Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic-its.c
1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
27
28 #include <linux/irqchip/arm-gic-v3.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33
34 #include "vgic.h"
35 #include "vgic-mmio.h"
36
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41                              struct kvm_vcpu *filter_vcpu);
42
43 /*
44  * Creates a new (reference to a) struct vgic_irq for a given LPI.
45  * If this LPI is already mapped on another ITS, we increase its refcount
46  * and return a pointer to the existing structure.
47  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48  * This function returns a pointer to the _unlocked_ structure.
49  */
50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51                                      struct kvm_vcpu *vcpu)
52 {
53         struct vgic_dist *dist = &kvm->arch.vgic;
54         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55         int ret;
56
57         /* In this case there is no put, since we keep the reference. */
58         if (irq)
59                 return irq;
60
61         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
62         if (!irq)
63                 return ERR_PTR(-ENOMEM);
64
65         INIT_LIST_HEAD(&irq->lpi_list);
66         INIT_LIST_HEAD(&irq->ap_list);
67         spin_lock_init(&irq->irq_lock);
68
69         irq->config = VGIC_CONFIG_EDGE;
70         kref_init(&irq->refcount);
71         irq->intid = intid;
72         irq->target_vcpu = vcpu;
73
74         spin_lock(&dist->lpi_list_lock);
75
76         /*
77          * There could be a race with another vgic_add_lpi(), so we need to
78          * check that we don't add a second list entry with the same LPI.
79          */
80         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
81                 if (oldirq->intid != intid)
82                         continue;
83
84                 /* Someone was faster with adding this LPI, lets use that. */
85                 kfree(irq);
86                 irq = oldirq;
87
88                 /*
89                  * This increases the refcount, the caller is expected to
90                  * call vgic_put_irq() on the returned pointer once it's
91                  * finished with the IRQ.
92                  */
93                 vgic_get_irq_kref(irq);
94
95                 goto out_unlock;
96         }
97
98         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
99         dist->lpi_list_count++;
100
101 out_unlock:
102         spin_unlock(&dist->lpi_list_lock);
103
104         /*
105          * We "cache" the configuration table entries in our struct vgic_irq's.
106          * However we only have those structs for mapped IRQs, so we read in
107          * the respective config data from memory here upon mapping the LPI.
108          */
109         ret = update_lpi_config(kvm, irq, NULL);
110         if (ret)
111                 return ERR_PTR(ret);
112
113         ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114         if (ret)
115                 return ERR_PTR(ret);
116
117         return irq;
118 }
119
120 struct its_device {
121         struct list_head dev_list;
122
123         /* the head for the list of ITTEs */
124         struct list_head itt_head;
125         u32 num_eventid_bits;
126         gpa_t itt_addr;
127         u32 device_id;
128 };
129
130 #define COLLECTION_NOT_MAPPED ((u32)~0)
131
132 struct its_collection {
133         struct list_head coll_list;
134
135         u32 collection_id;
136         u32 target_addr;
137 };
138
139 #define its_is_collection_mapped(coll) ((coll) && \
140                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
141
142 struct its_ite {
143         struct list_head ite_list;
144
145         struct vgic_irq *irq;
146         struct its_collection *collection;
147         u32 event_id;
148 };
149
150 /**
151  * struct vgic_its_abi - ITS abi ops and settings
152  * @cte_esz: collection table entry size
153  * @dte_esz: device table entry size
154  * @ite_esz: interrupt translation table entry size
155  * @save tables: save the ITS tables into guest RAM
156  * @restore_tables: restore the ITS internal structs from tables
157  *  stored in guest RAM
158  * @commit: initialize the registers which expose the ABI settings,
159  *  especially the entry sizes
160  */
161 struct vgic_its_abi {
162         int cte_esz;
163         int dte_esz;
164         int ite_esz;
165         int (*save_tables)(struct vgic_its *its);
166         int (*restore_tables)(struct vgic_its *its);
167         int (*commit)(struct vgic_its *its);
168 };
169
170 static const struct vgic_its_abi its_table_abi_versions[] = {
171         [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
172          .save_tables = vgic_its_save_tables_v0,
173          .restore_tables = vgic_its_restore_tables_v0,
174          .commit = vgic_its_commit_v0,
175         },
176 };
177
178 #define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
179
180 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
181 {
182         return &its_table_abi_versions[its->abi_rev];
183 }
184
185 int vgic_its_set_abi(struct vgic_its *its, int rev)
186 {
187         const struct vgic_its_abi *abi;
188
189         its->abi_rev = rev;
190         abi = vgic_its_get_abi(its);
191         return abi->commit(its);
192 }
193
194 /*
195  * Find and returns a device in the device table for an ITS.
196  * Must be called with the its_lock mutex held.
197  */
198 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
199 {
200         struct its_device *device;
201
202         list_for_each_entry(device, &its->device_list, dev_list)
203                 if (device_id == device->device_id)
204                         return device;
205
206         return NULL;
207 }
208
209 /*
210  * Find and returns an interrupt translation table entry (ITTE) for a given
211  * Device ID/Event ID pair on an ITS.
212  * Must be called with the its_lock mutex held.
213  */
214 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
215                                   u32 event_id)
216 {
217         struct its_device *device;
218         struct its_ite *ite;
219
220         device = find_its_device(its, device_id);
221         if (device == NULL)
222                 return NULL;
223
224         list_for_each_entry(ite, &device->itt_head, ite_list)
225                 if (ite->event_id == event_id)
226                         return ite;
227
228         return NULL;
229 }
230
231 /* To be used as an iterator this macro misses the enclosing parentheses */
232 #define for_each_lpi_its(dev, ite, its) \
233         list_for_each_entry(dev, &(its)->device_list, dev_list) \
234                 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
235
236 /*
237  * We only implement 48 bits of PA at the moment, although the ITS
238  * supports more. Let's be restrictive here.
239  */
240 #define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
241 #define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
242
243 #define GIC_LPI_OFFSET 8192
244
245 #define VITS_TYPER_IDBITS 16
246 #define VITS_TYPER_DEVBITS 16
247 #define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
248 #define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
249
250 /*
251  * Finds and returns a collection in the ITS collection table.
252  * Must be called with the its_lock mutex held.
253  */
254 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
255 {
256         struct its_collection *collection;
257
258         list_for_each_entry(collection, &its->collection_list, coll_list) {
259                 if (coll_id == collection->collection_id)
260                         return collection;
261         }
262
263         return NULL;
264 }
265
266 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
267 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
268
269 /*
270  * Reads the configuration data for a given LPI from guest memory and
271  * updates the fields in struct vgic_irq.
272  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
273  * VCPU. Unconditionally applies if filter_vcpu is NULL.
274  */
275 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
276                              struct kvm_vcpu *filter_vcpu)
277 {
278         u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
279         u8 prop;
280         int ret;
281
282         ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
283                              &prop, 1);
284
285         if (ret)
286                 return ret;
287
288         spin_lock(&irq->irq_lock);
289
290         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
291                 irq->priority = LPI_PROP_PRIORITY(prop);
292                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
293
294                 vgic_queue_irq_unlock(kvm, irq);
295         } else {
296                 spin_unlock(&irq->irq_lock);
297         }
298
299         return 0;
300 }
301
302 /*
303  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
304  * enumerate those LPIs without holding any lock.
305  * Returns their number and puts the kmalloc'ed array into intid_ptr.
306  */
307 static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
308 {
309         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310         struct vgic_irq *irq;
311         u32 *intids;
312         int irq_count = dist->lpi_list_count, i = 0;
313
314         /*
315          * We use the current value of the list length, which may change
316          * after the kmalloc. We don't care, because the guest shouldn't
317          * change anything while the command handling is still running,
318          * and in the worst case we would miss a new IRQ, which one wouldn't
319          * expect to be covered by this command anyway.
320          */
321         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
322         if (!intids)
323                 return -ENOMEM;
324
325         spin_lock(&dist->lpi_list_lock);
326         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
327                 /* We don't need to "get" the IRQ, as we hold the list lock. */
328                 if (irq->target_vcpu != vcpu)
329                         continue;
330                 intids[i++] = irq->intid;
331         }
332         spin_unlock(&dist->lpi_list_lock);
333
334         *intid_ptr = intids;
335         return i;
336 }
337
338 /*
339  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
340  * is targeting) to the VGIC's view, which deals with target VCPUs.
341  * Needs to be called whenever either the collection for a LPIs has
342  * changed or the collection itself got retargeted.
343  */
344 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
345 {
346         struct kvm_vcpu *vcpu;
347
348         if (!its_is_collection_mapped(ite->collection))
349                 return;
350
351         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
352
353         spin_lock(&ite->irq->irq_lock);
354         ite->irq->target_vcpu = vcpu;
355         spin_unlock(&ite->irq->irq_lock);
356 }
357
358 /*
359  * Updates the target VCPU for every LPI targeting this collection.
360  * Must be called with the its_lock mutex held.
361  */
362 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
363                                        struct its_collection *coll)
364 {
365         struct its_device *device;
366         struct its_ite *ite;
367
368         for_each_lpi_its(device, ite, its) {
369                 if (!ite->collection || coll != ite->collection)
370                         continue;
371
372                 update_affinity_ite(kvm, ite);
373         }
374 }
375
376 static u32 max_lpis_propbaser(u64 propbaser)
377 {
378         int nr_idbits = (propbaser & 0x1f) + 1;
379
380         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
381 }
382
383 /*
384  * Sync the pending table pending bit of LPIs targeting @vcpu
385  * with our own data structures. This relies on the LPI being
386  * mapped before.
387  */
388 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
389 {
390         gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
391         struct vgic_irq *irq;
392         int last_byte_offset = -1;
393         int ret = 0;
394         u32 *intids;
395         int nr_irqs, i;
396
397         nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
398         if (nr_irqs < 0)
399                 return nr_irqs;
400
401         for (i = 0; i < nr_irqs; i++) {
402                 int byte_offset, bit_nr;
403                 u8 pendmask;
404
405                 byte_offset = intids[i] / BITS_PER_BYTE;
406                 bit_nr = intids[i] % BITS_PER_BYTE;
407
408                 /*
409                  * For contiguously allocated LPIs chances are we just read
410                  * this very same byte in the last iteration. Reuse that.
411                  */
412                 if (byte_offset != last_byte_offset) {
413                         ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
414                                              &pendmask, 1);
415                         if (ret) {
416                                 kfree(intids);
417                                 return ret;
418                         }
419                         last_byte_offset = byte_offset;
420                 }
421
422                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
423                 spin_lock(&irq->irq_lock);
424                 irq->pending_latch = pendmask & (1U << bit_nr);
425                 vgic_queue_irq_unlock(vcpu->kvm, irq);
426                 vgic_put_irq(vcpu->kvm, irq);
427         }
428
429         kfree(intids);
430
431         return ret;
432 }
433
434 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
435                                               struct vgic_its *its,
436                                               gpa_t addr, unsigned int len)
437 {
438         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
439         u64 reg = GITS_TYPER_PLPIS;
440
441         /*
442          * We use linear CPU numbers for redistributor addressing,
443          * so GITS_TYPER.PTA is 0.
444          * Also we force all PROPBASER registers to be the same, so
445          * CommonLPIAff is 0 as well.
446          * To avoid memory waste in the guest, we keep the number of IDBits and
447          * DevBits low - as least for the time being.
448          */
449         reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
450         reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
451         reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
452
453         return extract_bytes(reg, addr & 7, len);
454 }
455
456 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
457                                              struct vgic_its *its,
458                                              gpa_t addr, unsigned int len)
459 {
460         u32 val;
461
462         val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
463         val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
464         return val;
465 }
466
467 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
468                                             struct vgic_its *its,
469                                             gpa_t addr, unsigned int len,
470                                             unsigned long val)
471 {
472         u32 rev = GITS_IIDR_REV(val);
473
474         if (rev >= NR_ITS_ABIS)
475                 return -EINVAL;
476         return vgic_its_set_abi(its, rev);
477 }
478
479 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
480                                                struct vgic_its *its,
481                                                gpa_t addr, unsigned int len)
482 {
483         switch (addr & 0xffff) {
484         case GITS_PIDR0:
485                 return 0x92;    /* part number, bits[7:0] */
486         case GITS_PIDR1:
487                 return 0xb4;    /* part number, bits[11:8] */
488         case GITS_PIDR2:
489                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
490         case GITS_PIDR4:
491                 return 0x40;    /* This is a 64K software visible page */
492         /* The following are the ID registers for (any) GIC. */
493         case GITS_CIDR0:
494                 return 0x0d;
495         case GITS_CIDR1:
496                 return 0xf0;
497         case GITS_CIDR2:
498                 return 0x05;
499         case GITS_CIDR3:
500                 return 0xb1;
501         }
502
503         return 0;
504 }
505
506 /*
507  * Find the target VCPU and the LPI number for a given devid/eventid pair
508  * and make this IRQ pending, possibly injecting it.
509  * Must be called with the its_lock mutex held.
510  * Returns 0 on success, a positive error value for any ITS mapping
511  * related errors and negative error values for generic errors.
512  */
513 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
514                                 u32 devid, u32 eventid)
515 {
516         struct kvm_vcpu *vcpu;
517         struct its_ite *ite;
518
519         if (!its->enabled)
520                 return -EBUSY;
521
522         ite = find_ite(its, devid, eventid);
523         if (!ite || !its_is_collection_mapped(ite->collection))
524                 return E_ITS_INT_UNMAPPED_INTERRUPT;
525
526         vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
527         if (!vcpu)
528                 return E_ITS_INT_UNMAPPED_INTERRUPT;
529
530         if (!vcpu->arch.vgic_cpu.lpis_enabled)
531                 return -EBUSY;
532
533         spin_lock(&ite->irq->irq_lock);
534         ite->irq->pending_latch = true;
535         vgic_queue_irq_unlock(kvm, ite->irq);
536
537         return 0;
538 }
539
540 static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
541 {
542         struct vgic_io_device *iodev;
543
544         if (dev->ops != &kvm_io_gic_ops)
545                 return NULL;
546
547         iodev = container_of(dev, struct vgic_io_device, dev);
548
549         if (iodev->iodev_type != IODEV_ITS)
550                 return NULL;
551
552         return iodev;
553 }
554
555 /*
556  * Queries the KVM IO bus framework to get the ITS pointer from the given
557  * doorbell address.
558  * We then call vgic_its_trigger_msi() with the decoded data.
559  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
560  */
561 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
562 {
563         u64 address;
564         struct kvm_io_device *kvm_io_dev;
565         struct vgic_io_device *iodev;
566         int ret;
567
568         if (!vgic_has_its(kvm))
569                 return -ENODEV;
570
571         if (!(msi->flags & KVM_MSI_VALID_DEVID))
572                 return -EINVAL;
573
574         address = (u64)msi->address_hi << 32 | msi->address_lo;
575
576         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
577         if (!kvm_io_dev)
578                 return -EINVAL;
579
580         iodev = vgic_get_its_iodev(kvm_io_dev);
581         if (!iodev)
582                 return -EINVAL;
583
584         mutex_lock(&iodev->its->its_lock);
585         ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
586         mutex_unlock(&iodev->its->its_lock);
587
588         if (ret < 0)
589                 return ret;
590
591         /*
592          * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
593          * if the guest has blocked the MSI. So we map any LPI mapping
594          * related error to that.
595          */
596         if (ret)
597                 return 0;
598         else
599                 return 1;
600 }
601
602 /* Requires the its_lock to be held. */
603 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
604 {
605         list_del(&ite->ite_list);
606
607         /* This put matches the get in vgic_add_lpi. */
608         if (ite->irq)
609                 vgic_put_irq(kvm, ite->irq);
610
611         kfree(ite);
612 }
613
614 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
615 {
616         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
617 }
618
619 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
620 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
621 #define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
622 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
623 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
624 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
625 #define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
626 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
627 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
628
629 /*
630  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
631  * Must be called with the its_lock mutex held.
632  */
633 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
634                                        u64 *its_cmd)
635 {
636         u32 device_id = its_cmd_get_deviceid(its_cmd);
637         u32 event_id = its_cmd_get_id(its_cmd);
638         struct its_ite *ite;
639
640
641         ite = find_ite(its, device_id, event_id);
642         if (ite && ite->collection) {
643                 /*
644                  * Though the spec talks about removing the pending state, we
645                  * don't bother here since we clear the ITTE anyway and the
646                  * pending state is a property of the ITTE struct.
647                  */
648                 its_free_ite(kvm, ite);
649                 return 0;
650         }
651
652         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
653 }
654
655 /*
656  * The MOVI command moves an ITTE to a different collection.
657  * Must be called with the its_lock mutex held.
658  */
659 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
660                                     u64 *its_cmd)
661 {
662         u32 device_id = its_cmd_get_deviceid(its_cmd);
663         u32 event_id = its_cmd_get_id(its_cmd);
664         u32 coll_id = its_cmd_get_collection(its_cmd);
665         struct kvm_vcpu *vcpu;
666         struct its_ite *ite;
667         struct its_collection *collection;
668
669         ite = find_ite(its, device_id, event_id);
670         if (!ite)
671                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
672
673         if (!its_is_collection_mapped(ite->collection))
674                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
675
676         collection = find_collection(its, coll_id);
677         if (!its_is_collection_mapped(collection))
678                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
679
680         ite->collection = collection;
681         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
682
683         spin_lock(&ite->irq->irq_lock);
684         ite->irq->target_vcpu = vcpu;
685         spin_unlock(&ite->irq->irq_lock);
686
687         return 0;
688 }
689
690 /*
691  * Check whether an ID can be stored into the corresponding guest table.
692  * For a direct table this is pretty easy, but gets a bit nasty for
693  * indirect tables. We check whether the resulting guest physical address
694  * is actually valid (covered by a memslot and guest accessible).
695  * For this we have to read the respective first level entry.
696  */
697 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
698                               gpa_t *eaddr)
699 {
700         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
701         u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
702         int esz = GITS_BASER_ENTRY_SIZE(baser);
703         int index;
704         gfn_t gfn;
705
706         switch (type) {
707         case GITS_BASER_TYPE_DEVICE:
708                 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
709                         return false;
710                 break;
711         case GITS_BASER_TYPE_COLLECTION:
712                 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
713                 if (id >= BIT_ULL(16))
714                         return false;
715                 break;
716         default:
717                 return false;
718         }
719
720         if (!(baser & GITS_BASER_INDIRECT)) {
721                 phys_addr_t addr;
722
723                 if (id >= (l1_tbl_size / esz))
724                         return false;
725
726                 addr = BASER_ADDRESS(baser) + id * esz;
727                 gfn = addr >> PAGE_SHIFT;
728
729                 if (eaddr)
730                         *eaddr = addr;
731                 return kvm_is_visible_gfn(its->dev->kvm, gfn);
732         }
733
734         /* calculate and check the index into the 1st level */
735         index = id / (SZ_64K / esz);
736         if (index >= (l1_tbl_size / sizeof(u64)))
737                 return false;
738
739         /* Each 1st level entry is represented by a 64-bit value. */
740         if (kvm_read_guest(its->dev->kvm,
741                            BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
742                            &indirect_ptr, sizeof(indirect_ptr)))
743                 return false;
744
745         indirect_ptr = le64_to_cpu(indirect_ptr);
746
747         /* check the valid bit of the first level entry */
748         if (!(indirect_ptr & BIT_ULL(63)))
749                 return false;
750
751         /*
752          * Mask the guest physical address and calculate the frame number.
753          * Any address beyond our supported 48 bits of PA will be caught
754          * by the actual check in the final step.
755          */
756         indirect_ptr &= GENMASK_ULL(51, 16);
757
758         /* Find the address of the actual entry */
759         index = id % (SZ_64K / esz);
760         indirect_ptr += index * esz;
761         gfn = indirect_ptr >> PAGE_SHIFT;
762
763         if (eaddr)
764                 *eaddr = indirect_ptr;
765         return kvm_is_visible_gfn(its->dev->kvm, gfn);
766 }
767
768 static int vgic_its_alloc_collection(struct vgic_its *its,
769                                      struct its_collection **colp,
770                                      u32 coll_id)
771 {
772         struct its_collection *collection;
773
774         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
775                 return E_ITS_MAPC_COLLECTION_OOR;
776
777         collection = kzalloc(sizeof(*collection), GFP_KERNEL);
778
779         collection->collection_id = coll_id;
780         collection->target_addr = COLLECTION_NOT_MAPPED;
781
782         list_add_tail(&collection->coll_list, &its->collection_list);
783         *colp = collection;
784
785         return 0;
786 }
787
788 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
789 {
790         struct its_collection *collection;
791         struct its_device *device;
792         struct its_ite *ite;
793
794         /*
795          * Clearing the mapping for that collection ID removes the
796          * entry from the list. If there wasn't any before, we can
797          * go home early.
798          */
799         collection = find_collection(its, coll_id);
800         if (!collection)
801                 return;
802
803         for_each_lpi_its(device, ite, its)
804                 if (ite->collection &&
805                     ite->collection->collection_id == coll_id)
806                         ite->collection = NULL;
807
808         list_del(&collection->coll_list);
809         kfree(collection);
810 }
811
812 /* Must be called with its_lock mutex held */
813 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
814                                           struct its_collection *collection,
815                                           u32 event_id)
816 {
817         struct its_ite *ite;
818
819         ite = kzalloc(sizeof(*ite), GFP_KERNEL);
820         if (!ite)
821                 return ERR_PTR(-ENOMEM);
822
823         ite->event_id   = event_id;
824         ite->collection = collection;
825
826         list_add_tail(&ite->ite_list, &device->itt_head);
827         return ite;
828 }
829
830 /*
831  * The MAPTI and MAPI commands map LPIs to ITTEs.
832  * Must be called with its_lock mutex held.
833  */
834 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
835                                     u64 *its_cmd)
836 {
837         u32 device_id = its_cmd_get_deviceid(its_cmd);
838         u32 event_id = its_cmd_get_id(its_cmd);
839         u32 coll_id = its_cmd_get_collection(its_cmd);
840         struct its_ite *ite;
841         struct kvm_vcpu *vcpu = NULL;
842         struct its_device *device;
843         struct its_collection *collection, *new_coll = NULL;
844         struct vgic_irq *irq;
845         int lpi_nr;
846
847         device = find_its_device(its, device_id);
848         if (!device)
849                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
850
851         if (event_id >= BIT_ULL(device->num_eventid_bits))
852                 return E_ITS_MAPTI_ID_OOR;
853
854         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
855                 lpi_nr = its_cmd_get_physical_id(its_cmd);
856         else
857                 lpi_nr = event_id;
858         if (lpi_nr < GIC_LPI_OFFSET ||
859             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
860                 return E_ITS_MAPTI_PHYSICALID_OOR;
861
862         /* If there is an existing mapping, behavior is UNPREDICTABLE. */
863         if (find_ite(its, device_id, event_id))
864                 return 0;
865
866         collection = find_collection(its, coll_id);
867         if (!collection) {
868                 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
869                 if (ret)
870                         return ret;
871                 new_coll = collection;
872         }
873
874         ite = vgic_its_alloc_ite(device, collection, event_id);
875         if (IS_ERR(ite)) {
876                 if (new_coll)
877                         vgic_its_free_collection(its, coll_id);
878                 return PTR_ERR(ite);
879         }
880
881         if (its_is_collection_mapped(collection))
882                 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
883
884         irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
885         if (IS_ERR(irq)) {
886                 if (new_coll)
887                         vgic_its_free_collection(its, coll_id);
888                 its_free_ite(kvm, ite);
889                 return PTR_ERR(irq);
890         }
891         ite->irq = irq;
892
893         return 0;
894 }
895
896 /* Requires the its_lock to be held. */
897 static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
898 {
899         struct its_ite *ite, *temp;
900
901         /*
902          * The spec says that unmapping a device with still valid
903          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
904          * since we cannot leave the memory unreferenced.
905          */
906         list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
907                 its_free_ite(kvm, ite);
908
909         list_del(&device->dev_list);
910         kfree(device);
911 }
912
913 /* Must be called with its_lock mutex held */
914 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
915                                                 u32 device_id, gpa_t itt_addr,
916                                                 u8 num_eventid_bits)
917 {
918         struct its_device *device;
919
920         device = kzalloc(sizeof(*device), GFP_KERNEL);
921         if (!device)
922                 return ERR_PTR(-ENOMEM);
923
924         device->device_id = device_id;
925         device->itt_addr = itt_addr;
926         device->num_eventid_bits = num_eventid_bits;
927         INIT_LIST_HEAD(&device->itt_head);
928
929         list_add_tail(&device->dev_list, &its->device_list);
930         return device;
931 }
932
933 /*
934  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
935  * Must be called with the its_lock mutex held.
936  */
937 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
938                                     u64 *its_cmd)
939 {
940         u32 device_id = its_cmd_get_deviceid(its_cmd);
941         bool valid = its_cmd_get_validbit(its_cmd);
942         u8 num_eventid_bits = its_cmd_get_size(its_cmd);
943         gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
944         struct its_device *device;
945
946         if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
947                 return E_ITS_MAPD_DEVICE_OOR;
948
949         if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
950                 return E_ITS_MAPD_ITTSIZE_OOR;
951
952         device = find_its_device(its, device_id);
953
954         /*
955          * The spec says that calling MAPD on an already mapped device
956          * invalidates all cached data for this device. We implement this
957          * by removing the mapping and re-establishing it.
958          */
959         if (device)
960                 vgic_its_unmap_device(kvm, device);
961
962         /*
963          * The spec does not say whether unmapping a not-mapped device
964          * is an error, so we are done in any case.
965          */
966         if (!valid)
967                 return 0;
968
969         device = vgic_its_alloc_device(its, device_id, itt_addr,
970                                        num_eventid_bits);
971         if (IS_ERR(device))
972                 return PTR_ERR(device);
973
974         return 0;
975 }
976
977 /*
978  * The MAPC command maps collection IDs to redistributors.
979  * Must be called with the its_lock mutex held.
980  */
981 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
982                                     u64 *its_cmd)
983 {
984         u16 coll_id;
985         u32 target_addr;
986         struct its_collection *collection;
987         bool valid;
988
989         valid = its_cmd_get_validbit(its_cmd);
990         coll_id = its_cmd_get_collection(its_cmd);
991         target_addr = its_cmd_get_target_addr(its_cmd);
992
993         if (target_addr >= atomic_read(&kvm->online_vcpus))
994                 return E_ITS_MAPC_PROCNUM_OOR;
995
996         if (!valid) {
997                 vgic_its_free_collection(its, coll_id);
998         } else {
999                 collection = find_collection(its, coll_id);
1000
1001                 if (!collection) {
1002                         int ret;
1003
1004                         ret = vgic_its_alloc_collection(its, &collection,
1005                                                         coll_id);
1006                         if (ret)
1007                                 return ret;
1008                         collection->target_addr = target_addr;
1009                 } else {
1010                         collection->target_addr = target_addr;
1011                         update_affinity_collection(kvm, its, collection);
1012                 }
1013         }
1014
1015         return 0;
1016 }
1017
1018 /*
1019  * The CLEAR command removes the pending state for a particular LPI.
1020  * Must be called with the its_lock mutex held.
1021  */
1022 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1023                                      u64 *its_cmd)
1024 {
1025         u32 device_id = its_cmd_get_deviceid(its_cmd);
1026         u32 event_id = its_cmd_get_id(its_cmd);
1027         struct its_ite *ite;
1028
1029
1030         ite = find_ite(its, device_id, event_id);
1031         if (!ite)
1032                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1033
1034         ite->irq->pending_latch = false;
1035
1036         return 0;
1037 }
1038
1039 /*
1040  * The INV command syncs the configuration bits from the memory table.
1041  * Must be called with the its_lock mutex held.
1042  */
1043 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1044                                    u64 *its_cmd)
1045 {
1046         u32 device_id = its_cmd_get_deviceid(its_cmd);
1047         u32 event_id = its_cmd_get_id(its_cmd);
1048         struct its_ite *ite;
1049
1050
1051         ite = find_ite(its, device_id, event_id);
1052         if (!ite)
1053                 return E_ITS_INV_UNMAPPED_INTERRUPT;
1054
1055         return update_lpi_config(kvm, ite->irq, NULL);
1056 }
1057
1058 /*
1059  * The INVALL command requests flushing of all IRQ data in this collection.
1060  * Find the VCPU mapped to that collection, then iterate over the VM's list
1061  * of mapped LPIs and update the configuration for each IRQ which targets
1062  * the specified vcpu. The configuration will be read from the in-memory
1063  * configuration table.
1064  * Must be called with the its_lock mutex held.
1065  */
1066 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1067                                       u64 *its_cmd)
1068 {
1069         u32 coll_id = its_cmd_get_collection(its_cmd);
1070         struct its_collection *collection;
1071         struct kvm_vcpu *vcpu;
1072         struct vgic_irq *irq;
1073         u32 *intids;
1074         int irq_count, i;
1075
1076         collection = find_collection(its, coll_id);
1077         if (!its_is_collection_mapped(collection))
1078                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1079
1080         vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1081
1082         irq_count = vgic_copy_lpi_list(vcpu, &intids);
1083         if (irq_count < 0)
1084                 return irq_count;
1085
1086         for (i = 0; i < irq_count; i++) {
1087                 irq = vgic_get_irq(kvm, NULL, intids[i]);
1088                 if (!irq)
1089                         continue;
1090                 update_lpi_config(kvm, irq, vcpu);
1091                 vgic_put_irq(kvm, irq);
1092         }
1093
1094         kfree(intids);
1095
1096         return 0;
1097 }
1098
1099 /*
1100  * The MOVALL command moves the pending state of all IRQs targeting one
1101  * redistributor to another. We don't hold the pending state in the VCPUs,
1102  * but in the IRQs instead, so there is really not much to do for us here.
1103  * However the spec says that no IRQ must target the old redistributor
1104  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1105  * This command affects all LPIs in the system that target that redistributor.
1106  */
1107 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1108                                       u64 *its_cmd)
1109 {
1110         struct vgic_dist *dist = &kvm->arch.vgic;
1111         u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1112         u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1113         struct kvm_vcpu *vcpu1, *vcpu2;
1114         struct vgic_irq *irq;
1115
1116         if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1117             target2_addr >= atomic_read(&kvm->online_vcpus))
1118                 return E_ITS_MOVALL_PROCNUM_OOR;
1119
1120         if (target1_addr == target2_addr)
1121                 return 0;
1122
1123         vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1124         vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1125
1126         spin_lock(&dist->lpi_list_lock);
1127
1128         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
1129                 spin_lock(&irq->irq_lock);
1130
1131                 if (irq->target_vcpu == vcpu1)
1132                         irq->target_vcpu = vcpu2;
1133
1134                 spin_unlock(&irq->irq_lock);
1135         }
1136
1137         spin_unlock(&dist->lpi_list_lock);
1138
1139         return 0;
1140 }
1141
1142 /*
1143  * The INT command injects the LPI associated with that DevID/EvID pair.
1144  * Must be called with the its_lock mutex held.
1145  */
1146 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1147                                    u64 *its_cmd)
1148 {
1149         u32 msi_data = its_cmd_get_id(its_cmd);
1150         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1151
1152         return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1153 }
1154
1155 /*
1156  * This function is called with the its_cmd lock held, but the ITS data
1157  * structure lock dropped.
1158  */
1159 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1160                                    u64 *its_cmd)
1161 {
1162         int ret = -ENODEV;
1163
1164         mutex_lock(&its->its_lock);
1165         switch (its_cmd_get_command(its_cmd)) {
1166         case GITS_CMD_MAPD:
1167                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1168                 break;
1169         case GITS_CMD_MAPC:
1170                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1171                 break;
1172         case GITS_CMD_MAPI:
1173                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1174                 break;
1175         case GITS_CMD_MAPTI:
1176                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1177                 break;
1178         case GITS_CMD_MOVI:
1179                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1180                 break;
1181         case GITS_CMD_DISCARD:
1182                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1183                 break;
1184         case GITS_CMD_CLEAR:
1185                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1186                 break;
1187         case GITS_CMD_MOVALL:
1188                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1189                 break;
1190         case GITS_CMD_INT:
1191                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1192                 break;
1193         case GITS_CMD_INV:
1194                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1195                 break;
1196         case GITS_CMD_INVALL:
1197                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1198                 break;
1199         case GITS_CMD_SYNC:
1200                 /* we ignore this command: we are in sync all of the time */
1201                 ret = 0;
1202                 break;
1203         }
1204         mutex_unlock(&its->its_lock);
1205
1206         return ret;
1207 }
1208
1209 static u64 vgic_sanitise_its_baser(u64 reg)
1210 {
1211         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1212                                   GITS_BASER_SHAREABILITY_SHIFT,
1213                                   vgic_sanitise_shareability);
1214         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1215                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1216                                   vgic_sanitise_inner_cacheability);
1217         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1218                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1219                                   vgic_sanitise_outer_cacheability);
1220
1221         /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1222         reg &= ~GENMASK_ULL(15, 12);
1223
1224         /* We support only one (ITS) page size: 64K */
1225         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1226
1227         return reg;
1228 }
1229
1230 static u64 vgic_sanitise_its_cbaser(u64 reg)
1231 {
1232         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1233                                   GITS_CBASER_SHAREABILITY_SHIFT,
1234                                   vgic_sanitise_shareability);
1235         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1236                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1237                                   vgic_sanitise_inner_cacheability);
1238         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1239                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1240                                   vgic_sanitise_outer_cacheability);
1241
1242         /*
1243          * Sanitise the physical address to be 64k aligned.
1244          * Also limit the physical addresses to 48 bits.
1245          */
1246         reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1247
1248         return reg;
1249 }
1250
1251 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1252                                                struct vgic_its *its,
1253                                                gpa_t addr, unsigned int len)
1254 {
1255         return extract_bytes(its->cbaser, addr & 7, len);
1256 }
1257
1258 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1259                                        gpa_t addr, unsigned int len,
1260                                        unsigned long val)
1261 {
1262         /* When GITS_CTLR.Enable is 1, this register is RO. */
1263         if (its->enabled)
1264                 return;
1265
1266         mutex_lock(&its->cmd_lock);
1267         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1268         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1269         its->creadr = 0;
1270         /*
1271          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1272          * it to CREADR to make sure we start with an empty command buffer.
1273          */
1274         its->cwriter = its->creadr;
1275         mutex_unlock(&its->cmd_lock);
1276 }
1277
1278 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1279 #define ITS_CMD_SIZE                    32
1280 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1281
1282 /* Must be called with the cmd_lock held. */
1283 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1284 {
1285         gpa_t cbaser;
1286         u64 cmd_buf[4];
1287
1288         /* Commands are only processed when the ITS is enabled. */
1289         if (!its->enabled)
1290                 return;
1291
1292         cbaser = CBASER_ADDRESS(its->cbaser);
1293
1294         while (its->cwriter != its->creadr) {
1295                 int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1296                                          cmd_buf, ITS_CMD_SIZE);
1297                 /*
1298                  * If kvm_read_guest() fails, this could be due to the guest
1299                  * programming a bogus value in CBASER or something else going
1300                  * wrong from which we cannot easily recover.
1301                  * According to section 6.3.2 in the GICv3 spec we can just
1302                  * ignore that command then.
1303                  */
1304                 if (!ret)
1305                         vgic_its_handle_command(kvm, its, cmd_buf);
1306
1307                 its->creadr += ITS_CMD_SIZE;
1308                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1309                         its->creadr = 0;
1310         }
1311 }
1312
1313 /*
1314  * By writing to CWRITER the guest announces new commands to be processed.
1315  * To avoid any races in the first place, we take the its_cmd lock, which
1316  * protects our ring buffer variables, so that there is only one user
1317  * per ITS handling commands at a given time.
1318  */
1319 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1320                                         gpa_t addr, unsigned int len,
1321                                         unsigned long val)
1322 {
1323         u64 reg;
1324
1325         if (!its)
1326                 return;
1327
1328         mutex_lock(&its->cmd_lock);
1329
1330         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1331         reg = ITS_CMD_OFFSET(reg);
1332         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1333                 mutex_unlock(&its->cmd_lock);
1334                 return;
1335         }
1336         its->cwriter = reg;
1337
1338         vgic_its_process_commands(kvm, its);
1339
1340         mutex_unlock(&its->cmd_lock);
1341 }
1342
1343 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1344                                                 struct vgic_its *its,
1345                                                 gpa_t addr, unsigned int len)
1346 {
1347         return extract_bytes(its->cwriter, addr & 0x7, len);
1348 }
1349
1350 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1351                                                struct vgic_its *its,
1352                                                gpa_t addr, unsigned int len)
1353 {
1354         return extract_bytes(its->creadr, addr & 0x7, len);
1355 }
1356
1357 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1358                                               struct vgic_its *its,
1359                                               gpa_t addr, unsigned int len,
1360                                               unsigned long val)
1361 {
1362         u32 cmd_offset;
1363         int ret = 0;
1364
1365         mutex_lock(&its->cmd_lock);
1366
1367         if (its->enabled) {
1368                 ret = -EBUSY;
1369                 goto out;
1370         }
1371
1372         cmd_offset = ITS_CMD_OFFSET(val);
1373         if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1374                 ret = -EINVAL;
1375                 goto out;
1376         }
1377
1378         its->creadr = cmd_offset;
1379 out:
1380         mutex_unlock(&its->cmd_lock);
1381         return ret;
1382 }
1383
1384 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1385 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1386                                               struct vgic_its *its,
1387                                               gpa_t addr, unsigned int len)
1388 {
1389         u64 reg;
1390
1391         switch (BASER_INDEX(addr)) {
1392         case 0:
1393                 reg = its->baser_device_table;
1394                 break;
1395         case 1:
1396                 reg = its->baser_coll_table;
1397                 break;
1398         default:
1399                 reg = 0;
1400                 break;
1401         }
1402
1403         return extract_bytes(reg, addr & 7, len);
1404 }
1405
1406 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1407 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1408                                       struct vgic_its *its,
1409                                       gpa_t addr, unsigned int len,
1410                                       unsigned long val)
1411 {
1412         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1413         u64 entry_size, device_type;
1414         u64 reg, *regptr, clearbits = 0;
1415
1416         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1417         if (its->enabled)
1418                 return;
1419
1420         switch (BASER_INDEX(addr)) {
1421         case 0:
1422                 regptr = &its->baser_device_table;
1423                 entry_size = abi->dte_esz;
1424                 device_type = GITS_BASER_TYPE_DEVICE;
1425                 break;
1426         case 1:
1427                 regptr = &its->baser_coll_table;
1428                 entry_size = abi->cte_esz;
1429                 device_type = GITS_BASER_TYPE_COLLECTION;
1430                 clearbits = GITS_BASER_INDIRECT;
1431                 break;
1432         default:
1433                 return;
1434         }
1435
1436         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1437         reg &= ~GITS_BASER_RO_MASK;
1438         reg &= ~clearbits;
1439
1440         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1441         reg |= device_type << GITS_BASER_TYPE_SHIFT;
1442         reg = vgic_sanitise_its_baser(reg);
1443
1444         *regptr = reg;
1445 }
1446
1447 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1448                                              struct vgic_its *its,
1449                                              gpa_t addr, unsigned int len)
1450 {
1451         u32 reg = 0;
1452
1453         mutex_lock(&its->cmd_lock);
1454         if (its->creadr == its->cwriter)
1455                 reg |= GITS_CTLR_QUIESCENT;
1456         if (its->enabled)
1457                 reg |= GITS_CTLR_ENABLE;
1458         mutex_unlock(&its->cmd_lock);
1459
1460         return reg;
1461 }
1462
1463 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1464                                      gpa_t addr, unsigned int len,
1465                                      unsigned long val)
1466 {
1467         mutex_lock(&its->cmd_lock);
1468
1469         its->enabled = !!(val & GITS_CTLR_ENABLE);
1470
1471         /*
1472          * Try to process any pending commands. This function bails out early
1473          * if the ITS is disabled or no commands have been queued.
1474          */
1475         vgic_its_process_commands(kvm, its);
1476
1477         mutex_unlock(&its->cmd_lock);
1478 }
1479
1480 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1481 {                                                               \
1482         .reg_offset = off,                                      \
1483         .len = length,                                          \
1484         .access_flags = acc,                                    \
1485         .its_read = rd,                                         \
1486         .its_write = wr,                                        \
1487 }
1488
1489 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1490 {                                                               \
1491         .reg_offset = off,                                      \
1492         .len = length,                                          \
1493         .access_flags = acc,                                    \
1494         .its_read = rd,                                         \
1495         .its_write = wr,                                        \
1496         .uaccess_its_write = uwr,                               \
1497 }
1498
1499 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1500                               gpa_t addr, unsigned int len, unsigned long val)
1501 {
1502         /* Ignore */
1503 }
1504
1505 static struct vgic_register_region its_registers[] = {
1506         REGISTER_ITS_DESC(GITS_CTLR,
1507                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1508                 VGIC_ACCESS_32bit),
1509         REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1510                 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1511                 vgic_mmio_uaccess_write_its_iidr, 4,
1512                 VGIC_ACCESS_32bit),
1513         REGISTER_ITS_DESC(GITS_TYPER,
1514                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1515                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1516         REGISTER_ITS_DESC(GITS_CBASER,
1517                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1518                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1519         REGISTER_ITS_DESC(GITS_CWRITER,
1520                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1521                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1522         REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1523                 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1524                 vgic_mmio_uaccess_write_its_creadr, 8,
1525                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1526         REGISTER_ITS_DESC(GITS_BASER,
1527                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1528                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1529         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1530                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1531                 VGIC_ACCESS_32bit),
1532 };
1533
1534 /* This is called on setting the LPI enable bit in the redistributor. */
1535 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1536 {
1537         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1538                 its_sync_lpi_pending_table(vcpu);
1539 }
1540
1541 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1542                                    u64 addr)
1543 {
1544         struct vgic_io_device *iodev = &its->iodev;
1545         int ret;
1546
1547         mutex_lock(&kvm->slots_lock);
1548         if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1549                 ret = -EBUSY;
1550                 goto out;
1551         }
1552
1553         its->vgic_its_base = addr;
1554         iodev->regions = its_registers;
1555         iodev->nr_regions = ARRAY_SIZE(its_registers);
1556         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1557
1558         iodev->base_addr = its->vgic_its_base;
1559         iodev->iodev_type = IODEV_ITS;
1560         iodev->its = its;
1561         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1562                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1563 out:
1564         mutex_unlock(&kvm->slots_lock);
1565
1566         return ret;
1567 }
1568
1569 #define INITIAL_BASER_VALUE                                               \
1570         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1571          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1572          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1573          GITS_BASER_PAGE_SIZE_64K)
1574
1575 #define INITIAL_PROPBASER_VALUE                                           \
1576         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1577          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1578          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1579
1580 static int vgic_its_create(struct kvm_device *dev, u32 type)
1581 {
1582         struct vgic_its *its;
1583
1584         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1585                 return -ENODEV;
1586
1587         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1588         if (!its)
1589                 return -ENOMEM;
1590
1591         mutex_init(&its->its_lock);
1592         mutex_init(&its->cmd_lock);
1593
1594         its->vgic_its_base = VGIC_ADDR_UNDEF;
1595
1596         INIT_LIST_HEAD(&its->device_list);
1597         INIT_LIST_HEAD(&its->collection_list);
1598
1599         dev->kvm->arch.vgic.msis_require_devid = true;
1600         dev->kvm->arch.vgic.has_its = true;
1601         its->enabled = false;
1602         its->dev = dev;
1603
1604         its->baser_device_table = INITIAL_BASER_VALUE                   |
1605                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1606         its->baser_coll_table = INITIAL_BASER_VALUE |
1607                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1608         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1609
1610         dev->private = its;
1611
1612         return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1613 }
1614
1615 static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev)
1616 {
1617         struct its_ite *ite, *tmp;
1618
1619         list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list)
1620                 its_free_ite(kvm, ite);
1621         list_del(&dev->dev_list);
1622         kfree(dev);
1623 }
1624
1625 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1626 {
1627         struct kvm *kvm = kvm_dev->kvm;
1628         struct vgic_its *its = kvm_dev->private;
1629         struct list_head *cur, *temp;
1630
1631         /*
1632          * We may end up here without the lists ever having been initialized.
1633          * Check this and bail out early to avoid dereferencing a NULL pointer.
1634          */
1635         if (!its->device_list.next)
1636                 return;
1637
1638         mutex_lock(&its->its_lock);
1639         list_for_each_safe(cur, temp, &its->device_list) {
1640                 struct its_device *dev;
1641
1642                 dev = list_entry(cur, struct its_device, dev_list);
1643                 vgic_its_free_device(kvm, dev);
1644         }
1645
1646         list_for_each_safe(cur, temp, &its->collection_list) {
1647                 struct its_collection *coll;
1648
1649                 coll = list_entry(cur, struct its_collection, coll_list);
1650                 list_del(cur);
1651                 kfree(coll);
1652         }
1653         mutex_unlock(&its->its_lock);
1654
1655         kfree(its);
1656 }
1657
1658 int vgic_its_has_attr_regs(struct kvm_device *dev,
1659                            struct kvm_device_attr *attr)
1660 {
1661         const struct vgic_register_region *region;
1662         gpa_t offset = attr->attr;
1663         int align;
1664
1665         align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1666
1667         if (offset & align)
1668                 return -EINVAL;
1669
1670         region = vgic_find_mmio_region(its_registers,
1671                                        ARRAY_SIZE(its_registers),
1672                                        offset);
1673         if (!region)
1674                 return -ENXIO;
1675
1676         return 0;
1677 }
1678
1679 int vgic_its_attr_regs_access(struct kvm_device *dev,
1680                               struct kvm_device_attr *attr,
1681                               u64 *reg, bool is_write)
1682 {
1683         const struct vgic_register_region *region;
1684         struct vgic_its *its;
1685         gpa_t addr, offset;
1686         unsigned int len;
1687         int align, ret = 0;
1688
1689         its = dev->private;
1690         offset = attr->attr;
1691
1692         /*
1693          * Although the spec supports upper/lower 32-bit accesses to
1694          * 64-bit ITS registers, the userspace ABI requires 64-bit
1695          * accesses to all 64-bit wide registers. We therefore only
1696          * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1697          * registers
1698          */
1699         if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1700                 align = 0x3;
1701         else
1702                 align = 0x7;
1703
1704         if (offset & align)
1705                 return -EINVAL;
1706
1707         mutex_lock(&dev->kvm->lock);
1708
1709         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1710                 ret = -ENXIO;
1711                 goto out;
1712         }
1713
1714         region = vgic_find_mmio_region(its_registers,
1715                                        ARRAY_SIZE(its_registers),
1716                                        offset);
1717         if (!region) {
1718                 ret = -ENXIO;
1719                 goto out;
1720         }
1721
1722         if (!lock_all_vcpus(dev->kvm)) {
1723                 ret = -EBUSY;
1724                 goto out;
1725         }
1726
1727         addr = its->vgic_its_base + offset;
1728
1729         len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1730
1731         if (is_write) {
1732                 if (region->uaccess_its_write)
1733                         ret = region->uaccess_its_write(dev->kvm, its, addr,
1734                                                         len, *reg);
1735                 else
1736                         region->its_write(dev->kvm, its, addr, len, *reg);
1737         } else {
1738                 *reg = region->its_read(dev->kvm, its, addr, len);
1739         }
1740         unlock_all_vcpus(dev->kvm);
1741 out:
1742         mutex_unlock(&dev->kvm->lock);
1743         return ret;
1744 }
1745
1746 static u32 compute_next_devid_offset(struct list_head *h,
1747                                      struct its_device *dev)
1748 {
1749         struct its_device *next;
1750         u32 next_offset;
1751
1752         if (list_is_last(&dev->dev_list, h))
1753                 return 0;
1754         next = list_next_entry(dev, dev_list);
1755         next_offset = next->device_id - dev->device_id;
1756
1757         return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1758 }
1759
1760 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1761 {
1762         struct its_ite *next;
1763         u32 next_offset;
1764
1765         if (list_is_last(&ite->ite_list, h))
1766                 return 0;
1767         next = list_next_entry(ite, ite_list);
1768         next_offset = next->event_id - ite->event_id;
1769
1770         return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1771 }
1772
1773 /**
1774  * entry_fn_t - Callback called on a table entry restore path
1775  * @its: its handle
1776  * @id: id of the entry
1777  * @entry: pointer to the entry
1778  * @opaque: pointer to an opaque data
1779  *
1780  * Return: < 0 on error, 0 if last element was identified, id offset to next
1781  * element otherwise
1782  */
1783 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1784                           void *opaque);
1785
1786 /**
1787  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1788  * to each entry
1789  *
1790  * @its: its handle
1791  * @base: base gpa of the table
1792  * @size: size of the table in bytes
1793  * @esz: entry size in bytes
1794  * @start_id: the ID of the first entry in the table
1795  * (non zero for 2d level tables)
1796  * @fn: function to apply on each entry
1797  *
1798  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1799  * (the last element may not be found on second level tables)
1800  */
1801 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1802                           int start_id, entry_fn_t fn, void *opaque)
1803 {
1804         void *entry = kzalloc(esz, GFP_KERNEL);
1805         struct kvm *kvm = its->dev->kvm;
1806         unsigned long len = size;
1807         int id = start_id;
1808         gpa_t gpa = base;
1809         int ret;
1810
1811         while (len > 0) {
1812                 int next_offset;
1813                 size_t byte_offset;
1814
1815                 ret = kvm_read_guest(kvm, gpa, entry, esz);
1816                 if (ret)
1817                         goto out;
1818
1819                 next_offset = fn(its, id, entry, opaque);
1820                 if (next_offset <= 0) {
1821                         ret = next_offset;
1822                         goto out;
1823                 }
1824
1825                 byte_offset = next_offset * esz;
1826                 id += next_offset;
1827                 gpa += byte_offset;
1828                 len -= byte_offset;
1829         }
1830         ret =  1;
1831
1832 out:
1833         kfree(entry);
1834         return ret;
1835 }
1836
1837 /**
1838  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1839  */
1840 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1841                               struct its_ite *ite, gpa_t gpa, int ite_esz)
1842 {
1843         struct kvm *kvm = its->dev->kvm;
1844         u32 next_offset;
1845         u64 val;
1846
1847         next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1848         val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1849                ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1850                 ite->collection->collection_id;
1851         val = cpu_to_le64(val);
1852         return kvm_write_guest(kvm, gpa, &val, ite_esz);
1853 }
1854
1855 /**
1856  * vgic_its_restore_ite - restore an interrupt translation entry
1857  * @event_id: id used for indexing
1858  * @ptr: pointer to the ITE entry
1859  * @opaque: pointer to the its_device
1860  */
1861 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1862                                 void *ptr, void *opaque)
1863 {
1864         struct its_device *dev = (struct its_device *)opaque;
1865         struct its_collection *collection;
1866         struct kvm *kvm = its->dev->kvm;
1867         struct kvm_vcpu *vcpu = NULL;
1868         u64 val;
1869         u64 *p = (u64 *)ptr;
1870         struct vgic_irq *irq;
1871         u32 coll_id, lpi_id;
1872         struct its_ite *ite;
1873         u32 offset;
1874
1875         val = *p;
1876
1877         val = le64_to_cpu(val);
1878
1879         coll_id = val & KVM_ITS_ITE_ICID_MASK;
1880         lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1881
1882         if (!lpi_id)
1883                 return 1; /* invalid entry, no choice but to scan next entry */
1884
1885         if (lpi_id < VGIC_MIN_LPI)
1886                 return -EINVAL;
1887
1888         offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1889         if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1890                 return -EINVAL;
1891
1892         collection = find_collection(its, coll_id);
1893         if (!collection)
1894                 return -EINVAL;
1895
1896         ite = vgic_its_alloc_ite(dev, collection, event_id);
1897         if (IS_ERR(ite))
1898                 return PTR_ERR(ite);
1899
1900         if (its_is_collection_mapped(collection))
1901                 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1902
1903         irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1904         if (IS_ERR(irq))
1905                 return PTR_ERR(irq);
1906         ite->irq = irq;
1907
1908         return offset;
1909 }
1910
1911 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1912                             struct list_head *b)
1913 {
1914         struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1915         struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1916
1917         if (itea->event_id < iteb->event_id)
1918                 return -1;
1919         else
1920                 return 1;
1921 }
1922
1923 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1924 {
1925         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1926         gpa_t base = device->itt_addr;
1927         struct its_ite *ite;
1928         int ret;
1929         int ite_esz = abi->ite_esz;
1930
1931         list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
1932
1933         list_for_each_entry(ite, &device->itt_head, ite_list) {
1934                 gpa_t gpa = base + ite->event_id * ite_esz;
1935
1936                 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
1937                 if (ret)
1938                         return ret;
1939         }
1940         return 0;
1941 }
1942
1943 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
1944 {
1945         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1946         gpa_t base = dev->itt_addr;
1947         int ret;
1948         int ite_esz = abi->ite_esz;
1949         size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
1950
1951         ret = scan_its_table(its, base, max_size, ite_esz, 0,
1952                              vgic_its_restore_ite, dev);
1953
1954         return ret;
1955 }
1956
1957 /**
1958  * vgic_its_save_dte - Save a device table entry at a given GPA
1959  *
1960  * @its: ITS handle
1961  * @dev: ITS device
1962  * @ptr: GPA
1963  */
1964 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
1965                              gpa_t ptr, int dte_esz)
1966 {
1967         struct kvm *kvm = its->dev->kvm;
1968         u64 val, itt_addr_field;
1969         u32 next_offset;
1970
1971         itt_addr_field = dev->itt_addr >> 8;
1972         next_offset = compute_next_devid_offset(&its->device_list, dev);
1973         val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
1974                ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
1975                (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
1976                 (dev->num_eventid_bits - 1));
1977         val = cpu_to_le64(val);
1978         return kvm_write_guest(kvm, ptr, &val, dte_esz);
1979 }
1980
1981 /**
1982  * vgic_its_restore_dte - restore a device table entry
1983  *
1984  * @its: its handle
1985  * @id: device id the DTE corresponds to
1986  * @ptr: kernel VA where the 8 byte DTE is located
1987  * @opaque: unused
1988  *
1989  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
1990  * next dte otherwise
1991  */
1992 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
1993                                 void *ptr, void *opaque)
1994 {
1995         struct its_device *dev;
1996         gpa_t itt_addr;
1997         u8 num_eventid_bits;
1998         u64 entry = *(u64 *)ptr;
1999         bool valid;
2000         u32 offset;
2001         int ret;
2002
2003         entry = le64_to_cpu(entry);
2004
2005         valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2006         num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2007         itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2008                         >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2009
2010         if (!valid)
2011                 return 1;
2012
2013         /* dte entry is valid */
2014         offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2015
2016         dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2017         if (IS_ERR(dev))
2018                 return PTR_ERR(dev);
2019
2020         ret = vgic_its_restore_itt(its, dev);
2021         if (ret) {
2022                 vgic_its_free_device(its->dev->kvm, dev);
2023                 return ret;
2024         }
2025
2026         return offset;
2027 }
2028
2029 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2030                                struct list_head *b)
2031 {
2032         struct its_device *deva = container_of(a, struct its_device, dev_list);
2033         struct its_device *devb = container_of(b, struct its_device, dev_list);
2034
2035         if (deva->device_id < devb->device_id)
2036                 return -1;
2037         else
2038                 return 1;
2039 }
2040
2041 /**
2042  * vgic_its_save_device_tables - Save the device table and all ITT
2043  * into guest RAM
2044  *
2045  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2046  * returns the GPA of the device entry
2047  */
2048 static int vgic_its_save_device_tables(struct vgic_its *its)
2049 {
2050         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2051         struct its_device *dev;
2052         int dte_esz = abi->dte_esz;
2053         u64 baser;
2054
2055         baser = its->baser_device_table;
2056
2057         list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2058
2059         list_for_each_entry(dev, &its->device_list, dev_list) {
2060                 int ret;
2061                 gpa_t eaddr;
2062
2063                 if (!vgic_its_check_id(its, baser,
2064                                        dev->device_id, &eaddr))
2065                         return -EINVAL;
2066
2067                 ret = vgic_its_save_itt(its, dev);
2068                 if (ret)
2069                         return ret;
2070
2071                 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2072                 if (ret)
2073                         return ret;
2074         }
2075         return 0;
2076 }
2077
2078 /**
2079  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2080  *
2081  * @its: its handle
2082  * @id: index of the entry in the L1 table
2083  * @addr: kernel VA
2084  * @opaque: unused
2085  *
2086  * L1 table entries are scanned by steps of 1 entry
2087  * Return < 0 if error, 0 if last dte was found when scanning the L2
2088  * table, +1 otherwise (meaning next L1 entry must be scanned)
2089  */
2090 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2091                          void *opaque)
2092 {
2093         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2094         int l2_start_id = id * (SZ_64K / abi->dte_esz);
2095         u64 entry = *(u64 *)addr;
2096         int dte_esz = abi->dte_esz;
2097         gpa_t gpa;
2098         int ret;
2099
2100         entry = le64_to_cpu(entry);
2101
2102         if (!(entry & KVM_ITS_L1E_VALID_MASK))
2103                 return 1;
2104
2105         gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2106
2107         ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2108                              l2_start_id, vgic_its_restore_dte, NULL);
2109
2110         if (ret <= 0)
2111                 return ret;
2112
2113         return 1;
2114 }
2115
2116 /**
2117  * vgic_its_restore_device_tables - Restore the device table and all ITT
2118  * from guest RAM to internal data structs
2119  */
2120 static int vgic_its_restore_device_tables(struct vgic_its *its)
2121 {
2122         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2123         u64 baser = its->baser_device_table;
2124         int l1_esz, ret;
2125         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2126         gpa_t l1_gpa;
2127
2128         if (!(baser & GITS_BASER_VALID))
2129                 return 0;
2130
2131         l1_gpa = BASER_ADDRESS(baser);
2132
2133         if (baser & GITS_BASER_INDIRECT) {
2134                 l1_esz = GITS_LVL1_ENTRY_SIZE;
2135                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2136                                      handle_l1_dte, NULL);
2137         } else {
2138                 l1_esz = abi->dte_esz;
2139                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2140                                      vgic_its_restore_dte, NULL);
2141         }
2142
2143         if (ret > 0)
2144                 ret = -EINVAL;
2145
2146         return ret;
2147 }
2148
2149 static int vgic_its_save_cte(struct vgic_its *its,
2150                              struct its_collection *collection,
2151                              gpa_t gpa, int esz)
2152 {
2153         u64 val;
2154
2155         val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2156                ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2157                collection->collection_id);
2158         val = cpu_to_le64(val);
2159         return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2160 }
2161
2162 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2163 {
2164         struct its_collection *collection;
2165         struct kvm *kvm = its->dev->kvm;
2166         u32 target_addr, coll_id;
2167         u64 val;
2168         int ret;
2169
2170         BUG_ON(esz > sizeof(val));
2171         ret = kvm_read_guest(kvm, gpa, &val, esz);
2172         if (ret)
2173                 return ret;
2174         val = le64_to_cpu(val);
2175         if (!(val & KVM_ITS_CTE_VALID_MASK))
2176                 return 0;
2177
2178         target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2179         coll_id = val & KVM_ITS_CTE_ICID_MASK;
2180
2181         if (target_addr >= atomic_read(&kvm->online_vcpus))
2182                 return -EINVAL;
2183
2184         collection = find_collection(its, coll_id);
2185         if (collection)
2186                 return -EEXIST;
2187         ret = vgic_its_alloc_collection(its, &collection, coll_id);
2188         if (ret)
2189                 return ret;
2190         collection->target_addr = target_addr;
2191         return 1;
2192 }
2193
2194 /**
2195  * vgic_its_save_collection_table - Save the collection table into
2196  * guest RAM
2197  */
2198 static int vgic_its_save_collection_table(struct vgic_its *its)
2199 {
2200         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2201         struct its_collection *collection;
2202         u64 val;
2203         gpa_t gpa;
2204         size_t max_size, filled = 0;
2205         int ret, cte_esz = abi->cte_esz;
2206
2207         gpa = BASER_ADDRESS(its->baser_coll_table);
2208         if (!gpa)
2209                 return 0;
2210
2211         max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2212
2213         list_for_each_entry(collection, &its->collection_list, coll_list) {
2214                 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2215                 if (ret)
2216                         return ret;
2217                 gpa += cte_esz;
2218                 filled += cte_esz;
2219         }
2220
2221         if (filled == max_size)
2222                 return 0;
2223
2224         /*
2225          * table is not fully filled, add a last dummy element
2226          * with valid bit unset
2227          */
2228         val = 0;
2229         BUG_ON(cte_esz > sizeof(val));
2230         ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2231         return ret;
2232 }
2233
2234 /**
2235  * vgic_its_restore_collection_table - reads the collection table
2236  * in guest memory and restores the ITS internal state. Requires the
2237  * BASER registers to be restored before.
2238  */
2239 static int vgic_its_restore_collection_table(struct vgic_its *its)
2240 {
2241         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2242         int cte_esz = abi->cte_esz;
2243         size_t max_size, read = 0;
2244         gpa_t gpa;
2245         int ret;
2246
2247         if (!(its->baser_coll_table & GITS_BASER_VALID))
2248                 return 0;
2249
2250         gpa = BASER_ADDRESS(its->baser_coll_table);
2251
2252         max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2253
2254         while (read < max_size) {
2255                 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2256                 if (ret <= 0)
2257                         break;
2258                 gpa += cte_esz;
2259                 read += cte_esz;
2260         }
2261         return ret;
2262 }
2263
2264 /**
2265  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2266  * according to v0 ABI
2267  */
2268 static int vgic_its_save_tables_v0(struct vgic_its *its)
2269 {
2270         struct kvm *kvm = its->dev->kvm;
2271         int ret;
2272
2273         mutex_lock(&kvm->lock);
2274         mutex_lock(&its->its_lock);
2275
2276         if (!lock_all_vcpus(kvm)) {
2277                 mutex_unlock(&its->its_lock);
2278                 mutex_unlock(&kvm->lock);
2279                 return -EBUSY;
2280         }
2281
2282         ret = vgic_its_save_device_tables(its);
2283         if (ret)
2284                 goto out;
2285
2286         ret = vgic_its_save_collection_table(its);
2287
2288 out:
2289         unlock_all_vcpus(kvm);
2290         mutex_unlock(&its->its_lock);
2291         mutex_unlock(&kvm->lock);
2292         return ret;
2293 }
2294
2295 /**
2296  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2297  * to internal data structs according to V0 ABI
2298  *
2299  */
2300 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2301 {
2302         struct kvm *kvm = its->dev->kvm;
2303         int ret;
2304
2305         mutex_lock(&kvm->lock);
2306         mutex_lock(&its->its_lock);
2307
2308         if (!lock_all_vcpus(kvm)) {
2309                 mutex_unlock(&its->its_lock);
2310                 mutex_unlock(&kvm->lock);
2311                 return -EBUSY;
2312         }
2313
2314         ret = vgic_its_restore_collection_table(its);
2315         if (ret)
2316                 goto out;
2317
2318         ret = vgic_its_restore_device_tables(its);
2319 out:
2320         unlock_all_vcpus(kvm);
2321         mutex_unlock(&its->its_lock);
2322         mutex_unlock(&kvm->lock);
2323
2324         return ret;
2325 }
2326
2327 static int vgic_its_commit_v0(struct vgic_its *its)
2328 {
2329         const struct vgic_its_abi *abi;
2330
2331         abi = vgic_its_get_abi(its);
2332         its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2333         its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2334
2335         its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2336                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2337
2338         its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2339                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2340         return 0;
2341 }
2342
2343 static int vgic_its_has_attr(struct kvm_device *dev,
2344                              struct kvm_device_attr *attr)
2345 {
2346         switch (attr->group) {
2347         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2348                 switch (attr->attr) {
2349                 case KVM_VGIC_ITS_ADDR_TYPE:
2350                         return 0;
2351                 }
2352                 break;
2353         case KVM_DEV_ARM_VGIC_GRP_CTRL:
2354                 switch (attr->attr) {
2355                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2356                         return 0;
2357                 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2358                         return 0;
2359                 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2360                         return 0;
2361                 }
2362                 break;
2363         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2364                 return vgic_its_has_attr_regs(dev, attr);
2365         }
2366         return -ENXIO;
2367 }
2368
2369 static int vgic_its_set_attr(struct kvm_device *dev,
2370                              struct kvm_device_attr *attr)
2371 {
2372         struct vgic_its *its = dev->private;
2373         int ret;
2374
2375         switch (attr->group) {
2376         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2377                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2378                 unsigned long type = (unsigned long)attr->attr;
2379                 u64 addr;
2380
2381                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2382                         return -ENODEV;
2383
2384                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2385                         return -EFAULT;
2386
2387                 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2388                                         addr, SZ_64K);
2389                 if (ret)
2390                         return ret;
2391
2392                 return vgic_register_its_iodev(dev->kvm, its, addr);
2393         }
2394         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2395                 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2396
2397                 switch (attr->attr) {
2398                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2399                         /* Nothing to do */
2400                         return 0;
2401                 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2402                         return abi->save_tables(its);
2403                 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2404                         return abi->restore_tables(its);
2405                 }
2406         }
2407         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2408                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2409                 u64 reg;
2410
2411                 if (get_user(reg, uaddr))
2412                         return -EFAULT;
2413
2414                 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2415         }
2416         }
2417         return -ENXIO;
2418 }
2419
2420 static int vgic_its_get_attr(struct kvm_device *dev,
2421                              struct kvm_device_attr *attr)
2422 {
2423         switch (attr->group) {
2424         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2425                 struct vgic_its *its = dev->private;
2426                 u64 addr = its->vgic_its_base;
2427                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2428                 unsigned long type = (unsigned long)attr->attr;
2429
2430                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2431                         return -ENODEV;
2432
2433                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2434                         return -EFAULT;
2435                 break;
2436         }
2437         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2438                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2439                 u64 reg;
2440                 int ret;
2441
2442                 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2443                 if (ret)
2444                         return ret;
2445                 return put_user(reg, uaddr);
2446         }
2447         default:
2448                 return -ENXIO;
2449         }
2450
2451         return 0;
2452 }
2453
2454 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2455         .name = "kvm-arm-vgic-its",
2456         .create = vgic_its_create,
2457         .destroy = vgic_its_destroy,
2458         .set_attr = vgic_its_set_attr,
2459         .get_attr = vgic_its_get_attr,
2460         .has_attr = vgic_its_has_attr,
2461 };
2462
2463 int kvm_vgic_register_its_device(void)
2464 {
2465         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2466                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
2467 }