Merge tag 'vfs-6.9.iomap' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
[sfrench/cifs-2.6.git] / tools / testing / selftests / kvm / aarch64 / page_fault_test.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * page_fault_test.c - Test stage 2 faults.
4  *
5  * This test tries different combinations of guest accesses (e.g., write,
6  * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
7  * hugetlbfs with a hole). It checks that the expected handling method is
8  * called (e.g., uffd faults with the right address and write/read flag).
9  */
10 #define _GNU_SOURCE
11 #include <linux/bitmap.h>
12 #include <fcntl.h>
13 #include <test_util.h>
14 #include <kvm_util.h>
15 #include <processor.h>
16 #include <asm/sysreg.h>
17 #include <linux/bitfield.h>
18 #include "guest_modes.h"
19 #include "userfaultfd_util.h"
20
21 /* Guest virtual addresses that point to the test page and its PTE. */
22 #define TEST_GVA                                0xc0000000
23 #define TEST_EXEC_GVA                           (TEST_GVA + 0x8)
24 #define TEST_PTE_GVA                            0xb0000000
25 #define TEST_DATA                               0x0123456789ABCDEF
26
27 static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
28
29 #define CMD_NONE                                (0)
30 #define CMD_SKIP_TEST                           (1ULL << 1)
31 #define CMD_HOLE_PT                             (1ULL << 2)
32 #define CMD_HOLE_DATA                           (1ULL << 3)
33 #define CMD_CHECK_WRITE_IN_DIRTY_LOG            (1ULL << 4)
34 #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG         (1ULL << 5)
35 #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG         (1ULL << 6)
36 #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG      (1ULL << 7)
37 #define CMD_SET_PTE_AF                          (1ULL << 8)
38
39 #define PREPARE_FN_NR                           10
40 #define CHECK_FN_NR                             10
41
42 static struct event_cnt {
43         int mmio_exits;
44         int fail_vcpu_runs;
45         int uffd_faults;
46         /* uffd_faults is incremented from multiple threads. */
47         pthread_mutex_t uffd_faults_mutex;
48 } events;
49
50 struct test_desc {
51         const char *name;
52         uint64_t mem_mark_cmd;
53         /* Skip the test if any prepare function returns false */
54         bool (*guest_prepare[PREPARE_FN_NR])(void);
55         void (*guest_test)(void);
56         void (*guest_test_check[CHECK_FN_NR])(void);
57         uffd_handler_t uffd_pt_handler;
58         uffd_handler_t uffd_data_handler;
59         void (*dabt_handler)(struct ex_regs *regs);
60         void (*iabt_handler)(struct ex_regs *regs);
61         void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
62         void (*fail_vcpu_run_handler)(int ret);
63         uint32_t pt_memslot_flags;
64         uint32_t data_memslot_flags;
65         bool skip;
66         struct event_cnt expected_events;
67 };
68
69 struct test_params {
70         enum vm_mem_backing_src_type src_type;
71         struct test_desc *test_desc;
72 };
73
74 static inline void flush_tlb_page(uint64_t vaddr)
75 {
76         uint64_t page = vaddr >> 12;
77
78         dsb(ishst);
79         asm volatile("tlbi vaae1is, %0" :: "r" (page));
80         dsb(ish);
81         isb();
82 }
83
84 static void guest_write64(void)
85 {
86         uint64_t val;
87
88         WRITE_ONCE(*guest_test_memory, TEST_DATA);
89         val = READ_ONCE(*guest_test_memory);
90         GUEST_ASSERT_EQ(val, TEST_DATA);
91 }
92
93 /* Check the system for atomic instructions. */
94 static bool guest_check_lse(void)
95 {
96         uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
97         uint64_t atomic;
98
99         atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_EL1_ATOMIC), isar0);
100         return atomic >= 2;
101 }
102
103 static bool guest_check_dc_zva(void)
104 {
105         uint64_t dczid = read_sysreg(dczid_el0);
106         uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_EL0_DZP), dczid);
107
108         return dzp == 0;
109 }
110
111 /* Compare and swap instruction. */
112 static void guest_cas(void)
113 {
114         uint64_t val;
115
116         GUEST_ASSERT(guest_check_lse());
117         asm volatile(".arch_extension lse\n"
118                      "casal %0, %1, [%2]\n"
119                      :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
120         val = READ_ONCE(*guest_test_memory);
121         GUEST_ASSERT_EQ(val, TEST_DATA);
122 }
123
124 static void guest_read64(void)
125 {
126         uint64_t val;
127
128         val = READ_ONCE(*guest_test_memory);
129         GUEST_ASSERT_EQ(val, 0);
130 }
131
132 /* Address translation instruction */
133 static void guest_at(void)
134 {
135         uint64_t par;
136
137         asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
138         isb();
139         par = read_sysreg(par_el1);
140
141         /* Bit 1 indicates whether the AT was successful */
142         GUEST_ASSERT_EQ(par & 1, 0);
143 }
144
145 /*
146  * The size of the block written by "dc zva" is guaranteed to be between (2 <<
147  * 0) and (2 << 9), which is safe in our case as we need the write to happen
148  * for at least a word, and not more than a page.
149  */
150 static void guest_dc_zva(void)
151 {
152         uint16_t val;
153
154         asm volatile("dc zva, %0" :: "r" (guest_test_memory));
155         dsb(ish);
156         val = READ_ONCE(*guest_test_memory);
157         GUEST_ASSERT_EQ(val, 0);
158 }
159
160 /*
161  * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
162  * And that's special because KVM must take special care with those: they
163  * should still count as accesses for dirty logging or user-faulting, but
164  * should be handled differently on mmio.
165  */
166 static void guest_ld_preidx(void)
167 {
168         uint64_t val;
169         uint64_t addr = TEST_GVA - 8;
170
171         /*
172          * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
173          * in a gap between memslots not backing by anything.
174          */
175         asm volatile("ldr %0, [%1, #8]!"
176                      : "=r" (val), "+r" (addr));
177         GUEST_ASSERT_EQ(val, 0);
178         GUEST_ASSERT_EQ(addr, TEST_GVA);
179 }
180
181 static void guest_st_preidx(void)
182 {
183         uint64_t val = TEST_DATA;
184         uint64_t addr = TEST_GVA - 8;
185
186         asm volatile("str %0, [%1, #8]!"
187                      : "+r" (val), "+r" (addr));
188
189         GUEST_ASSERT_EQ(addr, TEST_GVA);
190         val = READ_ONCE(*guest_test_memory);
191 }
192
193 static bool guest_set_ha(void)
194 {
195         uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
196         uint64_t hadbs, tcr;
197
198         /* Skip if HA is not supported. */
199         hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_EL1_HAFDBS), mmfr1);
200         if (hadbs == 0)
201                 return false;
202
203         tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
204         write_sysreg(tcr, tcr_el1);
205         isb();
206
207         return true;
208 }
209
210 static bool guest_clear_pte_af(void)
211 {
212         *((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
213         flush_tlb_page(TEST_GVA);
214
215         return true;
216 }
217
218 static void guest_check_pte_af(void)
219 {
220         dsb(ish);
221         GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
222 }
223
224 static void guest_check_write_in_dirty_log(void)
225 {
226         GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
227 }
228
229 static void guest_check_no_write_in_dirty_log(void)
230 {
231         GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
232 }
233
234 static void guest_check_s1ptw_wr_in_dirty_log(void)
235 {
236         GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
237 }
238
239 static void guest_check_no_s1ptw_wr_in_dirty_log(void)
240 {
241         GUEST_SYNC(CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG);
242 }
243
244 static void guest_exec(void)
245 {
246         int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
247         int ret;
248
249         ret = code();
250         GUEST_ASSERT_EQ(ret, 0x77);
251 }
252
253 static bool guest_prepare(struct test_desc *test)
254 {
255         bool (*prepare_fn)(void);
256         int i;
257
258         for (i = 0; i < PREPARE_FN_NR; i++) {
259                 prepare_fn = test->guest_prepare[i];
260                 if (prepare_fn && !prepare_fn())
261                         return false;
262         }
263
264         return true;
265 }
266
267 static void guest_test_check(struct test_desc *test)
268 {
269         void (*check_fn)(void);
270         int i;
271
272         for (i = 0; i < CHECK_FN_NR; i++) {
273                 check_fn = test->guest_test_check[i];
274                 if (check_fn)
275                         check_fn();
276         }
277 }
278
279 static void guest_code(struct test_desc *test)
280 {
281         if (!guest_prepare(test))
282                 GUEST_SYNC(CMD_SKIP_TEST);
283
284         GUEST_SYNC(test->mem_mark_cmd);
285
286         if (test->guest_test)
287                 test->guest_test();
288
289         guest_test_check(test);
290         GUEST_DONE();
291 }
292
293 static void no_dabt_handler(struct ex_regs *regs)
294 {
295         GUEST_FAIL("Unexpected dabt, far_el1 = 0x%llx", read_sysreg(far_el1));
296 }
297
298 static void no_iabt_handler(struct ex_regs *regs)
299 {
300         GUEST_FAIL("Unexpected iabt, pc = 0x%lx", regs->pc);
301 }
302
303 static struct uffd_args {
304         char *copy;
305         void *hva;
306         uint64_t paging_size;
307 } pt_args, data_args;
308
309 /* Returns true to continue the test, and false if it should be skipped. */
310 static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
311                                 struct uffd_args *args)
312 {
313         uint64_t addr = msg->arg.pagefault.address;
314         uint64_t flags = msg->arg.pagefault.flags;
315         struct uffdio_copy copy;
316         int ret;
317
318         TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
319                     "The only expected UFFD mode is MISSING");
320         TEST_ASSERT_EQ(addr, (uint64_t)args->hva);
321
322         pr_debug("uffd fault: addr=%p write=%d\n",
323                  (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
324
325         copy.src = (uint64_t)args->copy;
326         copy.dst = addr;
327         copy.len = args->paging_size;
328         copy.mode = 0;
329
330         ret = ioctl(uffd, UFFDIO_COPY, &copy);
331         if (ret == -1) {
332                 pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
333                         addr, errno);
334                 return ret;
335         }
336
337         pthread_mutex_lock(&events.uffd_faults_mutex);
338         events.uffd_faults += 1;
339         pthread_mutex_unlock(&events.uffd_faults_mutex);
340         return 0;
341 }
342
343 static int uffd_pt_handler(int mode, int uffd, struct uffd_msg *msg)
344 {
345         return uffd_generic_handler(mode, uffd, msg, &pt_args);
346 }
347
348 static int uffd_data_handler(int mode, int uffd, struct uffd_msg *msg)
349 {
350         return uffd_generic_handler(mode, uffd, msg, &data_args);
351 }
352
353 static void setup_uffd_args(struct userspace_mem_region *region,
354                             struct uffd_args *args)
355 {
356         args->hva = (void *)region->region.userspace_addr;
357         args->paging_size = region->region.memory_size;
358
359         args->copy = malloc(args->paging_size);
360         TEST_ASSERT(args->copy, "Failed to allocate data copy.");
361         memcpy(args->copy, args->hva, args->paging_size);
362 }
363
364 static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
365                        struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
366 {
367         struct test_desc *test = p->test_desc;
368         int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
369
370         setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
371         setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
372
373         *pt_uffd = NULL;
374         if (test->uffd_pt_handler)
375                 *pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
376                                                     pt_args.hva,
377                                                     pt_args.paging_size,
378                                                     test->uffd_pt_handler);
379
380         *data_uffd = NULL;
381         if (test->uffd_data_handler)
382                 *data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
383                                                       data_args.hva,
384                                                       data_args.paging_size,
385                                                       test->uffd_data_handler);
386 }
387
388 static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
389                       struct uffd_desc *data_uffd)
390 {
391         if (test->uffd_pt_handler)
392                 uffd_stop_demand_paging(pt_uffd);
393         if (test->uffd_data_handler)
394                 uffd_stop_demand_paging(data_uffd);
395
396         free(pt_args.copy);
397         free(data_args.copy);
398 }
399
400 static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
401 {
402         TEST_FAIL("There was no UFFD fault expected.");
403         return -1;
404 }
405
406 /* Returns false if the test should be skipped. */
407 static bool punch_hole_in_backing_store(struct kvm_vm *vm,
408                                         struct userspace_mem_region *region)
409 {
410         void *hva = (void *)region->region.userspace_addr;
411         uint64_t paging_size = region->region.memory_size;
412         int ret, fd = region->fd;
413
414         if (fd != -1) {
415                 ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
416                                 0, paging_size);
417                 TEST_ASSERT(ret == 0, "fallocate failed");
418         } else {
419                 ret = madvise(hva, paging_size, MADV_DONTNEED);
420                 TEST_ASSERT(ret == 0, "madvise failed");
421         }
422
423         return true;
424 }
425
426 static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
427 {
428         struct userspace_mem_region *region;
429         void *hva;
430
431         region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
432         hva = (void *)region->region.userspace_addr;
433
434         TEST_ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
435
436         memcpy(hva, run->mmio.data, run->mmio.len);
437         events.mmio_exits += 1;
438 }
439
440 static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
441 {
442         uint64_t data;
443
444         memcpy(&data, run->mmio.data, sizeof(data));
445         pr_debug("addr=%lld len=%d w=%d data=%lx\n",
446                  run->mmio.phys_addr, run->mmio.len,
447                  run->mmio.is_write, data);
448         TEST_FAIL("There was no MMIO exit expected.");
449 }
450
451 static bool check_write_in_dirty_log(struct kvm_vm *vm,
452                                      struct userspace_mem_region *region,
453                                      uint64_t host_pg_nr)
454 {
455         unsigned long *bmap;
456         bool first_page_dirty;
457         uint64_t size = region->region.memory_size;
458
459         /* getpage_size() is not always equal to vm->page_size */
460         bmap = bitmap_zalloc(size / getpagesize());
461         kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
462         first_page_dirty = test_bit(host_pg_nr, bmap);
463         free(bmap);
464         return first_page_dirty;
465 }
466
467 /* Returns true to continue the test, and false if it should be skipped. */
468 static bool handle_cmd(struct kvm_vm *vm, int cmd)
469 {
470         struct userspace_mem_region *data_region, *pt_region;
471         bool continue_test = true;
472         uint64_t pte_gpa, pte_pg;
473
474         data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
475         pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
476         pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
477         pte_pg = (pte_gpa - pt_region->region.guest_phys_addr) / getpagesize();
478
479         if (cmd == CMD_SKIP_TEST)
480                 continue_test = false;
481
482         if (cmd & CMD_HOLE_PT)
483                 continue_test = punch_hole_in_backing_store(vm, pt_region);
484         if (cmd & CMD_HOLE_DATA)
485                 continue_test = punch_hole_in_backing_store(vm, data_region);
486         if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
487                 TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
488                             "Missing write in dirty log");
489         if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
490                 TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, pte_pg),
491                             "Missing s1ptw write in dirty log");
492         if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
493                 TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
494                             "Unexpected write in dirty log");
495         if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
496                 TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, pte_pg),
497                             "Unexpected s1ptw write in dirty log");
498
499         return continue_test;
500 }
501
502 void fail_vcpu_run_no_handler(int ret)
503 {
504         TEST_FAIL("Unexpected vcpu run failure");
505 }
506
507 void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
508 {
509         TEST_ASSERT(errno == ENOSYS,
510                     "The mmio handler should have returned not implemented.");
511         events.fail_vcpu_runs += 1;
512 }
513
514 typedef uint32_t aarch64_insn_t;
515 extern aarch64_insn_t __exec_test[2];
516
517 noinline void __return_0x77(void)
518 {
519         asm volatile("__exec_test: mov x0, #0x77\n"
520                      "ret\n");
521 }
522
523 /*
524  * Note that this function runs on the host before the test VM starts: there's
525  * no need to sync the D$ and I$ caches.
526  */
527 static void load_exec_code_for_test(struct kvm_vm *vm)
528 {
529         uint64_t *code;
530         struct userspace_mem_region *region;
531         void *hva;
532
533         region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
534         hva = (void *)region->region.userspace_addr;
535
536         assert(TEST_EXEC_GVA > TEST_GVA);
537         code = hva + TEST_EXEC_GVA - TEST_GVA;
538         memcpy(code, __exec_test, sizeof(__exec_test));
539 }
540
541 static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
542                                  struct test_desc *test)
543 {
544         vm_init_descriptor_tables(vm);
545         vcpu_init_descriptor_tables(vcpu);
546
547         vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
548                                 ESR_EC_DABT, no_dabt_handler);
549         vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
550                                 ESR_EC_IABT, no_iabt_handler);
551 }
552
553 static void setup_gva_maps(struct kvm_vm *vm)
554 {
555         struct userspace_mem_region *region;
556         uint64_t pte_gpa;
557
558         region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
559         /* Map TEST_GVA first. This will install a new PTE. */
560         virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
561         /* Then map TEST_PTE_GVA to the above PTE. */
562         pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
563         virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
564 }
565
566 enum pf_test_memslots {
567         CODE_AND_DATA_MEMSLOT,
568         PAGE_TABLE_MEMSLOT,
569         TEST_DATA_MEMSLOT,
570 };
571
572 /*
573  * Create a memslot for code and data at pfn=0, and test-data and PT ones
574  * at max_gfn.
575  */
576 static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
577 {
578         uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
579         uint64_t guest_page_size = vm->page_size;
580         uint64_t max_gfn = vm_compute_max_gfn(vm);
581         /* Enough for 2M of code when using 4K guest pages. */
582         uint64_t code_npages = 512;
583         uint64_t pt_size, data_size, data_gpa;
584
585         /*
586          * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
587          * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
588          * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
589          * twice that just in case.
590          */
591         pt_size = 26 * guest_page_size;
592
593         /* memslot sizes and gpa's must be aligned to the backing page size */
594         pt_size = align_up(pt_size, backing_src_pagesz);
595         data_size = align_up(guest_page_size, backing_src_pagesz);
596         data_gpa = (max_gfn * guest_page_size) - data_size;
597         data_gpa = align_down(data_gpa, backing_src_pagesz);
598
599         vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
600                                     CODE_AND_DATA_MEMSLOT, code_npages, 0);
601         vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
602         vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
603
604         vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
605                                     PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
606                                     p->test_desc->pt_memslot_flags);
607         vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
608
609         vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
610                                     data_size / guest_page_size,
611                                     p->test_desc->data_memslot_flags);
612         vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
613 }
614
615 static void setup_ucall(struct kvm_vm *vm)
616 {
617         struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
618
619         ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
620 }
621
622 static void setup_default_handlers(struct test_desc *test)
623 {
624         if (!test->mmio_handler)
625                 test->mmio_handler = mmio_no_handler;
626
627         if (!test->fail_vcpu_run_handler)
628                 test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
629 }
630
631 static void check_event_counts(struct test_desc *test)
632 {
633         TEST_ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
634         TEST_ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
635         TEST_ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
636 }
637
638 static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
639 {
640         struct test_desc *test = p->test_desc;
641
642         pr_debug("Test: %s\n", test->name);
643         pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
644         pr_debug("Testing memory backing src type: %s\n",
645                  vm_mem_backing_src_alias(p->src_type)->name);
646 }
647
648 static void reset_event_counts(void)
649 {
650         memset(&events, 0, sizeof(events));
651 }
652
653 /*
654  * This function either succeeds, skips the test (after setting test->skip), or
655  * fails with a TEST_FAIL that aborts all tests.
656  */
657 static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
658                           struct test_desc *test)
659 {
660         struct kvm_run *run;
661         struct ucall uc;
662         int ret;
663
664         run = vcpu->run;
665
666         for (;;) {
667                 ret = _vcpu_run(vcpu);
668                 if (ret) {
669                         test->fail_vcpu_run_handler(ret);
670                         goto done;
671                 }
672
673                 switch (get_ucall(vcpu, &uc)) {
674                 case UCALL_SYNC:
675                         if (!handle_cmd(vm, uc.args[1])) {
676                                 test->skip = true;
677                                 goto done;
678                         }
679                         break;
680                 case UCALL_ABORT:
681                         REPORT_GUEST_ASSERT(uc);
682                         break;
683                 case UCALL_DONE:
684                         goto done;
685                 case UCALL_NONE:
686                         if (run->exit_reason == KVM_EXIT_MMIO)
687                                 test->mmio_handler(vm, run);
688                         break;
689                 default:
690                         TEST_FAIL("Unknown ucall %lu", uc.cmd);
691                 }
692         }
693
694 done:
695         pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
696 }
697
698 static void run_test(enum vm_guest_mode mode, void *arg)
699 {
700         struct test_params *p = (struct test_params *)arg;
701         struct test_desc *test = p->test_desc;
702         struct kvm_vm *vm;
703         struct kvm_vcpu *vcpu;
704         struct uffd_desc *pt_uffd, *data_uffd;
705
706         print_test_banner(mode, p);
707
708         vm = ____vm_create(VM_SHAPE(mode));
709         setup_memslots(vm, p);
710         kvm_vm_elf_load(vm, program_invocation_name);
711         setup_ucall(vm);
712         vcpu = vm_vcpu_add(vm, 0, guest_code);
713
714         setup_gva_maps(vm);
715
716         reset_event_counts();
717
718         /*
719          * Set some code in the data memslot for the guest to execute (only
720          * applicable to the EXEC tests). This has to be done before
721          * setup_uffd() as that function copies the memslot data for the uffd
722          * handler.
723          */
724         load_exec_code_for_test(vm);
725         setup_uffd(vm, p, &pt_uffd, &data_uffd);
726         setup_abort_handlers(vm, vcpu, test);
727         setup_default_handlers(test);
728         vcpu_args_set(vcpu, 1, test);
729
730         vcpu_run_loop(vm, vcpu, test);
731
732         kvm_vm_free(vm);
733         free_uffd(test, pt_uffd, data_uffd);
734
735         /*
736          * Make sure we check the events after the uffd threads have exited,
737          * which means they updated their respective event counters.
738          */
739         if (!test->skip)
740                 check_event_counts(test);
741 }
742
743 static void help(char *name)
744 {
745         puts("");
746         printf("usage: %s [-h] [-s mem-type]\n", name);
747         puts("");
748         guest_modes_help();
749         backing_src_help("-s");
750         puts("");
751 }
752
753 #define SNAME(s)                        #s
754 #define SCAT2(a, b)                     SNAME(a ## _ ## b)
755 #define SCAT3(a, b, c)                  SCAT2(a, SCAT2(b, c))
756 #define SCAT4(a, b, c, d)               SCAT2(a, SCAT3(b, c, d))
757
758 #define _CHECK(_test)                   _CHECK_##_test
759 #define _PREPARE(_test)                 _PREPARE_##_test
760 #define _PREPARE_guest_read64           NULL
761 #define _PREPARE_guest_ld_preidx        NULL
762 #define _PREPARE_guest_write64          NULL
763 #define _PREPARE_guest_st_preidx        NULL
764 #define _PREPARE_guest_exec             NULL
765 #define _PREPARE_guest_at               NULL
766 #define _PREPARE_guest_dc_zva           guest_check_dc_zva
767 #define _PREPARE_guest_cas              guest_check_lse
768
769 /* With or without access flag checks */
770 #define _PREPARE_with_af                guest_set_ha, guest_clear_pte_af
771 #define _PREPARE_no_af                  NULL
772 #define _CHECK_with_af                  guest_check_pte_af
773 #define _CHECK_no_af                    NULL
774
775 /* Performs an access and checks that no faults were triggered. */
776 #define TEST_ACCESS(_access, _with_af, _mark_cmd)                               \
777 {                                                                               \
778         .name                   = SCAT3(_access, _with_af, #_mark_cmd),         \
779         .guest_prepare          = { _PREPARE(_with_af),                         \
780                                     _PREPARE(_access) },                        \
781         .mem_mark_cmd           = _mark_cmd,                                    \
782         .guest_test             = _access,                                      \
783         .guest_test_check       = { _CHECK(_with_af) },                         \
784         .expected_events        = { 0 },                                        \
785 }
786
787 #define TEST_UFFD(_access, _with_af, _mark_cmd,                                 \
788                   _uffd_data_handler, _uffd_pt_handler, _uffd_faults)           \
789 {                                                                               \
790         .name                   = SCAT4(uffd, _access, _with_af, #_mark_cmd),   \
791         .guest_prepare          = { _PREPARE(_with_af),                         \
792                                     _PREPARE(_access) },                        \
793         .guest_test             = _access,                                      \
794         .mem_mark_cmd           = _mark_cmd,                                    \
795         .guest_test_check       = { _CHECK(_with_af) },                         \
796         .uffd_data_handler      = _uffd_data_handler,                           \
797         .uffd_pt_handler        = _uffd_pt_handler,                             \
798         .expected_events        = { .uffd_faults = _uffd_faults, },             \
799 }
800
801 #define TEST_DIRTY_LOG(_access, _with_af, _test_check, _pt_check)               \
802 {                                                                               \
803         .name                   = SCAT3(dirty_log, _access, _with_af),          \
804         .data_memslot_flags     = KVM_MEM_LOG_DIRTY_PAGES,                      \
805         .pt_memslot_flags       = KVM_MEM_LOG_DIRTY_PAGES,                      \
806         .guest_prepare          = { _PREPARE(_with_af),                         \
807                                     _PREPARE(_access) },                        \
808         .guest_test             = _access,                                      \
809         .guest_test_check       = { _CHECK(_with_af), _test_check, _pt_check }, \
810         .expected_events        = { 0 },                                        \
811 }
812
813 #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,          \
814                                 _uffd_faults, _test_check, _pt_check)           \
815 {                                                                               \
816         .name                   = SCAT3(uffd_and_dirty_log, _access, _with_af), \
817         .data_memslot_flags     = KVM_MEM_LOG_DIRTY_PAGES,                      \
818         .pt_memslot_flags       = KVM_MEM_LOG_DIRTY_PAGES,                      \
819         .guest_prepare          = { _PREPARE(_with_af),                         \
820                                     _PREPARE(_access) },                        \
821         .guest_test             = _access,                                      \
822         .mem_mark_cmd           = CMD_HOLE_DATA | CMD_HOLE_PT,                  \
823         .guest_test_check       = { _CHECK(_with_af), _test_check, _pt_check }, \
824         .uffd_data_handler      = _uffd_data_handler,                           \
825         .uffd_pt_handler        = uffd_pt_handler,                              \
826         .expected_events        = { .uffd_faults = _uffd_faults, },             \
827 }
828
829 #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)                    \
830 {                                                                               \
831         .name                   = SCAT2(ro_memslot, _access),                   \
832         .data_memslot_flags     = KVM_MEM_READONLY,                             \
833         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
834         .guest_prepare          = { _PREPARE(_access) },                        \
835         .guest_test             = _access,                                      \
836         .mmio_handler           = _mmio_handler,                                \
837         .expected_events        = { .mmio_exits = _mmio_exits },                \
838 }
839
840 #define TEST_RO_MEMSLOT_NO_SYNDROME(_access)                                    \
841 {                                                                               \
842         .name                   = SCAT2(ro_memslot_no_syndrome, _access),       \
843         .data_memslot_flags     = KVM_MEM_READONLY,                             \
844         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
845         .guest_prepare          = { _PREPARE(_access) },                        \
846         .guest_test             = _access,                                      \
847         .fail_vcpu_run_handler  = fail_vcpu_run_mmio_no_syndrome_handler,       \
848         .expected_events        = { .fail_vcpu_runs = 1 },                      \
849 }
850
851 #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,      \
852                                       _test_check)                              \
853 {                                                                               \
854         .name                   = SCAT2(ro_memslot, _access),                   \
855         .data_memslot_flags     = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
856         .pt_memslot_flags       = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
857         .guest_prepare          = { _PREPARE(_access) },                        \
858         .guest_test             = _access,                                      \
859         .guest_test_check       = { _test_check },                              \
860         .mmio_handler           = _mmio_handler,                                \
861         .expected_events        = { .mmio_exits = _mmio_exits},                 \
862 }
863
864 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)         \
865 {                                                                               \
866         .name                   = SCAT2(ro_memslot_no_syn_and_dlog, _access),   \
867         .data_memslot_flags     = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
868         .pt_memslot_flags       = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,   \
869         .guest_prepare          = { _PREPARE(_access) },                        \
870         .guest_test             = _access,                                      \
871         .guest_test_check       = { _test_check },                              \
872         .fail_vcpu_run_handler  = fail_vcpu_run_mmio_no_syndrome_handler,       \
873         .expected_events        = { .fail_vcpu_runs = 1 },                      \
874 }
875
876 #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,           \
877                                  _uffd_data_handler, _uffd_faults)              \
878 {                                                                               \
879         .name                   = SCAT2(ro_memslot_uffd, _access),              \
880         .data_memslot_flags     = KVM_MEM_READONLY,                             \
881         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
882         .mem_mark_cmd           = CMD_HOLE_DATA | CMD_HOLE_PT,                  \
883         .guest_prepare          = { _PREPARE(_access) },                        \
884         .guest_test             = _access,                                      \
885         .uffd_data_handler      = _uffd_data_handler,                           \
886         .uffd_pt_handler        = uffd_pt_handler,                              \
887         .mmio_handler           = _mmio_handler,                                \
888         .expected_events        = { .mmio_exits = _mmio_exits,                  \
889                                     .uffd_faults = _uffd_faults },              \
890 }
891
892 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,       \
893                                              _uffd_faults)                      \
894 {                                                                               \
895         .name                   = SCAT2(ro_memslot_no_syndrome, _access),       \
896         .data_memslot_flags     = KVM_MEM_READONLY,                             \
897         .pt_memslot_flags       = KVM_MEM_READONLY,                             \
898         .mem_mark_cmd           = CMD_HOLE_DATA | CMD_HOLE_PT,                  \
899         .guest_prepare          = { _PREPARE(_access) },                        \
900         .guest_test             = _access,                                      \
901         .uffd_data_handler      = _uffd_data_handler,                           \
902         .uffd_pt_handler        = uffd_pt_handler,                      \
903         .fail_vcpu_run_handler  = fail_vcpu_run_mmio_no_syndrome_handler,       \
904         .expected_events        = { .fail_vcpu_runs = 1,                        \
905                                     .uffd_faults = _uffd_faults },              \
906 }
907
908 static struct test_desc tests[] = {
909
910         /* Check that HW is setting the Access Flag (AF) (sanity checks). */
911         TEST_ACCESS(guest_read64, with_af, CMD_NONE),
912         TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
913         TEST_ACCESS(guest_cas, with_af, CMD_NONE),
914         TEST_ACCESS(guest_write64, with_af, CMD_NONE),
915         TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
916         TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
917         TEST_ACCESS(guest_exec, with_af, CMD_NONE),
918
919         /*
920          * Punch a hole in the data backing store, and then try multiple
921          * accesses: reads should rturn zeroes, and writes should
922          * re-populate the page. Moreover, the test also check that no
923          * exception was generated in the guest.  Note that this
924          * reading/writing behavior is the same as reading/writing a
925          * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
926          * userspace.
927          */
928         TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
929         TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
930         TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
931         TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
932         TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
933         TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
934         TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
935
936         /*
937          * Punch holes in the data and PT backing stores and mark them for
938          * userfaultfd handling. This should result in 2 faults: the access
939          * on the data backing store, and its respective S1 page table walk
940          * (S1PTW).
941          */
942         TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
943                   uffd_data_handler, uffd_pt_handler, 2),
944         TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
945                   uffd_data_handler, uffd_pt_handler, 2),
946         TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
947                   uffd_data_handler, uffd_pt_handler, 2),
948         /*
949          * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
950          * The S1PTW fault should still be marked as a write.
951          */
952         TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
953                   uffd_no_handler, uffd_pt_handler, 1),
954         TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
955                   uffd_data_handler, uffd_pt_handler, 2),
956         TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
957                   uffd_data_handler, uffd_pt_handler, 2),
958         TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
959                   uffd_data_handler, uffd_pt_handler, 2),
960         TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
961                   uffd_data_handler, uffd_pt_handler, 2),
962         TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
963                   uffd_data_handler, uffd_pt_handler, 2),
964
965         /*
966          * Try accesses when the data and PT memory regions are both
967          * tracked for dirty logging.
968          */
969         TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log,
970                        guest_check_s1ptw_wr_in_dirty_log),
971         TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log,
972                        guest_check_no_s1ptw_wr_in_dirty_log),
973         TEST_DIRTY_LOG(guest_ld_preidx, with_af,
974                        guest_check_no_write_in_dirty_log,
975                        guest_check_s1ptw_wr_in_dirty_log),
976         TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log,
977                        guest_check_no_s1ptw_wr_in_dirty_log),
978         TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log,
979                        guest_check_s1ptw_wr_in_dirty_log),
980         TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log,
981                        guest_check_s1ptw_wr_in_dirty_log),
982         TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log,
983                        guest_check_s1ptw_wr_in_dirty_log),
984         TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log,
985                        guest_check_s1ptw_wr_in_dirty_log),
986         TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log,
987                        guest_check_s1ptw_wr_in_dirty_log),
988
989         /*
990          * Access when the data and PT memory regions are both marked for
991          * dirty logging and UFFD at the same time. The expected result is
992          * that writes should mark the dirty log and trigger a userfaultfd
993          * write fault.  Reads/execs should result in a read userfaultfd
994          * fault, and nothing in the dirty log.  Any S1PTW should result in
995          * a write in the dirty log and a userfaultfd write.
996          */
997         TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af,
998                                 uffd_data_handler, 2,
999                                 guest_check_no_write_in_dirty_log,
1000                                 guest_check_s1ptw_wr_in_dirty_log),
1001         TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af,
1002                                 uffd_data_handler, 2,
1003                                 guest_check_no_write_in_dirty_log,
1004                                 guest_check_no_s1ptw_wr_in_dirty_log),
1005         TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af,
1006                                 uffd_data_handler,
1007                                 2, guest_check_no_write_in_dirty_log,
1008                                 guest_check_s1ptw_wr_in_dirty_log),
1009         TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, uffd_no_handler, 1,
1010                                 guest_check_no_write_in_dirty_log,
1011                                 guest_check_s1ptw_wr_in_dirty_log),
1012         TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af,
1013                                 uffd_data_handler, 2,
1014                                 guest_check_no_write_in_dirty_log,
1015                                 guest_check_s1ptw_wr_in_dirty_log),
1016         TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af,
1017                                 uffd_data_handler,
1018                                 2, guest_check_write_in_dirty_log,
1019                                 guest_check_s1ptw_wr_in_dirty_log),
1020         TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af,
1021                                 uffd_data_handler, 2,
1022                                 guest_check_write_in_dirty_log,
1023                                 guest_check_s1ptw_wr_in_dirty_log),
1024         TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af,
1025                                 uffd_data_handler,
1026                                 2, guest_check_write_in_dirty_log,
1027                                 guest_check_s1ptw_wr_in_dirty_log),
1028         TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1029                                 uffd_data_handler, 2,
1030                                 guest_check_write_in_dirty_log,
1031                                 guest_check_s1ptw_wr_in_dirty_log),
1032         /*
1033          * Access when both the PT and data regions are marked read-only
1034          * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1035          * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1036          * failed vcpu run, and reads/execs with and without syndroms do
1037          * not fault.
1038          */
1039         TEST_RO_MEMSLOT(guest_read64, 0, 0),
1040         TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1041         TEST_RO_MEMSLOT(guest_at, 0, 0),
1042         TEST_RO_MEMSLOT(guest_exec, 0, 0),
1043         TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1044         TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1045         TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1046         TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1047
1048         /*
1049          * The PT and data regions are both read-only and marked
1050          * for dirty logging at the same time. The expected result is that
1051          * for writes there should be no write in the dirty log. The
1052          * readonly handling is the same as if the memslot was not marked
1053          * for dirty logging: writes with a syndrome result in an MMIO
1054          * exit, and writes with no syndrome result in a failed vcpu run.
1055          */
1056         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1057                                       guest_check_no_write_in_dirty_log),
1058         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1059                                       guest_check_no_write_in_dirty_log),
1060         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1061                                       guest_check_no_write_in_dirty_log),
1062         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1063                                       guest_check_no_write_in_dirty_log),
1064         TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1065                                       1, guest_check_no_write_in_dirty_log),
1066         TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1067                                                   guest_check_no_write_in_dirty_log),
1068         TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1069                                                   guest_check_no_write_in_dirty_log),
1070         TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1071                                                   guest_check_no_write_in_dirty_log),
1072
1073         /*
1074          * The PT and data regions are both read-only and punched with
1075          * holes tracked with userfaultfd.  The expected result is the
1076          * union of both userfaultfd and read-only behaviors. For example,
1077          * write accesses result in a userfaultfd write fault and an MMIO
1078          * exit.  Writes with no syndrome result in a failed vcpu run and
1079          * no userfaultfd write fault. Reads result in userfaultfd getting
1080          * triggered.
1081          */
1082         TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_handler, 2),
1083         TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_handler, 2),
1084         TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1),
1085         TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_handler, 2),
1086         TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1087                                  uffd_data_handler, 2),
1088         TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_handler, 2),
1089         TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1),
1090         TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1),
1091
1092         { 0 }
1093 };
1094
1095 static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1096 {
1097         struct test_desc *t;
1098
1099         for (t = &tests[0]; t->name; t++) {
1100                 if (t->skip)
1101                         continue;
1102
1103                 struct test_params p = {
1104                         .src_type = src_type,
1105                         .test_desc = t,
1106                 };
1107
1108                 for_each_guest_mode(run_test, &p);
1109         }
1110 }
1111
1112 int main(int argc, char *argv[])
1113 {
1114         enum vm_mem_backing_src_type src_type;
1115         int opt;
1116
1117         src_type = DEFAULT_VM_MEM_SRC;
1118
1119         while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1120                 switch (opt) {
1121                 case 'm':
1122                         guest_modes_cmdline(optarg);
1123                         break;
1124                 case 's':
1125                         src_type = parse_backing_src_type(optarg);
1126                         break;
1127                 case 'h':
1128                 default:
1129                         help(argv[0]);
1130                         exit(0);
1131                 }
1132         }
1133
1134         for_each_test_and_guest_mode(src_type);
1135         return 0;
1136 }