots;
1167         struct kvm_memory_slot *memslot;
1168         int i, as_id, id;
1169         unsigned long n;
1170         unsigned long *dirty_bitmap;
1171         unsigned long *dirty_bitmap_buffer;
1172
1173         as_id = log->slot >> 16;
1174         id = (u16)log->slot;
1175         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1176                 return -EINVAL;
1177
1178         slots = __kvm_memslots(kvm, as_id);
1179         memslot = id_to_memslot(slots, id);
1180
1181         dirty_bitmap = memslot->dirty_bitmap;
1182         if (!dirty_bitmap)
1183                 return -ENOENT;
1184
1185         n = kvm_dirty_bitmap_bytes(memslot);
1186         *flush = false;
1187         if (kvm->manual_dirty_log_protect) {
1188                 /*
1189                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1190                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1191                  * is some code duplication between this function and
1192                  * kvm_get_dirty_log, but hopefully all architecture
1193                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1194                  * can be eliminated.
1195                  */
1196                 dirty_bitmap_buffer = dirty_bitmap;
1197         } else {
1198                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1199                 memset(dirty_bitmap_buffer, 0, n);
1200
1201                 spin_lock(&kvm->mmu_lock);
1202                 for (i = 0; i < n / sizeof(long); i++) {
1203                         unsigned long mask;
1204                         gfn_t offset;
1205
1206                         if (!dirty_bitmap[i])
1207                                 continue;
1208
1209                         *flush = true;
1210                         mask = xchg(&dirty_bitmap[i], 0);
1211                         dirty_bitmap_buffer[i] = mask;
1212
1213                         offset = i * BITS_PER_LONG;
1214                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1215                                                                 offset, mask);
1216                 }
1217                 spin_unlock(&kvm->mmu_lock);
1218         }
1219
1220         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1221                 return -EFAULT;
1222         return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1225
1226 /**
1227  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1228  *      and reenable dirty page tracking for the corresponding pages.
1229  * @kvm:        pointer to kvm instance
1230  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1231  * @flush:      true if TLB flush is needed by caller
1232  */
1233 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1234                                 struct kvm_clear_dirty_log *log, bool *flush)
1235 {
1236         struct kvm_memslots *slots;
1237         struct kvm_memory_slot *memslot;
1238         int as_id, id;
1239         gfn_t offset;
1240         unsigned long i, n;
1241         unsigned long *dirty_bitmap;
1242         unsigned long *dirty_bitmap_buffer;
1243
1244         as_id = log->slot >> 16;
1245         id = (u16)log->slot;
1246         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1247                 return -EINVAL;
1248
1249         if (log->first_page & 63)
1250                 return -EINVAL;
1251
1252         slots = __kvm_memslots(kvm, as_id);
1253         memslot = id_to_memslot(slots, id);
1254
1255         dirty_bitmap = memslot->dirty_bitmap;
1256         if (!dirty_bitmap)
1257                 return -ENOENT;
1258
1259         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1260
1261         if (log->first_page > memslot->npages ||
1262             log->num_pages > memslot->npages - log->first_page ||
1263             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1264             return -EINVAL;
1265
1266         *flush = false;
1267         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1268         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1269                 return -EFAULT;
1270
1271         spin_lock(&kvm->mmu_lock);
1272         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1273                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1274              i++, offset += BITS_PER_LONG) {
1275                 unsigned long mask = *dirty_bitmap_buffer++;
1276                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1277                 if (!mask)
1278                         continue;
1279
1280                 mask &= atomic_long_fetch_andnot(mask, p);
1281
1282                 /*
1283                  * mask contains the bits that really have been cleared.  This
1284                  * never includes any bits beyond the length of the memslot (if
1285                  * the length is not aligned to 64 pages), therefore it is not
1286                  * a problem if userspace sets them in log->dirty_bitmap.
1287                 */
1288                 if (mask) {
1289                         *flush = true;
1290                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1291                                                                 offset, mask);
1292                 }
1293         }
1294         spin_unlock(&kvm->mmu_lock);
1295
1296         return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1299 #endif
1300
1301 bool kvm_largepages_enabled(void)
1302 {
1303         return largepages_enabled;
1304 }
1305
1306 void kvm_disable_largepages(void)
1307 {
1308         largepages_enabled = false;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1311
1312 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1313 {
1314         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1317
1318 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1319 {
1320         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1321 }
1322
1323 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1324 {
1325         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1326
1327         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1328               memslot->flags & KVM_MEMSLOT_INVALID)
1329                 return false;
1330
1331         return true;
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1334
1335 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1336 {
1337         struct vm_area_struct *vma;
1338         unsigned long addr, size;
1339
1340         size = PAGE_SIZE;
1341
1342         addr = gfn_to_hva(kvm, gfn);
1343         if (kvm_is_error_hva(addr))
1344                 return PAGE_SIZE;
1345
1346         down_read(&current->mm->mmap_sem);
1347         vma = find_vma(current->mm, addr);
1348         if (!vma)
1349                 goto out;
1350
1351         size = vma_kernel_pagesize(vma);
1352
1353 out:
1354         up_read(&current->mm->mmap_sem);
1355
1356         return size;
1357 }
1358
1359 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1360 {
1361         return slot->flags & KVM_MEM_READONLY;
1362 }
1363
1364 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1365                                        gfn_t *nr_pages, bool write)
1366 {
1367         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1368                 return KVM_HVA_ERR_BAD;
1369
1370         if (memslot_is_readonly(slot) && write)
1371                 return KVM_HVA_ERR_RO_BAD;
1372
1373         if (nr_pages)
1374                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1375
1376         return __gfn_to_hva_memslot(slot, gfn);
1377 }
1378
1379 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1380                                      gfn_t *nr_pages)
1381 {
1382         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1383 }
1384
1385 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1386                                         gfn_t gfn)
1387 {
1388         return gfn_to_hva_many(slot, gfn, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1391
1392 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1393 {
1394         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1395 }
1396 EXPORT_SYMBOL_GPL(gfn_to_hva);
1397
1398 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1399 {
1400         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1403
1404 /*
1405  * Return the hva of a @gfn and the R/W attribute if possible.
1406  *
1407  * @slot: the kvm_memory_slot which contains @gfn
1408  * @gfn: the gfn to be translated
1409  * @writable: used to return the read/write attribute of the @slot if the hva
1410  * is valid and @writable is not NULL
1411  */
1412 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1413                                       gfn_t gfn, bool *writable)
1414 {
1415         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1416
1417         if (!kvm_is_error_hva(hva) && writable)
1418                 *writable = !memslot_is_readonly(slot);
1419
1420         return hva;
1421 }
1422
1423 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1424 {
1425         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1426
1427         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1428 }
1429
1430 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1431 {
1432         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1433
1434         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1435 }
1436
1437 static inline int check_user_page_hwpoison(unsigned long addr)
1438 {
1439         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1440
1441         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1442         return rc == -EHWPOISON;
1443 }
1444
1445 /*
1446  * The fast path to get the writable pfn which will be stored in @pfn,
1447  * true indicates success, otherwise false is returned.  It's also the
1448  * only part that runs if we can are in atomic context.
1449  */
1450 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1451                             bool *writable, kvm_pfn_t *pfn)
1452 {
1453         struct page *page[1];
1454         int npages;
1455
1456         /*
1457          * Fast pin a writable pfn only if it is a write fault request
1458          * or the caller allows to map a writable pfn for a read fault
1459          * request.
1460          */
1461         if (!(write_fault || writable))
1462                 return false;
1463
1464         npages = __get_user_pages_fast(addr, 1, 1, page);
1465         if (npages == 1) {
1466                 *pfn = page_to_pfn(page[0]);
1467
1468                 if (writable)
1469                         *writable = true;
1470                 return true;
1471         }
1472
1473         return false;
1474 }
1475
1476 /*
1477  * The slow path to get the pfn of the specified host virtual address,
1478  * 1 indicates success, -errno is returned if error is detected.
1479  */
1480 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1481                            bool *writable, kvm_pfn_t *pfn)
1482 {
1483         unsigned int flags = FOLL_HWPOISON;
1484         struct page *page;
1485         int npages = 0;
1486
1487         might_sleep();
1488
1489         if (writable)
1490                 *writable = write_fault;
1491
1492         if (write_fault)
1493                 flags |= FOLL_WRITE;
1494         if (async)
1495                 flags |= FOLL_NOWAIT;
1496
1497         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1498         if (npages != 1)
1499                 return npages;
1500
1501         /* map read fault as writable if possible */
1502         if (unlikely(!write_fault) && writable) {
1503                 struct page *wpage;
1504
1505                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1506                         *writable = true;
1507                         put_page(page);
1508                         page = wpage;
1509                 }
1510         }
1511         *pfn = page_to_pfn(page);
1512         return npages;
1513 }
1514
1515 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1516 {
1517         if (unlikely(!(vma->vm_flags & VM_READ)))
1518                 return false;
1519
1520         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1521                 return false;
1522
1523         return true;
1524 }
1525
1526 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1527                                unsigned long addr, bool *async,
1528                                bool write_fault, bool *writable,
1529                                kvm_pfn_t *p_pfn)
1530 {
1531         unsigned long pfn;
1532         int r;
1533
1534         r = follow_pfn(vma, addr, &pfn);
1535         if (r) {
1536                 /*
1537                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1538                  * not call the fault handler, so do it here.
1539                  */
1540                 bool unlocked = false;
1541                 r = fixup_user_fault(current, current->mm, addr,
1542                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1543                                      &unlocked);
1544                 if (unlocked)
1545                         return -EAGAIN;
1546                 if (r)
1547                         return r;
1548
1549                 r = follow_pfn(vma, addr, &pfn);
1550                 if (r)
1551                         return r;
1552
1553         }
1554
1555         if (writable)
1556                 *writable = true;
1557
1558         /*
1559          * Get a reference here because callers of *hva_to_pfn* and
1560          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1561          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1562          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1563          * simply do nothing for reserved pfns.
1564          *
1565          * Whoever called remap_pfn_range is also going to call e.g.
1566          * unmap_mapping_range before the underlying pages are freed,
1567          * causing a call to our MMU notifier.
1568          */ 
1569         kvm_get_pfn(pfn);
1570
1571         *p_pfn = pfn;
1572         return 0;
1573 }
1574
1575 /*
1576  * Pin guest page in memory and return its pfn.
1577  * @addr: host virtual address which maps memory to the guest
1578  * @atomic: whether this function can sleep
1579  * @async: whether this function need to wait IO complete if the
1580  *         host page is not in the memory
1581  * @write_fault: whether we should get a writable host page
1582  * @writable: whether it allows to map a writable host page for !@write_fault
1583  *
1584  * The function will map a writable host page for these two cases:
1585  * 1): @write_fault = true
1586  * 2): @write_fault = false && @writable, @writable will tell the caller
1587  *     whether the mapping is writable.
1588  */
1589 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1590                         bool write_fault, bool *writable)
1591 {
1592         struct vm_area_struct *vma;
1593         kvm_pfn_t pfn = 0;
1594         int npages, r;
1595
1596         /* we can do it either atomically or asynchronously, not both */
1597         BUG_ON(atomic && async);
1598
1599         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1600                 return pfn;
1601
1602         if (atomic)
1603                 return KVM_PFN_ERR_FAULT;
1604
1605         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1606         if (npages == 1)
1607                 return pfn;
1608
1609         down_read(&current->mm->mmap_sem);
1610         if (npages == -EHWPOISON ||
1611               (!async && check_user_page_hwpoison(addr))) {
1612                 pfn = KVM_PFN_ERR_HWPOISON;
1613                 goto exit;
1614         }
1615
1616 retry:
1617         vma = find_vma_intersection(current->mm, addr, addr + 1);
1618
1619         if (vma == NULL)
1620                 pfn = KVM_PFN_ERR_FAULT;
1621         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1622                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1623                 if (r == -EAGAIN)
1624                         goto retry;
1625                 if (r < 0)
1626                         pfn = KVM_PFN_ERR_FAULT;
1627         } else {
1628                 if (async && vma_is_valid(vma, write_fault))
1629                         *async = true;
1630                 pfn = KVM_PFN_ERR_FAULT;
1631         }
1632 exit:
1633         up_read(&current->mm->mmap_sem);
1634         return pfn;
1635 }
1636
1637 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1638                                bool atomic, bool *async, bool write_fault,
1639                                bool *writable)
1640 {
1641         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1642
1643         if (addr == KVM_HVA_ERR_RO_BAD) {
1644                 if (writable)
1645                         *writable = false;
1646                 return KVM_PFN_ERR_RO_FAULT;
1647         }
1648
1649         if (kvm_is_error_hva(addr)) {
1650                 if (writable)
1651                         *writable = false;
1652                 return KVM_PFN_NOSLOT;
1653         }
1654
1655         /* Do not map writable pfn in the readonly memslot. */
1656         if (writable && memslot_is_readonly(slot)) {
1657                 *writable = false;
1658                 writable = NULL;
1659         }
1660
1661         return hva_to_pfn(addr, atomic, async, write_fault,
1662                           writable);
1663 }
1664 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1665
1666 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1667                       bool *writable)
1668 {
1669         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1670                                     write_fault, writable);
1671 }
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1673
1674 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1675 {
1676         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1679
1680 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1681 {
1682         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1685
1686 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1687 {
1688         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1689 }
1690 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1691
1692 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 {
1694         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1697
1698 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1699 {
1700         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1701 }
1702 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1703
1704 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1705 {
1706         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1709
1710 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1711                             struct page **pages, int nr_pages)
1712 {
1713         unsigned long addr;
1714         gfn_t entry = 0;
1715
1716         addr = gfn_to_hva_many(slot, gfn, &entry);
1717         if (kvm_is_error_hva(addr))
1718                 return -1;
1719
1720         if (entry < nr_pages)
1721                 return 0;
1722
1723         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1724 }
1725 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1726
1727 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1728 {
1729         if (is_error_noslot_pfn(pfn))
1730                 return KVM_ERR_PTR_BAD_PAGE;
1731
1732         if (kvm_is_reserved_pfn(pfn)) {
1733                 WARN_ON(1);
1734                 return KVM_ERR_PTR_BAD_PAGE;
1735         }
1736
1737         return pfn_to_page(pfn);
1738 }
1739
1740 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1741 {
1742         kvm_pfn_t pfn;
1743
1744         pfn = gfn_to_pfn(kvm, gfn);
1745
1746         return kvm_pfn_to_page(pfn);
1747 }
1748 EXPORT_SYMBOL_GPL(gfn_to_page);
1749
1750 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1751                          struct kvm_host_map *map)
1752 {
1753         kvm_pfn_t pfn;
1754         void *hva = NULL;
1755         struct page *page = KVM_UNMAPPED_PAGE;
1756
1757         if (!map)
1758                 return -EINVAL;
1759
1760         pfn = gfn_to_pfn_memslot(slot, gfn);
1761         if (is_error_noslot_pfn(pfn))
1762                 return -EINVAL;
1763
1764         if (pfn_valid(pfn)) {
1765                 page = pfn_to_page(pfn);
1766                 hva = kmap(page);
1767 #ifdef CONFIG_HAS_IOMEM
1768         } else {
1769                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1770 #endif
1771         }
1772
1773         if (!hva)
1774                 return -EFAULT;
1775
1776         map->page = page;
1777         map->hva = hva;
1778         map->pfn = pfn;
1779         map->gfn = gfn;
1780
1781         return 0;
1782 }
1783
1784 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1785 {
1786         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1789
1790 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1791                     bool dirty)
1792 {
1793         if (!map)
1794                 return;
1795
1796         if (!map->hva)
1797                 return;
1798
1799         if (map->page != KVM_UNMAPPED_PAGE)
1800                 kunmap(map->page);
1801 #ifdef CONFIG_HAS_IOMEM
1802         else
1803                 memunmap(map->hva);
1804 #endif
1805
1806         if (dirty) {
1807                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1808                 kvm_release_pfn_dirty(map->pfn);
1809         } else {
1810                 kvm_release_pfn_clean(map->pfn);
1811         }
1812
1813         map->hva = NULL;
1814         map->page = NULL;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1817
1818 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1819 {
1820         kvm_pfn_t pfn;
1821
1822         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1823
1824         return kvm_pfn_to_page(pfn);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1827
1828 void kvm_release_page_clean(struct page *page)
1829 {
1830         WARN_ON(is_error_page(page));
1831
1832         kvm_release_pfn_clean(page_to_pfn(page));
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1835
1836 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1837 {
1838         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1839                 put_page(pfn_to_page(pfn));
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1842
1843 void kvm_release_page_dirty(struct page *page)
1844 {
1845         WARN_ON(is_error_page(page));
1846
1847         kvm_release_pfn_dirty(page_to_pfn(page));
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1850
1851 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1852 {
1853         kvm_set_pfn_dirty(pfn);
1854         kvm_release_pfn_clean(pfn);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1857
1858 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1859 {
1860         if (!kvm_is_reserved_pfn(pfn)) {
1861                 struct page *page = pfn_to_page(pfn);
1862
1863                 SetPageDirty(page);
1864         }
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1867
1868 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1869 {
1870         if (!kvm_is_reserved_pfn(pfn))
1871                 mark_page_accessed(pfn_to_page(pfn));
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1874
1875 void kvm_get_pfn(kvm_pfn_t pfn)
1876 {
1877         if (!kvm_is_reserved_pfn(pfn))
1878                 get_page(pfn_to_page(pfn));
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1881
1882 static int next_segment(unsigned long len, int offset)
1883 {
1884         if (len > PAGE_SIZE - offset)
1885                 return PAGE_SIZE - offset;
1886         else
1887                 return len;
1888 }
1889
1890 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1891                                  void *data, int offset, int len)
1892 {
1893         int r;
1894         unsigned long addr;
1895
1896         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1897         if (kvm_is_error_hva(addr))
1898                 return -EFAULT;
1899         r = __copy_from_user(data, (void __user *)addr + offset, len);
1900         if (r)
1901                 return -EFAULT;
1902         return 0;
1903 }
1904
1905 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1906                         int len)
1907 {
1908         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1909
1910         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1913
1914 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1915                              int offset, int len)
1916 {
1917         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1918
1919         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1920 }
1921 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1922
1923 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1924 {
1925         gfn_t gfn = gpa >> PAGE_SHIFT;
1926         int seg;
1927         int offset = offset_in_page(gpa);
1928         int ret;
1929
1930         while ((seg = next_segment(len, offset)) != 0) {
1931                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1932                 if (ret < 0)
1933                         return ret;
1934                 offset = 0;
1935                 len -= seg;
1936                 data += seg;
1937                 ++gfn;
1938         }
1939         return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_read_guest);
1942
1943 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1944 {
1945         gfn_t gfn = gpa >> PAGE_SHIFT;
1946         int seg;
1947         int offset = offset_in_page(gpa);
1948         int ret;
1949
1950         while ((seg = next_segment(len, offset)) != 0) {
1951                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1952                 if (ret < 0)
1953                         return ret;
1954                 offset = 0;
1955                 len -= seg;
1956                 data += seg;
1957                 ++gfn;
1958         }
1959         return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1962
1963 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1964                                    void *data, int offset, unsigned long len)
1965 {
1966         int r;
1967         unsigned long addr;
1968
1969         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1970         if (kvm_is_error_hva(addr))
1971                 return -EFAULT;
1972         pagefault_disable();
1973         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1974         pagefault_enable();
1975         if (r)
1976                 return -EFAULT;
1977         return 0;
1978 }
1979
1980 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1981                           unsigned long len)
1982 {
1983         gfn_t gfn = gpa >> PAGE_SHIFT;
1984         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1985         int offset = offset_in_page(gpa);
1986
1987         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1990
1991 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1992                                void *data, unsigned long len)
1993 {
1994         gfn_t gfn = gpa >> PAGE_SHIFT;
1995         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1996         int offset = offset_in_page(gpa);
1997
1998         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2001
2002 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2003                                   const void *data, int offset, int len)
2004 {
2005         int r;
2006         unsigned long addr;
2007
2008         addr = gfn_to_hva_memslot(memslot, gfn);
2009         if (kvm_is_error_hva(addr))
2010                 return -EFAULT;
2011         r = __copy_to_user((void __user *)addr + offset, data, len);
2012         if (r)
2013                 return -EFAULT;
2014         mark_page_dirty_in_slot(memslot, gfn);
2015         return 0;
2016 }
2017
2018 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2019                          const void *data, int offset, int len)
2020 {
2021         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2022
2023         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2026
2027 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2028                               const void *data, int offset, int len)
2029 {
2030         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2031
2032         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2035
2036 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2037                     unsigned long len)
2038 {
2039         gfn_t gfn = gpa >> PAGE_SHIFT;
2040         int seg;
2041         int offset = offset_in_page(gpa);
2042         int ret;
2043
2044         while ((seg = next_segment(len, offset)) != 0) {
2045                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2046                 if (ret < 0)
2047                         return ret;
2048                 offset = 0;
2049                 len -= seg;
2050                 data += seg;
2051                 ++gfn;
2052         }
2053         return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_write_guest);
2056
2057 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2058                          unsigned long len)
2059 {
2060         gfn_t gfn = gpa >> PAGE_SHIFT;
2061         int seg;
2062         int offset = offset_in_page(gpa);
2063         int ret;
2064
2065         while ((seg = next_segment(len, offset)) != 0) {
2066                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2067                 if (ret < 0)
2068                         return ret;
2069                 offset = 0;
2070                 len -= seg;
2071                 data += seg;
2072                 ++gfn;
2073         }
2074         return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2077
2078 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2079                                        struct gfn_to_hva_cache *ghc,
2080                                        gpa_t gpa, unsigned long len)
2081 {
2082         int offset = offset_in_page(gpa);
2083         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2084         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2085         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2086         gfn_t nr_pages_avail;
2087         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2088
2089         ghc->gpa = gpa;
2090         ghc->generation = slots->generation;
2091         ghc->len = len;
2092         ghc->hva = KVM_HVA_ERR_BAD;
2093
2094         /*
2095          * If the requested region crosses two memslots, we still
2096          * verify that the entire region is valid here.
2097          */
2098         while (!r && start_gfn <= end_gfn) {
2099                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2100                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2101                                            &nr_pages_avail);
2102                 if (kvm_is_error_hva(ghc->hva))
2103                         r = -EFAULT;
2104                 start_gfn += nr_pages_avail;
2105         }
2106
2107         /* Use the slow path for cross page reads and writes. */
2108         if (!r && nr_pages_needed == 1)
2109                 ghc->hva += offset;
2110         else
2111                 ghc->memslot = NULL;
2112
2113         return r;
2114 }
2115
2116 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2117                               gpa_t gpa, unsigned long len)
2118 {
2119         struct kvm_memslots *slots = kvm_memslots(kvm);
2120         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2123
2124 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2125                                   void *data, unsigned int offset,
2126                                   unsigned long len)
2127 {
2128         struct kvm_memslots *slots = kvm_memslots(kvm);
2129         int r;
2130         gpa_t gpa = ghc->gpa + offset;
2131
2132         BUG_ON(len + offset > ghc->len);
2133
2134         if (slots->generation != ghc->generation)
2135                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2136
2137         if (unlikely(!ghc->memslot))
2138                 return kvm_write_guest(kvm, gpa, data, len);
2139
2140         if (kvm_is_error_hva(ghc->hva))
2141                 return -EFAULT;
2142
2143         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2144         if (r)
2145                 return -EFAULT;
2146         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2147
2148         return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2151
2152 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2153                            void *data, unsigned long len)
2154 {
2155         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2158
2159 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2160                            void *data, unsigned long len)
2161 {
2162         struct kvm_memslots *slots = kvm_memslots(kvm);
2163         int r;
2164
2165         BUG_ON(len > ghc->len);
2166
2167         if (slots->generation != ghc->generation)
2168                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2169
2170         if (unlikely(!ghc->memslot))
2171                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2172
2173         if (kvm_is_error_hva(ghc->hva))
2174                 return -EFAULT;
2175
2176         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2177         if (r)
2178                 return -EFAULT;
2179
2180         return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2183
2184 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2185 {
2186         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2187
2188         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2191
2192 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2193 {
2194         gfn_t gfn = gpa >> PAGE_SHIFT;
2195         int seg;
2196         int offset = offset_in_page(gpa);
2197         int ret;
2198
2199         while ((seg = next_segment(len, offset)) != 0) {
2200                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2201                 if (ret < 0)
2202                         return ret;
2203                 offset = 0;
2204                 len -= seg;
2205                 ++gfn;
2206         }
2207         return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2210
2211 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2212                                     gfn_t gfn)
2213 {
2214         if (memslot && memslot->dirty_bitmap) {
2215                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2216
2217                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2218         }
2219 }
2220
2221 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2222 {
2223         struct kvm_memory_slot *memslot;
2224
2225         memslot = gfn_to_memslot(kvm, gfn);
2226         mark_page_dirty_in_slot(memslot, gfn);
2227 }
2228 EXPORT_SYMBOL_GPL(mark_page_dirty);
2229
2230 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2231 {
2232         struct kvm_memory_slot *memslot;
2233
2234         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2235         mark_page_dirty_in_slot(memslot, gfn);
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2238
2239 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2240 {
2241         if (!vcpu->sigset_active)
2242                 return;
2243
2244         /*
2245          * This does a lockless modification of ->real_blocked, which is fine
2246          * because, only current can change ->real_blocked and all readers of
2247          * ->real_blocked don't care as long ->real_blocked is always a subset
2248          * of ->blocked.
2249          */
2250         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2251 }
2252
2253 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2254 {
2255         if (!vcpu->sigset_active)
2256                 return;
2257
2258         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2259         sigemptyset(&current->real_blocked);
2260 }
2261
2262 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2263 {
2264         unsigned int old, val, grow, grow_start;
2265
2266         old = val = vcpu->halt_poll_ns;
2267         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2268         grow = READ_ONCE(halt_poll_ns_grow);
2269         if (!grow)
2270                 goto out;
2271
2272         val *= grow;
2273         if (val < grow_start)
2274                 val = grow_start;
2275
2276         if (val > halt_poll_ns)
2277                 val = halt_poll_ns;
2278
2279         vcpu->halt_poll_ns = val;
2280 out:
2281         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2282 }
2283
2284 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2285 {
2286         unsigned int old, val, shrink;
2287
2288         old = val = vcpu->halt_poll_ns;
2289         shrink = READ_ONCE(halt_poll_ns_shrink);
2290         if (shrink == 0)
2291                 val = 0;
2292         else
2293                 val /= shrink;
2294
2295         vcpu->halt_poll_ns = val;
2296         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2297 }
2298
2299 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2300 {
2301         int ret = -EINTR;
2302         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2303
2304         if (kvm_arch_vcpu_runnable(vcpu)) {
2305                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2306                 goto out;
2307         }
2308         if (kvm_cpu_has_pending_timer(vcpu))
2309                 goto out;
2310         if (signal_pending(current))
2311                 goto out;
2312
2313         ret = 0;
2314 out:
2315         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2316         return ret;
2317 }
2318
2319 /*
2320  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2321  */
2322 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2323 {
2324         ktime_t start, cur;
2325         DECLARE_SWAITQUEUE(wait);
2326         bool waited = false;
2327         u64 block_ns;
2328
2329         kvm_arch_vcpu_blocking(vcpu);
2330
2331         start = cur = ktime_get();
2332         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2333                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2334
2335                 ++vcpu->stat.halt_attempted_poll;
2336                 do {
2337                         /*
2338                          * This sets KVM_REQ_UNHALT if an interrupt
2339                          * arrives.
2340                          */
2341                         if (kvm_vcpu_check_block(vcpu) < 0) {
2342                                 ++vcpu->stat.halt_successful_poll;
2343                                 if (!vcpu_valid_wakeup(vcpu))
2344                                         ++vcpu->stat.halt_poll_invalid;
2345                                 goto out;
2346                         }
2347                         cur = ktime_get();
2348                 } while (single_task_running() && ktime_before(cur, stop));
2349         }
2350
2351         for (;;) {
2352                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2353
2354                 if (kvm_vcpu_check_block(vcpu) < 0)
2355                         break;
2356
2357                 waited = true;
2358                 schedule();
2359         }
2360
2361         finish_swait(&vcpu->wq, &wait);
2362         cur = ktime_get();
2363 out:
2364         kvm_arch_vcpu_unblocking(vcpu);
2365         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2366
2367         if (!kvm_arch_no_poll(vcpu)) {
2368                 if (!vcpu_valid_wakeup(vcpu)) {
2369                         shrink_halt_poll_ns(vcpu);
2370                 } else if (halt_poll_ns) {
2371                         if (block_ns <= vcpu->halt_poll_ns)
2372                                 ;
2373                         /* we had a long block, shrink polling */
2374                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2375                                 shrink_halt_poll_ns(vcpu);
2376                         /* we had a short halt and our poll time is too small */
2377                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2378                                 block_ns < halt_poll_ns)
2379                                 grow_halt_poll_ns(vcpu);
2380                 } else {
2381                         vcpu->halt_poll_ns = 0;
2382                 }
2383         }
2384
2385         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2386         kvm_arch_vcpu_block_finish(vcpu);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2389
2390 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2391 {
2392         struct swait_queue_head *wqp;
2393
2394         wqp = kvm_arch_vcpu_wq(vcpu);
2395         if (swq_has_sleeper(wqp)) {
2396                 swake_up_one(wqp);
2397                 WRITE_ONCE(vcpu->ready, true);
2398                 ++vcpu->stat.halt_wakeup;
2399                 return true;
2400         }
2401
2402         return false;
2403 }
2404 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2405
2406 #ifndef CONFIG_S390
2407 /*
2408  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2409  */
2410 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2411 {
2412         int me;
2413         int cpu = vcpu->cpu;
2414
2415         if (kvm_vcpu_wake_up(vcpu))
2416                 return;
2417
2418         me = get_cpu();
2419         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2420                 if (kvm_arch_vcpu_should_kick(vcpu))
2421                         smp_send_reschedule(cpu);
2422         put_cpu();
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2425 #endif /* !CONFIG_S390 */
2426
2427 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2428 {
2429         struct pid *pid;
2430         struct task_struct *task = NULL;
2431         int ret = 0;
2432
2433         rcu_read_lock();
2434         pid = rcu_dereference(target->pid);
2435         if (pid)
2436                 task = get_pid_task(pid, PIDTYPE_PID);
2437         rcu_read_unlock();
2438         if (!task)
2439                 return ret;
2440         ret = yield_to(task, 1);
2441         put_task_struct(task);
2442
2443         return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2446
2447 /*
2448  * Helper that checks whether a VCPU is eligible for directed yield.
2449  * Most eligible candidate to yield is decided by following heuristics:
2450  *
2451  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2452  *  (preempted lock holder), indicated by @in_spin_loop.
2453  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2454  *
2455  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2456  *  chance last time (mostly it has become eligible now since we have probably
2457  *  yielded to lockholder in last iteration. This is done by toggling
2458  *  @dy_eligible each time a VCPU checked for eligibility.)
2459  *
2460  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2461  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2462  *  burning. Giving priority for a potential lock-holder increases lock
2463  *  progress.
2464  *
2465  *  Since algorithm is based on heuristics, accessing another VCPU data without
2466  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2467  *  and continue with next VCPU and so on.
2468  */
2469 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2470 {
2471 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2472         bool eligible;
2473
2474         eligible = !vcpu->spin_loop.in_spin_loop ||
2475                     vcpu->spin_loop.dy_eligible;
2476
2477         if (vcpu->spin_loop.in_spin_loop)
2478                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2479
2480         return eligible;
2481 #else
2482         return true;
2483 #endif
2484 }
2485
2486 /*
2487  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2488  * a vcpu_load/vcpu_put pair.  However, for most architectures
2489  * kvm_arch_vcpu_runnable does not require vcpu_load.
2490  */
2491 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2492 {
2493         return kvm_arch_vcpu_runnable(vcpu);
2494 }
2495
2496 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2497 {
2498         if (kvm_arch_dy_runnable(vcpu))
2499                 return true;
2500
2501 #ifdef CONFIG_KVM_ASYNC_PF
2502         if (!list_empty_careful(&vcpu->async_pf.done))
2503                 return true;
2504 #endif
2505
2506         return false;
2507 }
2508
2509 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2510 {
2511         struct kvm *kvm = me->kvm;
2512         struct kvm_vcpu *vcpu;
2513         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2514         int yielded = 0;
2515         int try = 3;
2516         int pass;
2517         int i;
2518
2519         kvm_vcpu_set_in_spin_loop(me, true);
2520         /*
2521          * We boost the priority of a VCPU that is runnable but not
2522          * currently running, because it got preempted by something
2523          * else and called schedule in __vcpu_run.  Hopefully that
2524          * VCPU is holding the lock that we need and will release it.
2525          * We approximate round-robin by starting at the last boosted VCPU.
2526          */
2527         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2528                 kvm_for_each_vcpu(i, vcpu, kvm) {
2529                         if (!pass && i <= last_boosted_vcpu) {
2530                                 i = last_boosted_vcpu;
2531                                 continue;
2532                         } else if (pass && i > last_boosted_vcpu)
2533                                 break;
2534                         if (!READ_ONCE(vcpu->ready))
2535                                 continue;
2536                         if (vcpu == me)
2537                                 continue;
2538                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2539                                 continue;
2540                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2541                                 !kvm_arch_vcpu_in_kernel(vcpu))
2542                                 continue;
2543                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2544                                 continue;
2545
2546                         yielded = kvm_vcpu_yield_to(vcpu);
2547                         if (yielded > 0) {
2548                                 kvm->last_boosted_vcpu = i;
2549                                 break;
2550                         } else if (yielded < 0) {
2551                                 try--;
2552                                 if (!try)
2553                                         break;
2554                         }
2555                 }
2556         }
2557         kvm_vcpu_set_in_spin_loop(me, false);
2558
2559         /* Ensure vcpu is not eligible during next spinloop */
2560         kvm_vcpu_set_dy_eligible(me, false);
2561 }
2562 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2563
2564 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2565 {
2566         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2567         struct page *page;
2568
2569         if (vmf->pgoff == 0)
2570                 page = virt_to_page(vcpu->run);
2571 #ifdef CONFIG_X86
2572         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2573                 page = virt_to_page(vcpu->arch.pio_data);
2574 #endif
2575 #ifdef CONFIG_KVM_MMIO
2576         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2577                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2578 #endif
2579         else
2580                 return kvm_arch_vcpu_fault(vcpu, vmf);
2581         get_page(page);
2582         vmf->page = page;
2583         return 0;
2584 }
2585
2586 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2587         .fault = kvm_vcpu_fault,
2588 };
2589
2590 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2591 {
2592         vma->vm_ops = &kvm_vcpu_vm_ops;
2593         return 0;
2594 }
2595
2596 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2597 {
2598         struct kvm_vcpu *vcpu = filp->private_data;
2599
2600         debugfs_remove_recursive(vcpu->debugfs_dentry);
2601         kvm_put_kvm(vcpu->kvm);
2602         return 0;
2603 }
2604
2605 static struct file_operations kvm_vcpu_fops = {
2606         .release        = kvm_vcpu_release,
2607         .unlocked_ioctl = kvm_vcpu_ioctl,
2608         .mmap           = kvm_vcpu_mmap,
2609         .llseek         = noop_llseek,
2610         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2611 };
2612
2613 /*
2614  * Allocates an inode for the vcpu.
2615  */
2616 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2617 {
2618         char name[8 + 1 + ITOA_MAX_LEN + 1];
2619
2620         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2621         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2622 }
2623
2624 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2625 {
2626 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2627         char dir_name[ITOA_MAX_LEN * 2];
2628
2629         if (!debugfs_initialized())
2630                 return;
2631
2632         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2633         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2634                                                   vcpu->kvm->debugfs_dentry);
2635
2636         kvm_arch_create_vcpu_debugfs(vcpu);
2637 #endif
2638 }
2639
2640 /*
2641  * Creates some virtual cpus.  Good luck creating more than one.
2642  */
2643 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2644 {
2645         int r;
2646         struct kvm_vcpu *vcpu;
2647
2648         if (id >= KVM_MAX_VCPU_ID)
2649                 return -EINVAL;
2650
2651         mutex_lock(&kvm->lock);
2652         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2653                 mutex_unlock(&kvm->lock);
2654                 return -EINVAL;
2655         }
2656
2657         kvm->created_vcpus++;
2658         mutex_unlock(&kvm->lock);
2659
2660         vcpu = kvm_arch_vcpu_create(kvm, id);
2661         if (IS_ERR(vcpu)) {
2662                 r = PTR_ERR(vcpu);
2663                 goto vcpu_decrement;
2664         }
2665
2666         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2667
2668         r = kvm_arch_vcpu_setup(vcpu);
2669         if (r)
2670                 goto vcpu_destroy;
2671
2672         kvm_create_vcpu_debugfs(vcpu);
2673
2674         mutex_lock(&kvm->lock);
2675         if (kvm_get_vcpu_by_id(kvm, id)) {
2676                 r = -EEXIST;
2677                 goto unlock_vcpu_destroy;
2678         }
2679
2680         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2681
2682         /* Now it's all set up, let userspace reach it */
2683         kvm_get_kvm(kvm);
2684         r = create_vcpu_fd(vcpu);
2685         if (r < 0) {
2686                 kvm_put_kvm(kvm);
2687                 goto unlock_vcpu_destroy;
2688         }
2689
2690         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2691
2692         /*
2693          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2694          * before kvm->online_vcpu's incremented value.
2695          */
2696         smp_wmb();
2697         atomic_inc(&kvm->online_vcpus);
2698
2699         mutex_unlock(&kvm->lock);
2700         kvm_arch_vcpu_postcreate(vcpu);
2701         return r;
2702
2703 unlock_vcpu_destroy:
2704         mutex_unlock(&kvm->lock);
2705         debugfs_remove_recursive(vcpu->debugfs_dentry);
2706 vcpu_destroy:
2707         kvm_arch_vcpu_destroy(vcpu);
2708 vcpu_decrement:
2709         mutex_lock(&kvm->lock);
2710         kvm->created_vcpus--;
2711         mutex_unlock(&kvm->lock);
2712         return r;
2713 }
2714
2715 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2716 {
2717         if (sigset) {
2718                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2719                 vcpu->sigset_active = 1;
2720                 vcpu->sigset = *sigset;
2721         } else
2722                 vcpu->sigset_active = 0;
2723         return 0;
2724 }
2725
2726 static long kvm_vcpu_ioctl(struct file *filp,
2727                            unsigned int ioctl, unsigned long arg)
2728 {
2729         struct kvm_vcpu *vcpu = filp->private_data;
2730         void __user *argp = (void __user *)arg;
2731         int r;
2732         struct kvm_fpu *fpu = NULL;
2733         struct kvm_sregs *kvm_sregs = NULL;
2734
2735         if (vcpu->kvm->mm != current->mm)
2736                 return -EIO;
2737
2738         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2739                 return -EINVAL;
2740
2741         /*
2742          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2743          * execution; mutex_lock() would break them.
2744          */
2745         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2746         if (r != -ENOIOCTLCMD)
2747                 return r;
2748
2749         if (mutex_lock_killable(&vcpu->mutex))
2750                 return -EINTR;
2751         switch (ioctl) {
2752         case KVM_RUN: {
2753                 struct pid *oldpid;
2754                 r = -EINVAL;
2755                 if (arg)
2756                         goto out;
2757                 oldpid = rcu_access_pointer(vcpu->pid);
2758                 if (unlikely(oldpid != task_pid(current))) {
2759                         /* The thread running this VCPU changed. */
2760                         struct pid *newpid;
2761
2762                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2763                         if (r)
2764                                 break;
2765
2766                         newpid = get_task_pid(current, PIDTYPE_PID);
2767                         rcu_assign_pointer(vcpu->pid, newpid);
2768                         if (oldpid)
2769                                 synchronize_rcu();
2770                         put_pid(oldpid);
2771                 }
2772                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2773                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2774                 break;
2775         }
2776         case KVM_GET_REGS: {
2777                 struct kvm_regs *kvm_regs;
2778
2779                 r = -ENOMEM;
2780                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2781                 if (!kvm_regs)
2782                         goto out;
2783                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2784                 if (r)
2785                         goto out_free1;
2786                 r = -EFAULT;
2787                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2788                         goto out_free1;
2789                 r = 0;
2790 out_free1:
2791                 kfree(kvm_regs);
2792                 break;
2793         }
2794         case KVM_SET_REGS: {
2795                 struct kvm_regs *kvm_regs;
2796
2797                 r = -ENOMEM;
2798                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2799                 if (IS_ERR(kvm_regs)) {
2800                         r = PTR_ERR(kvm_regs);
2801                         goto out;
2802                 }
2803                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2804                 kfree(kvm_regs);
2805                 break;
2806         }
2807         case KVM_GET_SREGS: {
2808                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2809                                     GFP_KERNEL_ACCOUNT);
2810                 r = -ENOMEM;
2811                 if (!kvm_sregs)
2812                         goto out;
2813                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2814                 if (r)
2815                         goto out;
2816                 r = -EFAULT;
2817                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2818                         goto out;
2819                 r = 0;
2820                 break;
2821         }
2822         case KVM_SET_SREGS: {
2823                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2824                 if (IS_ERR(kvm_sregs)) {
2825                         r = PTR_ERR(kvm_sregs);
2826                         kvm_sregs = NULL;
2827                         goto out;
2828                 }
2829                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2830                 break;
2831         }
2832         case KVM_GET_MP_STATE: {
2833                 struct kvm_mp_state mp_state;
2834
2835                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2836                 if (r)
2837                         goto out;
2838                 r = -EFAULT;
2839                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2840                         goto out;
2841                 r = 0;
2842                 break;
2843         }
2844         case KVM_SET_MP_STATE: {
2845                 struct kvm_mp_state mp_state;
2846
2847                 r = -EFAULT;
2848                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2849                         goto out;
2850                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2851                 break;
2852         }
2853         case KVM_TRANSLATE: {
2854                 struct kvm_translation tr;
2855
2856                 r = -EFAULT;
2857                 if (copy_from_user(&tr, argp, sizeof(tr)))
2858                         goto out;
2859                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2860                 if (r)
2861                         goto out;
2862                 r = -EFAULT;
2863                 if (copy_to_user(argp, &tr, sizeof(tr)))
2864                         goto out;
2865                 r = 0;
2866                 break;
2867         }
2868         case KVM_SET_GUEST_DEBUG: {
2869                 struct kvm_guest_debug dbg;
2870
2871                 r = -EFAULT;
2872                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2873                         goto out;
2874                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2875                 break;
2876         }
2877         case KVM_SET_SIGNAL_MASK: {
2878                 struct kvm_signal_mask __user *sigmask_arg = argp;
2879                 struct kvm_signal_mask kvm_sigmask;
2880                 sigset_t sigset, *p;
2881
2882                 p = NULL;
2883                 if (argp) {
2884                         r = -EFAULT;
2885                         if (copy_from_user(&kvm_sigmask, argp,
2886                                            sizeof(kvm_sigmask)))
2887                                 goto out;
2888                         r = -EINVAL;
2889                         if (kvm_sigmask.len != sizeof(sigset))
2890                                 goto out;
2891                         r = -EFAULT;
2892                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2893                                            sizeof(sigset)))
2894                                 goto out;
2895                         p = &sigset;
2896                 }
2897                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2898                 break;
2899         }
2900         case KVM_GET_FPU: {
2901                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2902                 r = -ENOMEM;
2903                 if (!fpu)
2904                         goto out;
2905                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2906                 if (r)
2907                         goto out;
2908                 r = -EFAULT;
2909                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2910                         goto out;
2911                 r = 0;
2912                 break;
2913         }
2914         case KVM_SET_FPU: {
2915                 fpu = memdup_user(argp, sizeof(*fpu));
2916                 if (IS_ERR(fpu)) {
2917                         r = PTR_ERR(fpu);
2918                         fpu = NULL;
2919                         goto out;
2920                 }
2921                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2922                 break;
2923         }
2924         default:
2925                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2926         }
2927 out:
2928         mutex_unlock(&vcpu->mutex);
2929         kfree(fpu);
2930         kfree(kvm_sregs);
2931         return r;
2932 }
2933
2934 #ifdef CONFIG_KVM_COMPAT
2935 static long kvm_vcpu_compat_ioctl(struct file *filp,
2936                                   unsigned int ioctl, unsigned long arg)
2937 {
2938         struct kvm_vcpu *vcpu = filp->private_data;
2939         void __user *argp = compat_ptr(arg);
2940         int r;
2941
2942         if (vcpu->kvm->mm != current->mm)
2943                 return -EIO;
2944
2945         switch (ioctl) {
2946         case KVM_SET_SIGNAL_MASK: {
2947                 struct kvm_signal_mask __user *sigmask_arg = argp;
2948                 struct kvm_signal_mask kvm_sigmask;
2949                 sigset_t sigset;
2950
2951                 if (argp) {
2952                         r = -EFAULT;
2953                         if (copy_from_user(&kvm_sigmask, argp,
2954                                            sizeof(kvm_sigmask)))
2955                                 goto out;
2956                         r = -EINVAL;
2957                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2958                                 goto out;
2959                         r = -EFAULT;
2960                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2961                                 goto out;
2962                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2963                 } else
2964                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2965                 break;
2966         }
2967         default:
2968                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2969         }
2970
2971 out:
2972         return r;
2973 }
2974 #endif
2975
2976 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2977 {
2978         struct kvm_device *dev = filp->private_data;
2979
2980         if (dev->ops->mmap)
2981                 return dev->ops->mmap(dev, vma);
2982
2983         return -ENODEV;
2984 }
2985
2986 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2987                                  int (*accessor)(struct kvm_device *dev,
2988                                                  struct kvm_device_attr *attr),
2989                                  unsigned long arg)
2990 {
2991         struct kvm_device_attr attr;
2992
2993         if (!accessor)
2994                 return -EPERM;
2995
2996         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2997                 return -EFAULT;
2998
2999         return accessor(dev, &attr);
3000 }
3001
3002 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3003                              unsigned long arg)
3004 {
3005         struct kvm_device *dev = filp->private_data;
3006
3007         if (dev->kvm->mm != current->mm)
3008                 return -EIO;
3009
3010         switch (ioctl) {
3011         case KVM_SET_DEVICE_ATTR:
3012                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3013         case KVM_GET_DEVICE_ATTR:
3014                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3015         case KVM_HAS_DEVICE_ATTR:
3016                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3017         default:
3018                 if (dev->ops->ioctl)
3019                         return dev->ops->ioctl(dev, ioctl, arg);
3020
3021                 return -ENOTTY;
3022         }
3023 }
3024
3025 static int kvm_device_release(struct inode *inode, struct file *filp)
3026 {
3027         struct kvm_device *dev = filp->private_data;
3028         struct kvm *kvm = dev->kvm;
3029
3030         if (dev->ops->release) {
3031                 mutex_lock(&kvm->lock);
3032                 list_del(&dev->vm_node);
3033                 dev->ops->release(dev);
3034                 mutex_unlock(&kvm->lock);
3035         }
3036
3037         kvm_put_kvm(kvm);
3038         return 0;
3039 }
3040
3041 static const struct file_operations kvm_device_fops = {
3042         .unlocked_ioctl = kvm_device_ioctl,
3043         .release = kvm_device_release,
3044         KVM_COMPAT(kvm_device_ioctl),
3045         .mmap = kvm_device_mmap,
3046 };
3047
3048 struct kvm_device *kvm_device_from_filp(struct file *filp)
3049 {
3050         if (filp->f_op != &kvm_device_fops)
3051                 return NULL;
3052
3053         return filp->private_data;
3054 }
3055
3056 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3057 #ifdef CONFIG_KVM_MPIC
3058         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3059         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3060 #endif
3061 };
3062
3063 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3064 {
3065         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3066                 return -ENOSPC;
3067
3068         if (kvm_device_ops_table[type] != NULL)
3069                 return -EEXIST;
3070
3071         kvm_device_ops_table[type] = ops;
3072         return 0;
3073 }
3074
3075 void kvm_unregister_device_ops(u32 type)
3076 {
3077         if (kvm_device_ops_table[type] != NULL)
3078                 kvm_device_ops_table[type] = NULL;
3079 }
3080
3081 static int kvm_ioctl_create_device(struct kvm *kvm,
3082                                    struct kvm_create_device *cd)
3083 {
3084         struct kvm_device_ops *ops = NULL;
3085         struct kvm_device *dev;
3086         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3087         int type;
3088         int ret;
3089
3090         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3091                 return -ENODEV;
3092
3093         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3094         ops = kvm_device_ops_table[type];
3095         if (ops == NULL)
3096                 return -ENODEV;
3097
3098         if (test)
3099                 return 0;
3100
3101         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3102         if (!dev)
3103                 return -ENOMEM;
3104
3105         dev->ops = ops;
3106         dev->kvm = kvm;
3107
3108         mutex_lock(&kvm->lock);
3109         ret = ops->create(dev, type);
3110         if (ret < 0) {
3111                 mutex_unlock(&kvm->lock);
3112                 kfree(dev);
3113                 return ret;
3114         }
3115         list_add(&dev->vm_node, &kvm->devices);
3116         mutex_unlock(&kvm->lock);
3117
3118         if (ops->init)
3119                 ops->init(dev);
3120
3121         kvm_get_kvm(kvm);
3122         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3123         if (ret < 0) {
3124                 kvm_put_kvm(kvm);
3125                 mutex_lock(&kvm->lock);
3126                 list_del(&dev->vm_node);
3127                 mutex_unlock(&kvm->lock);
3128                 ops->destroy(dev);
3129                 return ret;
3130         }
3131
3132         cd->fd = ret;
3133         return 0;
3134 }
3135
3136 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3137 {
3138         switch (arg) {
3139         case KVM_CAP_USER_MEMORY:
3140         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3141         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3142         case KVM_CAP_INTERNAL_ERROR_DATA:
3143 #ifdef CONFIG_HAVE_KVM_MSI
3144         case KVM_CAP_SIGNAL_MSI:
3145 #endif
3146 #ifdef CONFIG_HAVE_KVM_IRQFD
3147         case KVM_CAP_IRQFD:
3148         case KVM_CAP_IRQFD_RESAMPLE:
3149 #endif
3150         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3151         case KVM_CAP_CHECK_EXTENSION_VM:
3152         case KVM_CAP_ENABLE_CAP_VM:
3153 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3154         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3155 #endif
3156                 return 1;
3157 #ifdef CONFIG_KVM_MMIO
3158         case KVM_CAP_COALESCED_MMIO:
3159                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3160         case KVM_CAP_COALESCED_PIO:
3161                 return 1;
3162 #endif
3163 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3164         case KVM_CAP_IRQ_ROUTING:
3165                 return KVM_MAX_IRQ_ROUTES;
3166 #endif
3167 #if KVM_ADDRESS_SPACE_NUM > 1
3168         case KVM_CAP_MULTI_ADDRESS_SPACE:
3169                 return KVM_ADDRESS_SPACE_NUM;
3170 #endif
3171         case KVM_CAP_NR_MEMSLOTS:
3172                 return KVM_USER_MEM_SLOTS;
3173         default:
3174                 break;
3175         }
3176         return kvm_vm_ioctl_check_extension(kvm, arg);
3177 }
3178
3179 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3180                                                   struct kvm_enable_cap *cap)
3181 {
3182         return -EINVAL;
3183 }
3184
3185 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3186                                            struct kvm_enable_cap *cap)
3187 {
3188         switch (cap->cap) {
3189 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3190         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3191                 if (cap->flags || (cap->args[0] & ~1))
3192                         return -EINVAL;
3193                 kvm->manual_dirty_log_protect = cap->args[0];
3194                 return 0;
3195 #endif
3196         default:
3197                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3198         }
3199 }
3200
3201 static long kvm_vm_ioctl(struct file *filp,
3202                            unsigned int ioctl, unsigned long arg)
3203 {
3204         struct kvm *kvm = filp->private_data;
3205         void __user *argp = (void __user *)arg;
3206         int r;
3207
3208         if (kvm->mm != current->mm)
3209                 return -EIO;
3210         switch (ioctl) {
3211         case KVM_CREATE_VCPU:
3212                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3213                 break;
3214         case KVM_ENABLE_CAP: {
3215                 struct kvm_enable_cap cap;
3216
3217                 r = -EFAULT;
3218                 if (copy_from_user(&cap, argp, sizeof(cap)))
3219                         goto out;
3220                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3221                 break;
3222         }
3223         case KVM_SET_USER_MEMORY_REGION: {
3224                 struct kvm_userspace_memory_region kvm_userspace_mem;
3225
3226                 r = -EFAULT;
3227                 if (copy_from_user(&kvm_userspace_mem, argp,
3228                                                 sizeof(kvm_userspace_mem)))
3229                         goto out;
3230
3231                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3232                 break;
3233         }
3234         case KVM_GET_DIRTY_LOG: {
3235                 struct kvm_dirty_log log;
3236
3237                 r = -EFAULT;
3238                 if (copy_from_user(&log, argp, sizeof(log)))
3239                         goto out;
3240                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3241                 break;
3242         }
3243 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3244         case KVM_CLEAR_DIRTY_LOG: {
3245                 struct kvm_clear_dirty_log log;
3246
3247                 r = -EFAULT;
3248                 if (copy_from_user(&log, argp, sizeof(log)))
3249                         goto out;
3250                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3251                 break;
3252         }
3253 #endif
3254 #ifdef CONFIG_KVM_MMIO
3255         case KVM_REGISTER_COALESCED_MMIO: {
3256                 struct kvm_coalesced_mmio_zone zone;
3257
3258                 r = -EFAULT;
3259                 if (copy_from_user(&zone, argp, sizeof(zone)))
3260                         goto out;
3261                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3262                 break;
3263         }
3264         case KVM_UNREGISTER_COALESCED_MMIO: {
3265                 struct kvm_coalesced_mmio_zone zone;
3266
3267                 r = -EFAULT;
3268                 if (copy_from_user(&zone, argp, sizeof(zone)))
3269                         goto out;
3270                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3271                 break;
3272         }
3273 #endif
3274         case KVM_IRQFD: {
3275                 struct kvm_irqfd data;
3276
3277                 r = -EFAULT;
3278                 if (copy_from_user(&data, argp, sizeof(data)))
3279                         goto out;
3280                 r = kvm_irqfd(kvm, &data);
3281                 break;
3282         }
3283         case KVM_IOEVENTFD: {
3284                 struct kvm_ioeventfd data;
3285
3286                 r = -EFAULT;
3287                 if (copy_from_user(&data, argp, sizeof(data)))
3288                         goto out;
3289                 r = kvm_ioeventfd(kvm, &data);
3290                 break;
3291         }
3292 #ifdef CONFIG_HAVE_KVM_MSI
3293         case KVM_SIGNAL_MSI: {
3294                 struct kvm_msi msi;
3295
3296                 r = -EFAULT;
3297                 if (copy_from_user(&msi, argp, sizeof(msi)))
3298                         goto out;
3299                 r = kvm_send_userspace_msi(kvm, &msi);
3300                 break;
3301         }
3302 #endif
3303 #ifdef __KVM_HAVE_IRQ_LINE
3304         case KVM_IRQ_LINE_STATUS:
3305         case KVM_IRQ_LINE: {
3306                 struct kvm_irq_level irq_event;
3307
3308                 r = -EFAULT;
3309                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3310                         goto out;
3311
3312                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3313                                         ioctl == KVM_IRQ_LINE_STATUS);
3314                 if (r)
3315                         goto out;
3316
3317                 r = -EFAULT;
3318                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3319                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3320                                 goto out;
3321                 }
3322
3323                 r = 0;
3324                 break;
3325         }
3326 #endif
3327 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3328         case KVM_SET_GSI_ROUTING: {
3329                 struct kvm_irq_routing routing;
3330                 struct kvm_irq_routing __user *urouting;
3331                 struct kvm_irq_routing_entry *entries = NULL;
3332
3333                 r = -EFAULT;
3334                 if (copy_from_user(&routing, argp, sizeof(routing)))
3335                         goto out;
3336                 r = -EINVAL;
3337                 if (!kvm_arch_can_set_irq_routing(kvm))
3338                         goto out;
3339                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3340                         goto out;
3341                 if (routing.flags)
3342                         goto out;
3343                 if (routing.nr) {
3344                         r = -ENOMEM;
3345                         entries = vmalloc(array_size(sizeof(*entries),
3346                                                      routing.nr));
3347                         if (!entries)
3348                                 goto out;
3349                         r = -EFAULT;
3350                         urouting = argp;
3351                         if (copy_from_user(entries, urouting->entries,
3352                                            routing.nr * sizeof(*entries)))
3353                                 goto out_free_irq_routing;
3354                 }
3355                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3356                                         routing.flags);
3357 out_free_irq_routing:
3358                 vfree(entries);
3359                 break;
3360         }
3361 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3362         case KVM_CREATE_DEVICE: {
3363                 struct kvm_create_device cd;
3364
3365                 r = -EFAULT;
3366                 if (copy_from_user(&cd, argp, sizeof(cd)))
3367                         goto out;
3368
3369                 r = kvm_ioctl_create_device(kvm, &cd);
3370                 if (r)
3371                         goto out;
3372
3373                 r = -EFAULT;
3374                 if (copy_to_user(argp, &cd, sizeof(cd)))
3375                         goto out;
3376
3377                 r = 0;
3378                 break;
3379         }
3380         case KVM_CHECK_EXTENSION:
3381                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3382                 break;
3383         default:
3384                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3385         }
3386 out:
3387         return r;
3388 }
3389
3390 #ifdef CONFIG_KVM_COMPAT
3391 struct compat_kvm_dirty_log {
3392         __u32 slot;
3393         __u32 padding1;
3394         union {
3395                 compat_uptr_t dirty_bitmap; /* one bit per page */
3396                 __u64 padding2;
3397         };
3398 };
3399
3400 static long kvm_vm_compat_ioctl(struct file *filp,
3401                            unsigned int ioctl, unsigned long arg)
3402 {
3403         struct kvm *kvm = filp->private_data;
3404         int r;
3405
3406         if (kvm->mm != current->mm)
3407                 return -EIO;
3408         switch (ioctl) {
3409         case KVM_GET_DIRTY_LOG: {
3410                 struct compat_kvm_dirty_log compat_log;
3411                 struct kvm_dirty_log log;
3412
3413                 if (copy_from_user(&compat_log, (void __user *)arg,
3414                                    sizeof(compat_log)))
3415                         return -EFAULT;
3416                 log.slot         = compat_log.slot;
3417                 log.padding1     = compat_log.padding1;
3418                 log.padding2     = compat_log.padding2;
3419                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3420
3421                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3422                 break;
3423         }
3424         default:
3425                 r = kvm_vm_ioctl(filp, ioctl, arg);
3426         }
3427         return r;
3428 }
3429 #endif
3430
3431 static struct file_operations kvm_vm_fops = {
3432         .release        = kvm_vm_release,
3433         .unlocked_ioctl = kvm_vm_ioctl,
3434         .llseek         = noop_llseek,
3435         KVM_COMPAT(kvm_vm_compat_ioctl),
3436 };
3437
3438 static int kvm_dev_ioctl_create_vm(unsigned long type)
3439 {
3440         int r;
3441         struct kvm *kvm;
3442         struct file *file;
3443
3444         kvm = kvm_create_vm(type);
3445         if (IS_ERR(kvm))
3446                 return PTR_ERR(kvm);
3447 #ifdef CONFIG_KVM_MMIO
3448         r = kvm_coalesced_mmio_init(kvm);
3449         if (r < 0)
3450                 goto put_kvm;
3451 #endif
3452         r = get_unused_fd_flags(O_CLOEXEC);
3453         if (r < 0)
3454                 goto put_kvm;
3455
3456         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3457         if (IS_ERR(file)) {
3458                 put_unused_fd(r);
3459                 r = PTR_ERR(file);
3460                 goto put_kvm;
3461         }
3462
3463         /*
3464          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3465          * already set, with ->release() being kvm_vm_release().  In error
3466          * cases it will be called by the final fput(file) and will take
3467          * care of doing kvm_put_kvm(kvm).
3468          */
3469         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3470                 put_unused_fd(r);
3471                 fput(file);
3472                 return -ENOMEM;
3473         }
3474         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3475
3476         fd_install(r, file);
3477         return r;
3478
3479 put_kvm:
3480         kvm_put_kvm(kvm);
3481         return r;
3482 }
3483
3484 static long kvm_dev_ioctl(struct file *filp,
3485                           unsigned int ioctl, unsigned long arg)
3486 {
3487         long r = -EINVAL;
3488
3489         switch (ioctl) {
3490         case KVM_GET_API_VERSION:
3491                 if (arg)
3492                         goto out;
3493                 r = KVM_API_VERSION;
3494                 break;
3495         case KVM_CREATE_VM:
3496                 r = kvm_dev_ioctl_create_vm(arg);
3497                 break;
3498         case KVM_CHECK_EXTENSION:
3499                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3500                 break;
3501         case KVM_GET_VCPU_MMAP_SIZE:
3502                 if (arg)
3503                         goto out;
3504                 r = PAGE_SIZE;     /* struct kvm_run */
3505 #ifdef CONFIG_X86
3506                 r += PAGE_SIZE;    /* pio data page */
3507 #endif
3508 #ifdef CONFIG_KVM_MMIO
3509                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3510 #endif
3511                 break;
3512         case KVM_TRACE_ENABLE:
3513         case KVM_TRACE_PAUSE:
3514         case KVM_TRACE_DISABLE:
3515                 r = -EOPNOTSUPP;
3516                 break;
3517         default:
3518                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3519         }
3520 out:
3521         return r;
3522 }
3523
3524 static struct file_operations kvm_chardev_ops = {
3525         .unlocked_ioctl = kvm_dev_ioctl,
3526         .llseek         = noop_llseek,
3527         KVM_COMPAT(kvm_dev_ioctl),
3528 };
3529
3530 static struct miscdevice kvm_dev = {
3531         KVM_MINOR,
3532         "kvm",
3533         &kvm_chardev_ops,
3534 };
3535
3536 static void hardware_enable_nolock(void *junk)
3537 {
3538         int cpu = raw_smp_processor_id();
3539         int r;
3540
3541         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3542                 return;
3543
3544         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3545
3546         r = kvm_arch_hardware_enable();
3547
3548         if (r) {
3549                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3550                 atomic_inc(&hardware_enable_failed);
3551                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3552         }
3553 }
3554
3555 static int kvm_starting_cpu(unsigned int cpu)
3556 {
3557         raw_spin_lock(&kvm_count_lock);
3558         if (kvm_usage_count)
3559                 hardware_enable_nolock(NULL);
3560         raw_spin_unlock(&kvm_count_lock);
3561         return 0;
3562 }
3563
3564 static void hardware_disable_nolock(void *junk)
3565 {
3566         int cpu = raw_smp_processor_id();
3567
3568         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3569                 return;
3570         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3571         kvm_arch_hardware_disable();
3572 }
3573
3574 static int kvm_dying_cpu(unsigned int cpu)
3575 {
3576         raw_spin_lock(&kvm_count_lock);
3577         if (kvm_usage_count)
3578                 hardware_disable_nolock(NULL);
3579         raw_spin_unlock(&kvm_count_lock);
3580         return 0;
3581 }
3582
3583 static void hardware_disable_all_nolock(void)
3584 {
3585         BUG_ON(!kvm_usage_count);
3586
3587         kvm_usage_count--;
3588         if (!kvm_usage_count)
3589                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3590 }
3591
3592 static void hardware_disable_all(void)
3593 {
3594         raw_spin_lock(&kvm_count_lock);
3595         hardware_disable_all_nolock();
3596         raw_spin_unlock(&kvm_count_lock);
3597 }
3598
3599 static int hardware_enable_all(void)
3600 {
3601         int r = 0;
3602
3603         raw_spin_lock(&kvm_count_lock);
3604
3605         kvm_usage_count++;
3606         if (kvm_usage_count == 1) {
3607                 atomic_set(&hardware_enable_failed, 0);
3608                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3609
3610                 if (atomic_read(&hardware_enable_failed)) {
3611                         hardware_disable_all_nolock();
3612                         r = -EBUSY;
3613                 }
3614         }
3615
3616         raw_spin_unlock(&kvm_count_lock);
3617
3618         return r;
3619 }
3620
3621 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3622                       void *v)
3623 {
3624         /*
3625          * Some (well, at least mine) BIOSes hang on reboot if
3626          * in vmx root mode.
3627          *
3628          * And Intel TXT required VMX off for all cpu when system shutdown.
3629          */
3630         pr_info("kvm: exiting hardware virtualization\n");
3631         kvm_rebooting = true;
3632         on_each_cpu(hardware_disable_nolock, NULL, 1);
3633         return NOTIFY_OK;
3634 }
3635
3636 static struct notifier_block kvm_reboot_notifier = {
3637         .notifier_call = kvm_reboot,
3638         .priority = 0,
3639 };
3640
3641 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3642 {
3643         int i;
3644
3645         for (i = 0; i < bus->dev_count; i++) {
3646                 struct kvm_io_device *pos = bus->range[i].dev;
3647
3648                 kvm_iodevice_destructor(pos);
3649         }
3650         kfree(bus);
3651 }
3652
3653 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3654                                  const struct kvm_io_range *r2)
3655 {
3656         gpa_t addr1 = r1->addr;
3657         gpa_t addr2 = r2->addr;
3658
3659         if (addr1 < addr2)
3660                 return -1;
3661
3662         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3663          * accept any overlapping write.  Any order is acceptable for
3664          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3665          * we process all of them.
3666          */
3667         if (r2->len) {
3668                 addr1 += r1->len;
3669                 addr2 += r2->len;
3670         }
3671
3672         if (addr1 > addr2)
3673                 return 1;
3674
3675         return 0;
3676 }
3677
3678 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3679 {
3680         return kvm_io_bus_cmp(p1, p2);
3681 }
3682
3683 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3684                              gpa_t addr, int len)
3685 {
3686         struct kvm_io_range *range, key;
3687         int off;
3688
3689         key = (struct kvm_io_range) {
3690                 .addr = addr,
3691                 .len = len,
3692         };
3693
3694         range = bsearch(&key, bus->range, bus->dev_count,
3695                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3696         if (range == NULL)
3697                 return -ENOENT;
3698
3699         off = range - bus->range;
3700
3701         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3702                 off--;
3703
3704         return off;
3705 }
3706
3707 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3708                               struct kvm_io_range *range, const void *val)
3709 {
3710         int idx;
3711
3712         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3713         if (idx < 0)
3714                 return -EOPNOTSUPP;
3715
3716         while (idx < bus->dev_count &&
3717                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3718                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3719                                         range->len, val))
3720                         return idx;
3721                 idx++;
3722         }
3723
3724         return -EOPNOTSUPP;
3725 }
3726
3727 /* kvm_io_bus_write - called under kvm->slots_lock */
3728 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3729                      int len, const void *val)
3730 {
3731         struct kvm_io_bus *bus;
3732         struct kvm_io_range range;
3733         int r;
3734
3735         range = (struct kvm_io_range) {
3736                 .addr = addr,
3737                 .len = len,
3738         };
3739
3740         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3741         if (!bus)
3742                 return -ENOMEM;
3743         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3744         return r < 0 ? r : 0;
3745 }
3746 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3747
3748 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3749 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3750                             gpa_t addr, int len, const void *val, long cookie)
3751 {
3752         struct kvm_io_bus *bus;
3753         struct kvm_io_range range;
3754
3755         range = (struct kvm_io_range) {
3756                 .addr = addr,
3757                 .len = len,
3758         };
3759
3760         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3761         if (!bus)
3762                 return -ENOMEM;
3763
3764         /* First try the device referenced by cookie. */
3765         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3766             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3767                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3768                                         val))
3769                         return cookie;
3770
3771         /*
3772          * cookie contained garbage; fall back to search and return the
3773          * correct cookie value.
3774          */
3775         return __kvm_io_bus_write(vcpu, bus, &range, val);
3776 }
3777
3778 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3779                              struct kvm_io_range *range, void *val)
3780 {
3781         int idx;
3782
3783         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3784         if (idx < 0)
3785                 return -EOPNOTSUPP;
3786
3787         while (idx < bus->dev_count &&
3788                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3789                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3790                                        range->len, val))
3791                         return idx;
3792                 idx++;
3793         }
3794
3795         return -EOPNOTSUPP;
3796 }
3797
3798 /* kvm_io_bus_read - called under kvm->slots_lock */
3799 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3800                     int len, void *val)
3801 {
3802         struct kvm_io_bus *bus;
3803         struct kvm_io_range range;
3804         int r;
3805
3806         range = (struct kvm_io_range) {
3807                 .addr = addr,
3808                 .len = len,
3809         };
3810
3811         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3812         if (!bus)
3813                 return -ENOMEM;
3814         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3815         return r < 0 ? r : 0;
3816 }
3817
3818 /* Caller must hold slots_lock. */
3819 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3820                             int len, struct kvm_io_device *dev)
3821 {
3822         int i;
3823         struct kvm_io_bus *new_bus, *bus;
3824         struct kvm_io_range range;
3825
3826         bus = kvm_get_bus(kvm, bus_idx);
3827         if (!bus)
3828                 return -ENOMEM;
3829
3830         /* exclude ioeventfd which is limited by maximum fd */
3831         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3832                 return -ENOSPC;
3833
3834         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3835                           GFP_KERNEL_ACCOUNT);
3836         if (!new_bus)
3837                 return -ENOMEM;
3838
3839         range = (struct kvm_io_range) {
3840                 .addr = addr,
3841                 .len = len,
3842                 .dev = dev,
3843         };
3844
3845         for (i = 0; i < bus->dev_count; i++)
3846                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3847                         break;
3848
3849         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3850         new_bus->dev_count++;
3851         new_bus->range[i] = range;
3852         memcpy(new_bus->range + i + 1, bus->range + i,
3853                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3854         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3855         synchronize_srcu_expedited(&kvm->srcu);
3856         kfree(bus);
3857
3858         return 0;
3859 }
3860
3861 /* Caller must hold slots_lock. */
3862 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3863                                struct kvm_io_device *dev)
3864 {
3865         int i;
3866         struct kvm_io_bus *new_bus, *bus;
3867
3868         bus = kvm_get_bus(kvm, bus_idx);
3869         if (!bus)
3870                 return;
3871
3872         for (i = 0; i < bus->dev_count; i++)
3873                 if (bus->range[i].dev == dev) {
3874                         break;
3875                 }
3876
3877         if (i == bus->dev_count)
3878                 return;
3879
3880         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3881                           GFP_KERNEL_ACCOUNT);
3882         if (!new_bus)  {
3883                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3884                 goto broken;
3885         }
3886
3887         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3888         new_bus->dev_count--;
3889         memcpy(new_bus->range + i, bus->range + i + 1,
3890                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3891
3892 broken:
3893         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3894         synchronize_srcu_expedited(&kvm->srcu);
3895         kfree(bus);
3896         return;
3897 }
3898
3899 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3900                                          gpa_t addr)
3901 {
3902         struct kvm_io_bus *bus;
3903         int dev_idx, srcu_idx;
3904         struct kvm_io_device *iodev = NULL;
3905
3906         srcu_idx = srcu_read_lock(&kvm->srcu);
3907
3908         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3909         if (!bus)
3910                 goto out_unlock;
3911
3912         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3913         if (dev_idx < 0)
3914                 goto out_unlock;
3915
3916         iodev = bus->range[dev_idx].dev;
3917
3918 out_unlock:
3919         srcu_read_unlock(&kvm->srcu, srcu_idx);
3920
3921         return iodev;
3922 }
3923 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3924
3925 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3926                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3927                            const char *fmt)
3928 {
3929         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3930                                           inode->i_private;
3931
3932         /* The debugfs files are a reference to the kvm struct which
3933          * is still valid when kvm_destroy_vm is called.
3934          * To avoid the race between open and the removal of the debugfs
3935          * directory we test against the users count.
3936          */
3937         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3938                 return -ENOENT;
3939
3940         if (simple_attr_open(inode, file, get,
3941                              stat_data->mode & S_IWUGO ? set : NULL,
3942                              fmt)) {
3943                 kvm_put_kvm(stat_data->kvm);
3944                 return -ENOMEM;
3945         }
3946
3947         return 0;
3948 }
3949
3950 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3951 {
3952         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3953                                           inode->i_private;
3954
3955         simple_attr_release(inode, file);
3956         kvm_put_kvm(stat_data->kvm);
3957
3958         return 0;
3959 }
3960
3961 static int vm_stat_get_per_vm(void *data, u64 *val)
3962 {
3963         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3964
3965         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3966
3967         return 0;
3968 }
3969
3970 static int vm_stat_clear_per_vm(void *data, u64 val)
3971 {
3972         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3973
3974         if (val)
3975                 return -EINVAL;
3976
3977         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3978
3979         return 0;
3980 }
3981
3982 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3983 {
3984         __simple_attr_check_format("%llu\n", 0ull);
3985         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3986                                 vm_stat_clear_per_vm, "%llu\n");
3987 }
3988
3989 static const struct file_operations vm_stat_get_per_vm_fops = {
3990         .owner   = THIS_MODULE,
3991         .open    = vm_stat_get_per_vm_open,
3992         .release = kvm_debugfs_release,
3993         .read    = simple_attr_read,
3994         .write   = simple_attr_write,
3995         .llseek  = no_llseek,
3996 };
3997
3998 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3999 {
4000         int i;
4001         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4002         struct kvm_vcpu *vcpu;
4003
4004         *val = 0;
4005
4006         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4007                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4008
4009         return 0;
4010 }
4011
4012 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4013 {
4014         int i;
4015         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4016         struct kvm_vcpu *vcpu;
4017
4018         if (val)
4019                 return -EINVAL;
4020
4021         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4022                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4023
4024         return 0;
4025 }
4026
4027 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4028 {
4029         __simple_attr_check_format("%llu\n", 0ull);
4030         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4031                                  vcpu_stat_clear_per_vm, "%llu\n");
4032 }
4033
4034 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4035         .owner   = THIS_MODULE,
4036         .open    = vcpu_stat_get_per_vm_open,
4037         .release = kvm_debugfs_release,
4038         .read    = simple_attr_read,
4039         .write   = simple_attr_write,
4040         .llseek  = no_llseek,
4041 };
4042
4043 static const struct file_operations *stat_fops_per_vm[] = {
4044         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4045         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4046 };
4047
4048 static int vm_stat_get(void *_offset, u64 *val)
4049 {
4050         unsigned offset = (long)_offset;
4051         struct kvm *kvm;
4052         struct kvm_stat_data stat_tmp = {.offset = offset};
4053         u64 tmp_val;
4054
4055         *val = 0;
4056         mutex_lock(&kvm_lock);
4057         list_for_each_entry(kvm, &vm_list, vm_list) {
4058                 stat_tmp.kvm = kvm;
4059                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4060                 *val += tmp_val;
4061         }
4062         mutex_unlock(&kvm_lock);
4063         return 0;
4064 }
4065
4066 static int vm_stat_clear(void *_offset, u64 val)
4067 {
4068         unsigned offset = (long)_offset;
4069         struct kvm *kvm;
4070         struct kvm_stat_data stat_tmp = {.offset = offset};
4071
4072         if (val)
4073                 return -EINVAL;
4074
4075         mutex_lock(&kvm_lock);
4076         list_for_each_entry(kvm, &vm_list, vm_list) {
4077                 stat_tmp.kvm = kvm;
4078                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4079         }
4080         mutex_unlock(&kvm_lock);
4081
4082         return 0;
4083 }
4084
4085 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4086
4087 static int vcpu_stat_get(void *_offset, u64 *val)
4088 {
4089         unsigned offset = (long)_offset;
4090         struct kvm *kvm;
4091         struct kvm_stat_data stat_tmp = {.offset = offset};
4092         u64 tmp_val;
4093
4094         *val = 0;
4095         mutex_lock(&kvm_lock);
4096         list_for_each_entry(kvm, &vm_list, vm_list) {
4097                 stat_tmp.kvm = kvm;
4098                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4099                 *val += tmp_val;
4100         }
4101         mutex_unlock(&kvm_lock);
4102         return 0;
4103 }
4104
4105 static int vcpu_stat_clear(void *_offset, u64 val)
4106 {
4107         unsigned offset = (long)_offset;
4108         struct kvm *kvm;
4109         struct kvm_stat_data stat_tmp = {.offset = offset};
4110
4111         if (val)
4112                 return -EINVAL;
4113
4114         mutex_lock(&kvm_lock);
4115         list_for_each_entry(kvm, &vm_list, vm_list) {
4116                 stat_tmp.kvm = kvm;
4117                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4118         }
4119         mutex_unlock(&kvm_lock);
4120
4121         return 0;
4122 }
4123
4124 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4125                         "%llu\n");
4126
4127 static const struct file_operations *stat_fops[] = {
4128         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4129         [KVM_STAT_VM]   = &vm_stat_fops,
4130 };
4131
4132 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4133 {
4134         struct kobj_uevent_env *env;
4135         unsigned long long created, active;
4136
4137         if (!kvm_dev.this_device || !kvm)
4138                 return;
4139
4140         mutex_lock(&kvm_lock);
4141         if (type == KVM_EVENT_CREATE_VM) {
4142                 kvm_createvm_count++;
4143                 kvm_active_vms++;
4144         } else if (type == KVM_EVENT_DESTROY_VM) {
4145                 kvm_active_vms--;
4146         }
4147         created = kvm_createvm_count;
4148         active = kvm_active_vms;
4149         mutex_unlock(&kvm_lock);
4150
4151         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4152         if (!env)
4153                 return;
4154
4155         add_uevent_var(env, "CREATED=%llu", created);
4156         add_uevent_var(env, "COUNT=%llu", active);
4157
4158         if (type == KVM_EVENT_CREATE_VM) {
4159                 add_uevent_var(env, "EVENT=create");
4160                 kvm->userspace_pid = task_pid_nr(current);
4161         } else if (type == KVM_EVENT_DESTROY_VM) {
4162                 add_uevent_var(env, "EVENT=destroy");
4163         }
4164         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4165
4166         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4167                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4168
4169                 if (p) {
4170                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4171                         if (!IS_ERR(tmp))
4172                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4173                         kfree(p);
4174                 }
4175         }
4176         /* no need for checks, since we are adding at most only 5 keys */
4177         env->envp[env->envp_idx++] = NULL;
4178         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4179         kfree(env);
4180 }
4181
4182 static void kvm_init_debug(void)
4183 {
4184         struct kvm_stats_debugfs_item *p;
4185
4186         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4187
4188         kvm_debugfs_num_entries = 0;
4189         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4190                 int mode = p->mode ? p->mode : 0644;
4191                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4192                                     (void *)(long)p->offset,
4193                                     stat_fops[p->kind]);
4194         }
4195 }
4196
4197 static int kvm_suspend(void)
4198 {
4199         if (kvm_usage_count)
4200                 hardware_disable_nolock(NULL);
4201         return 0;
4202 }
4203
4204 static void kvm_resume(void)
4205 {
4206         if (kvm_usage_count) {
4207 #ifdef CONFIG_LOCKDEP
4208                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4209 #endif
4210                 hardware_enable_nolock(NULL);
4211         }
4212 }
4213
4214 static struct syscore_ops kvm_syscore_ops = {
4215         .suspend = kvm_suspend,
4216         .resume = kvm_resume,
4217 };
4218
4219 static inline
4220 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4221 {
4222         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4223 }
4224
4225 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4226 {
4227         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4228
4229         WRITE_ONCE(vcpu->preempted, false);
4230         WRITE_ONCE(vcpu->ready, false);
4231
4232         kvm_arch_sched_in(vcpu, cpu);
4233
4234         kvm_arch_vcpu_load(vcpu, cpu);
4235 }
4236
4237 static void kvm_sched_out(struct preempt_notifier *pn,
4238                           struct task_struct *next)
4239 {
4240         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4241
4242         if (current->state == TASK_RUNNING) {
4243                 WRITE_ONCE(vcpu->preempted, true);
4244                 WRITE_ONCE(vcpu->ready, true);
4245         }
4246         kvm_arch_vcpu_put(vcpu);
4247 }
4248
4249 static void check_processor_compat(void *rtn)
4250 {
4251         *(int *)rtn = kvm_arch_check_processor_compat();
4252 }
4253
4254 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4255                   struct module *module)
4256 {
4257         int r;
4258         int cpu;
4259
4260         r = kvm_arch_init(opaque);
4261         if (r)
4262                 goto out_fail;
4263
4264         /*
4265          * kvm_arch_init makes sure there's at most one caller
4266          * for architectures that support multiple implementations,
4267          * like intel and amd on x86.
4268          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4269          * conflicts in case kvm is already setup for another implementation.
4270          */
4271         r = kvm_irqfd_init();
4272         if (r)
4273                 goto out_irqfd;
4274
4275         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4276                 r = -ENOMEM;
4277                 goto out_free_0;
4278         }
4279
4280         r = kvm_arch_hardware_setup();
4281         if (r < 0)
4282                 goto out_free_0a;
4283
4284         for_each_online_cpu(cpu) {
4285                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4286                 if (r < 0)
4287                         goto out_free_1;
4288         }
4289
4290         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4291                                       kvm_starting_cpu, kvm_dying_cpu);
4292         if (r)
4293                 goto out_free_2;
4294         register_reboot_notifier(&kvm_reboot_notifier);
4295
4296         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4297         if (!vcpu_align)
4298                 vcpu_align = __alignof__(struct kvm_vcpu);
4299         kvm_vcpu_cache =
4300                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4301                                            SLAB_ACCOUNT,
4302                                            offsetof(struct kvm_vcpu, arch),
4303                                            sizeof_field(struct kvm_vcpu, arch),
4304                                            NULL);
4305         if (!kvm_vcpu_cache) {
4306                 r = -ENOMEM;
4307                 goto out_free_3;
4308         }
4309
4310         r = kvm_async_pf_init();
4311         if (r)
4312                 goto out_free;
4313
4314         kvm_chardev_ops.owner = module;
4315         kvm_vm_fops.owner = module;
4316         kvm_vcpu_fops.owner = module;
4317
4318         r = misc_register(&kvm_dev);
4319         if (r) {
4320                 pr_err("kvm: misc device register failed\n");
4321                 goto out_unreg;
4322         }
4323
4324         register_syscore_ops(&kvm_syscore_ops);
4325
4326         kvm_preempt_ops.sched_in = kvm_sched_in;
4327         kvm_preempt_ops.sched_out = kvm_sched_out;
4328
4329         kvm_init_debug();
4330
4331         r = kvm_vfio_ops_init();
4332         WARN_ON(r);
4333
4334         return 0;
4335
4336 out_unreg:
4337         kvm_async_pf_deinit();
4338 out_free:
4339         kmem_cache_destroy(kvm_vcpu_cache);
4340 out_free_3:
4341         unregister_reboot_notifier(&kvm_reboot_notifier);
4342         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4343 out_free_2:
4344 out_free_1:
4345         kvm_arch_hardware_unsetup();
4346 out_free_0a:
4347         free_cpumask_var(cpus_hardware_enabled);
4348 out_free_0:
4349         kvm_irqfd_exit();
4350 out_irqfd:
4351         kvm_arch_exit();
4352 out_fail:
4353         return r;
4354 }
4355 EXPORT_SYMBOL_GPL(kvm_init);
4356
4357 void kvm_exit(void)
4358 {
4359         debugfs_remove_recursive(kvm_debugfs_dir);
4360         misc_deregister(&kvm_dev);
4361         kmem_cache_destroy(kvm_vcpu_cache);
4362         kvm_async_pf_deinit();
4363         unregister_syscore_ops(&kvm_syscore_ops);
4364         unregister_reboot_notifier(&kvm_reboot_notifier);
4365         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4366         on_each_cpu(hardware_disable_nolock, NULL, 1);
4367         kvm_arch_hardware_unsetup();
4368         kvm_arch_exit();
4369         kvm_irqfd_exit();
4370         free_cpumask_var(cpus_hardware_enabled);
4371         kvm_vfio_ops_exit();
4372 }
4373 EXPORT_SYMBOL_GPL(kvm_exit);