10c3187e4c5aae1886a5cdcce7af4d64efcae62a
[sfrench/cifs-2.6.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81         u64 first_timestamp;
82
83         struct perf_tsc_conversion tc;
84         bool cap_user_time_zero;
85
86         struct itrace_synth_opts synth_opts;
87
88         bool sample_instructions;
89         u64 instructions_sample_type;
90         u64 instructions_id;
91
92         bool sample_branches;
93         u32 branches_filter;
94         u64 branches_sample_type;
95         u64 branches_id;
96
97         bool sample_transactions;
98         u64 transactions_sample_type;
99         u64 transactions_id;
100
101         bool sample_ptwrites;
102         u64 ptwrites_sample_type;
103         u64 ptwrites_id;
104
105         bool sample_pwr_events;
106         u64 pwr_events_sample_type;
107         u64 mwait_id;
108         u64 pwre_id;
109         u64 exstop_id;
110         u64 pwrx_id;
111         u64 cbr_id;
112         u64 psb_id;
113
114         bool single_pebs;
115         bool sample_pebs;
116         struct evsel *pebs_evsel;
117
118         u64 tsc_bit;
119         u64 mtc_bit;
120         u64 mtc_freq_bits;
121         u32 tsc_ctc_ratio_n;
122         u32 tsc_ctc_ratio_d;
123         u64 cyc_bit;
124         u64 noretcomp_bit;
125         unsigned max_non_turbo_ratio;
126         unsigned cbr2khz;
127         int max_loops;
128
129         unsigned long num_events;
130
131         char *filter;
132         struct addr_filters filts;
133
134         struct range *time_ranges;
135         unsigned int range_cnt;
136
137         struct ip_callchain *chain;
138         struct branch_stack *br_stack;
139
140         u64 dflt_tsc_offset;
141         struct rb_root vmcs_info;
142 };
143
144 enum switch_state {
145         INTEL_PT_SS_NOT_TRACING,
146         INTEL_PT_SS_UNKNOWN,
147         INTEL_PT_SS_TRACING,
148         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
149         INTEL_PT_SS_EXPECTING_SWITCH_IP,
150 };
151
152 /* applicable_counters is 64-bits */
153 #define INTEL_PT_MAX_PEBS 64
154
155 struct intel_pt_pebs_event {
156         struct evsel *evsel;
157         u64 id;
158 };
159
160 struct intel_pt_queue {
161         struct intel_pt *pt;
162         unsigned int queue_nr;
163         struct auxtrace_buffer *buffer;
164         struct auxtrace_buffer *old_buffer;
165         void *decoder;
166         const struct intel_pt_state *state;
167         struct ip_callchain *chain;
168         struct branch_stack *last_branch;
169         union perf_event *event_buf;
170         bool on_heap;
171         bool stop;
172         bool step_through_buffers;
173         bool use_buffer_pid_tid;
174         bool sync_switch;
175         bool sample_ipc;
176         pid_t pid, tid;
177         int cpu;
178         int switch_state;
179         pid_t next_tid;
180         struct thread *thread;
181         struct machine *guest_machine;
182         struct thread *unknown_guest_thread;
183         pid_t guest_machine_pid;
184         bool exclude_kernel;
185         bool have_sample;
186         u64 time;
187         u64 timestamp;
188         u64 sel_timestamp;
189         bool sel_start;
190         unsigned int sel_idx;
191         u32 flags;
192         u16 insn_len;
193         u64 last_insn_cnt;
194         u64 ipc_insn_cnt;
195         u64 ipc_cyc_cnt;
196         u64 last_in_insn_cnt;
197         u64 last_in_cyc_cnt;
198         u64 last_br_insn_cnt;
199         u64 last_br_cyc_cnt;
200         unsigned int cbr_seen;
201         char insn[INTEL_PT_INSN_BUF_SZ];
202         struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
203 };
204
205 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
206                           unsigned char *buf, size_t len)
207 {
208         struct intel_pt_pkt packet;
209         size_t pos = 0;
210         int ret, pkt_len, i;
211         char desc[INTEL_PT_PKT_DESC_MAX];
212         const char *color = PERF_COLOR_BLUE;
213         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
214
215         color_fprintf(stdout, color,
216                       ". ... Intel Processor Trace data: size %zu bytes\n",
217                       len);
218
219         while (len) {
220                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
221                 if (ret > 0)
222                         pkt_len = ret;
223                 else
224                         pkt_len = 1;
225                 printf(".");
226                 color_fprintf(stdout, color, "  %08x: ", pos);
227                 for (i = 0; i < pkt_len; i++)
228                         color_fprintf(stdout, color, " %02x", buf[i]);
229                 for (; i < 16; i++)
230                         color_fprintf(stdout, color, "   ");
231                 if (ret > 0) {
232                         ret = intel_pt_pkt_desc(&packet, desc,
233                                                 INTEL_PT_PKT_DESC_MAX);
234                         if (ret > 0)
235                                 color_fprintf(stdout, color, " %s\n", desc);
236                 } else {
237                         color_fprintf(stdout, color, " Bad packet!\n");
238                 }
239                 pos += pkt_len;
240                 buf += pkt_len;
241                 len -= pkt_len;
242         }
243 }
244
245 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
246                                 size_t len)
247 {
248         printf(".\n");
249         intel_pt_dump(pt, buf, len);
250 }
251
252 static void intel_pt_log_event(union perf_event *event)
253 {
254         FILE *f = intel_pt_log_fp();
255
256         if (!intel_pt_enable_logging || !f)
257                 return;
258
259         perf_event__fprintf(event, NULL, f);
260 }
261
262 static void intel_pt_dump_sample(struct perf_session *session,
263                                  struct perf_sample *sample)
264 {
265         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
266                                            auxtrace);
267
268         printf("\n");
269         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
270 }
271
272 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
273 {
274         struct perf_time_interval *range = pt->synth_opts.ptime_range;
275         int n = pt->synth_opts.range_num;
276
277         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
278                 return true;
279
280         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
281                 return false;
282
283         /* perf_time__ranges_skip_sample does not work if time is zero */
284         if (!tm)
285                 tm = 1;
286
287         return !n || !perf_time__ranges_skip_sample(range, n, tm);
288 }
289
290 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
291                                                         u64 vmcs,
292                                                         u64 dflt_tsc_offset)
293 {
294         struct rb_node **p = &rb_root->rb_node;
295         struct rb_node *parent = NULL;
296         struct intel_pt_vmcs_info *v;
297
298         while (*p) {
299                 parent = *p;
300                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
301
302                 if (v->vmcs == vmcs)
303                         return v;
304
305                 if (vmcs < v->vmcs)
306                         p = &(*p)->rb_left;
307                 else
308                         p = &(*p)->rb_right;
309         }
310
311         v = zalloc(sizeof(*v));
312         if (v) {
313                 v->vmcs = vmcs;
314                 v->tsc_offset = dflt_tsc_offset;
315                 v->reliable = dflt_tsc_offset;
316
317                 rb_link_node(&v->rb_node, parent, p);
318                 rb_insert_color(&v->rb_node, rb_root);
319         }
320
321         return v;
322 }
323
324 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
325 {
326         struct intel_pt_queue *ptq = data;
327         struct intel_pt *pt = ptq->pt;
328
329         if (!vmcs && !pt->dflt_tsc_offset)
330                 return NULL;
331
332         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
333 }
334
335 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
336 {
337         struct intel_pt_vmcs_info *v;
338         struct rb_node *n;
339
340         n = rb_first(&pt->vmcs_info);
341         while (n) {
342                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
343                 n = rb_next(n);
344                 rb_erase(&v->rb_node, &pt->vmcs_info);
345                 free(v);
346         }
347 }
348
349 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
350                                    struct auxtrace_buffer *b)
351 {
352         bool consecutive = false;
353         void *start;
354
355         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
356                                       pt->have_tsc, &consecutive,
357                                       pt->synth_opts.vm_time_correlation);
358         if (!start)
359                 return -EINVAL;
360         /*
361          * In the case of vm_time_correlation, the overlap might contain TSC
362          * packets that will not be fixed, and that will then no longer work for
363          * overlap detection. Avoid that by zeroing out the overlap.
364          */
365         if (pt->synth_opts.vm_time_correlation)
366                 memset(b->data, 0, start - b->data);
367         b->use_size = b->data + b->size - start;
368         b->use_data = start;
369         if (b->use_size && consecutive)
370                 b->consecutive = true;
371         return 0;
372 }
373
374 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
375                                struct auxtrace_buffer *buffer,
376                                struct auxtrace_buffer *old_buffer,
377                                struct intel_pt_buffer *b)
378 {
379         bool might_overlap;
380
381         if (!buffer->data) {
382                 int fd = perf_data__fd(ptq->pt->session->data);
383
384                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
385                 if (!buffer->data)
386                         return -ENOMEM;
387         }
388
389         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
390         if (might_overlap && !buffer->consecutive && old_buffer &&
391             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
392                 return -ENOMEM;
393
394         if (buffer->use_data) {
395                 b->len = buffer->use_size;
396                 b->buf = buffer->use_data;
397         } else {
398                 b->len = buffer->size;
399                 b->buf = buffer->data;
400         }
401         b->ref_timestamp = buffer->reference;
402
403         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
404                 b->consecutive = false;
405                 b->trace_nr = buffer->buffer_nr + 1;
406         } else {
407                 b->consecutive = true;
408         }
409
410         return 0;
411 }
412
413 /* Do not drop buffers with references - refer intel_pt_get_trace() */
414 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
415                                            struct auxtrace_buffer *buffer)
416 {
417         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
418                 return;
419
420         auxtrace_buffer__drop_data(buffer);
421 }
422
423 /* Must be serialized with respect to intel_pt_get_trace() */
424 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
425                               void *cb_data)
426 {
427         struct intel_pt_queue *ptq = data;
428         struct auxtrace_buffer *buffer = ptq->buffer;
429         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
430         struct auxtrace_queue *queue;
431         int err = 0;
432
433         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
434
435         while (1) {
436                 struct intel_pt_buffer b = { .len = 0 };
437
438                 buffer = auxtrace_buffer__next(queue, buffer);
439                 if (!buffer)
440                         break;
441
442                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
443                 if (err)
444                         break;
445
446                 if (b.len) {
447                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
448                         old_buffer = buffer;
449                 } else {
450                         intel_pt_lookahead_drop_buffer(ptq, buffer);
451                         continue;
452                 }
453
454                 err = cb(&b, cb_data);
455                 if (err)
456                         break;
457         }
458
459         if (buffer != old_buffer)
460                 intel_pt_lookahead_drop_buffer(ptq, buffer);
461         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
462
463         return err;
464 }
465
466 /*
467  * This function assumes data is processed sequentially only.
468  * Must be serialized with respect to intel_pt_lookahead()
469  */
470 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
471 {
472         struct intel_pt_queue *ptq = data;
473         struct auxtrace_buffer *buffer = ptq->buffer;
474         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
475         struct auxtrace_queue *queue;
476         int err;
477
478         if (ptq->stop) {
479                 b->len = 0;
480                 return 0;
481         }
482
483         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
484
485         buffer = auxtrace_buffer__next(queue, buffer);
486         if (!buffer) {
487                 if (old_buffer)
488                         auxtrace_buffer__drop_data(old_buffer);
489                 b->len = 0;
490                 return 0;
491         }
492
493         ptq->buffer = buffer;
494
495         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
496         if (err)
497                 return err;
498
499         if (ptq->step_through_buffers)
500                 ptq->stop = true;
501
502         if (b->len) {
503                 if (old_buffer)
504                         auxtrace_buffer__drop_data(old_buffer);
505                 ptq->old_buffer = buffer;
506         } else {
507                 auxtrace_buffer__drop_data(buffer);
508                 return intel_pt_get_trace(b, data);
509         }
510
511         return 0;
512 }
513
514 struct intel_pt_cache_entry {
515         struct auxtrace_cache_entry     entry;
516         u64                             insn_cnt;
517         u64                             byte_cnt;
518         enum intel_pt_insn_op           op;
519         enum intel_pt_insn_branch       branch;
520         int                             length;
521         int32_t                         rel;
522         char                            insn[INTEL_PT_INSN_BUF_SZ];
523 };
524
525 static int intel_pt_config_div(const char *var, const char *value, void *data)
526 {
527         int *d = data;
528         long val;
529
530         if (!strcmp(var, "intel-pt.cache-divisor")) {
531                 val = strtol(value, NULL, 0);
532                 if (val > 0 && val <= INT_MAX)
533                         *d = val;
534         }
535
536         return 0;
537 }
538
539 static int intel_pt_cache_divisor(void)
540 {
541         static int d;
542
543         if (d)
544                 return d;
545
546         perf_config(intel_pt_config_div, &d);
547
548         if (!d)
549                 d = 64;
550
551         return d;
552 }
553
554 static unsigned int intel_pt_cache_size(struct dso *dso,
555                                         struct machine *machine)
556 {
557         off_t size;
558
559         size = dso__data_size(dso, machine);
560         size /= intel_pt_cache_divisor();
561         if (size < 1000)
562                 return 10;
563         if (size > (1 << 21))
564                 return 21;
565         return 32 - __builtin_clz(size);
566 }
567
568 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
569                                              struct machine *machine)
570 {
571         struct auxtrace_cache *c;
572         unsigned int bits;
573
574         if (dso->auxtrace_cache)
575                 return dso->auxtrace_cache;
576
577         bits = intel_pt_cache_size(dso, machine);
578
579         /* Ignoring cache creation failure */
580         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
581
582         dso->auxtrace_cache = c;
583
584         return c;
585 }
586
587 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
588                               u64 offset, u64 insn_cnt, u64 byte_cnt,
589                               struct intel_pt_insn *intel_pt_insn)
590 {
591         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
592         struct intel_pt_cache_entry *e;
593         int err;
594
595         if (!c)
596                 return -ENOMEM;
597
598         e = auxtrace_cache__alloc_entry(c);
599         if (!e)
600                 return -ENOMEM;
601
602         e->insn_cnt = insn_cnt;
603         e->byte_cnt = byte_cnt;
604         e->op = intel_pt_insn->op;
605         e->branch = intel_pt_insn->branch;
606         e->length = intel_pt_insn->length;
607         e->rel = intel_pt_insn->rel;
608         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
609
610         err = auxtrace_cache__add(c, offset, &e->entry);
611         if (err)
612                 auxtrace_cache__free_entry(c, e);
613
614         return err;
615 }
616
617 static struct intel_pt_cache_entry *
618 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
619 {
620         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621
622         if (!c)
623                 return NULL;
624
625         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
626 }
627
628 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
629                                       u64 offset)
630 {
631         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
632
633         if (!c)
634                 return;
635
636         auxtrace_cache__remove(dso->auxtrace_cache, offset);
637 }
638
639 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
640 {
641         /* Assumes 64-bit kernel */
642         return ip & (1ULL << 63);
643 }
644
645 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
646 {
647         if (nr) {
648                 return intel_pt_guest_kernel_ip(ip) ?
649                        PERF_RECORD_MISC_GUEST_KERNEL :
650                        PERF_RECORD_MISC_GUEST_USER;
651         }
652
653         return ip >= ptq->pt->kernel_start ?
654                PERF_RECORD_MISC_KERNEL :
655                PERF_RECORD_MISC_USER;
656 }
657
658 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
659 {
660         /* No support for non-zero CS base */
661         if (from_ip)
662                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
663         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
664 }
665
666 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
667 {
668         struct machines *machines = &ptq->pt->session->machines;
669         struct machine *machine;
670         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
671
672         if (ptq->guest_machine && pid == ptq->guest_machine_pid)
673                 return 0;
674
675         ptq->guest_machine = NULL;
676         thread__zput(ptq->unknown_guest_thread);
677
678         machine = machines__find_guest(machines, pid);
679         if (!machine)
680                 return -1;
681
682         ptq->unknown_guest_thread = machine__idle_thread(machine);
683         if (!ptq->unknown_guest_thread)
684                 return -1;
685
686         ptq->guest_machine = machine;
687         ptq->guest_machine_pid = pid;
688
689         return 0;
690 }
691
692 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
693                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
694                                    uint64_t to_ip, uint64_t max_insn_cnt,
695                                    void *data)
696 {
697         struct intel_pt_queue *ptq = data;
698         struct machine *machine = ptq->pt->machine;
699         struct thread *thread;
700         struct addr_location al;
701         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
702         ssize_t len;
703         int x86_64;
704         u8 cpumode;
705         u64 offset, start_offset, start_ip;
706         u64 insn_cnt = 0;
707         bool one_map = true;
708         bool nr;
709
710         intel_pt_insn->length = 0;
711
712         if (to_ip && *ip == to_ip)
713                 goto out_no_cache;
714
715         nr = ptq->state->to_nr;
716         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
717
718         if (nr) {
719                 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
720                     intel_pt_get_guest(ptq))
721                         return -EINVAL;
722                 machine = ptq->guest_machine;
723                 thread = ptq->unknown_guest_thread;
724         } else {
725                 thread = ptq->thread;
726                 if (!thread) {
727                         if (cpumode != PERF_RECORD_MISC_KERNEL)
728                                 return -EINVAL;
729                         thread = ptq->pt->unknown_thread;
730                 }
731         }
732
733         while (1) {
734                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
735                         return -EINVAL;
736
737                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
738                     dso__data_status_seen(al.map->dso,
739                                           DSO_DATA_STATUS_SEEN_ITRACE))
740                         return -ENOENT;
741
742                 offset = al.map->map_ip(al.map, *ip);
743
744                 if (!to_ip && one_map) {
745                         struct intel_pt_cache_entry *e;
746
747                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
748                         if (e &&
749                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
750                                 *insn_cnt_ptr = e->insn_cnt;
751                                 *ip += e->byte_cnt;
752                                 intel_pt_insn->op = e->op;
753                                 intel_pt_insn->branch = e->branch;
754                                 intel_pt_insn->length = e->length;
755                                 intel_pt_insn->rel = e->rel;
756                                 memcpy(intel_pt_insn->buf, e->insn,
757                                        INTEL_PT_INSN_BUF_SZ);
758                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
759                                 return 0;
760                         }
761                 }
762
763                 start_offset = offset;
764                 start_ip = *ip;
765
766                 /* Load maps to ensure dso->is_64_bit has been updated */
767                 map__load(al.map);
768
769                 x86_64 = al.map->dso->is_64_bit;
770
771                 while (1) {
772                         len = dso__data_read_offset(al.map->dso, machine,
773                                                     offset, buf,
774                                                     INTEL_PT_INSN_BUF_SZ);
775                         if (len <= 0)
776                                 return -EINVAL;
777
778                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
779                                 return -EINVAL;
780
781                         intel_pt_log_insn(intel_pt_insn, *ip);
782
783                         insn_cnt += 1;
784
785                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
786                                 goto out;
787
788                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
789                                 goto out_no_cache;
790
791                         *ip += intel_pt_insn->length;
792
793                         if (to_ip && *ip == to_ip) {
794                                 intel_pt_insn->length = 0;
795                                 goto out_no_cache;
796                         }
797
798                         if (*ip >= al.map->end)
799                                 break;
800
801                         offset += intel_pt_insn->length;
802                 }
803                 one_map = false;
804         }
805 out:
806         *insn_cnt_ptr = insn_cnt;
807
808         if (!one_map)
809                 goto out_no_cache;
810
811         /*
812          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
813          * entries.
814          */
815         if (to_ip) {
816                 struct intel_pt_cache_entry *e;
817
818                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
819                 if (e)
820                         return 0;
821         }
822
823         /* Ignore cache errors */
824         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
825                            *ip - start_ip, intel_pt_insn);
826
827         return 0;
828
829 out_no_cache:
830         *insn_cnt_ptr = insn_cnt;
831         return 0;
832 }
833
834 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
835                                   uint64_t offset, const char *filename)
836 {
837         struct addr_filter *filt;
838         bool have_filter   = false;
839         bool hit_tracestop = false;
840         bool hit_filter    = false;
841
842         list_for_each_entry(filt, &pt->filts.head, list) {
843                 if (filt->start)
844                         have_filter = true;
845
846                 if ((filename && !filt->filename) ||
847                     (!filename && filt->filename) ||
848                     (filename && strcmp(filename, filt->filename)))
849                         continue;
850
851                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
852                         continue;
853
854                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
855                              ip, offset, filename ? filename : "[kernel]",
856                              filt->start ? "filter" : "stop",
857                              filt->addr, filt->size);
858
859                 if (filt->start)
860                         hit_filter = true;
861                 else
862                         hit_tracestop = true;
863         }
864
865         if (!hit_tracestop && !hit_filter)
866                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
867                              ip, offset, filename ? filename : "[kernel]");
868
869         return hit_tracestop || (have_filter && !hit_filter);
870 }
871
872 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
873 {
874         struct intel_pt_queue *ptq = data;
875         struct thread *thread;
876         struct addr_location al;
877         u8 cpumode;
878         u64 offset;
879
880         if (ptq->state->to_nr) {
881                 if (intel_pt_guest_kernel_ip(ip))
882                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
883                 /* No support for decoding guest user space */
884                 return -EINVAL;
885         } else if (ip >= ptq->pt->kernel_start) {
886                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
887         }
888
889         cpumode = PERF_RECORD_MISC_USER;
890
891         thread = ptq->thread;
892         if (!thread)
893                 return -EINVAL;
894
895         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
896                 return -EINVAL;
897
898         offset = al.map->map_ip(al.map, ip);
899
900         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
901                                      al.map->dso->long_name);
902 }
903
904 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
905 {
906         return __intel_pt_pgd_ip(ip, data) > 0;
907 }
908
909 static bool intel_pt_get_config(struct intel_pt *pt,
910                                 struct perf_event_attr *attr, u64 *config)
911 {
912         if (attr->type == pt->pmu_type) {
913                 if (config)
914                         *config = attr->config;
915                 return true;
916         }
917
918         return false;
919 }
920
921 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
922 {
923         struct evsel *evsel;
924
925         evlist__for_each_entry(pt->session->evlist, evsel) {
926                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
927                     !evsel->core.attr.exclude_kernel)
928                         return false;
929         }
930         return true;
931 }
932
933 static bool intel_pt_return_compression(struct intel_pt *pt)
934 {
935         struct evsel *evsel;
936         u64 config;
937
938         if (!pt->noretcomp_bit)
939                 return true;
940
941         evlist__for_each_entry(pt->session->evlist, evsel) {
942                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
943                     (config & pt->noretcomp_bit))
944                         return false;
945         }
946         return true;
947 }
948
949 static bool intel_pt_branch_enable(struct intel_pt *pt)
950 {
951         struct evsel *evsel;
952         u64 config;
953
954         evlist__for_each_entry(pt->session->evlist, evsel) {
955                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
956                     (config & 1) && !(config & 0x2000))
957                         return false;
958         }
959         return true;
960 }
961
962 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
963 {
964         struct evsel *evsel;
965         unsigned int shift;
966         u64 config;
967
968         if (!pt->mtc_freq_bits)
969                 return 0;
970
971         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
972                 config >>= 1;
973
974         evlist__for_each_entry(pt->session->evlist, evsel) {
975                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
976                         return (config & pt->mtc_freq_bits) >> shift;
977         }
978         return 0;
979 }
980
981 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
982 {
983         struct evsel *evsel;
984         bool timeless_decoding = true;
985         u64 config;
986
987         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
988                 return true;
989
990         evlist__for_each_entry(pt->session->evlist, evsel) {
991                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
992                         return true;
993                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
994                         if (config & pt->tsc_bit)
995                                 timeless_decoding = false;
996                         else
997                                 return true;
998                 }
999         }
1000         return timeless_decoding;
1001 }
1002
1003 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1004 {
1005         struct evsel *evsel;
1006
1007         evlist__for_each_entry(pt->session->evlist, evsel) {
1008                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1009                     !evsel->core.attr.exclude_kernel)
1010                         return true;
1011         }
1012         return false;
1013 }
1014
1015 static bool intel_pt_have_tsc(struct intel_pt *pt)
1016 {
1017         struct evsel *evsel;
1018         bool have_tsc = false;
1019         u64 config;
1020
1021         if (!pt->tsc_bit)
1022                 return false;
1023
1024         evlist__for_each_entry(pt->session->evlist, evsel) {
1025                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1026                         if (config & pt->tsc_bit)
1027                                 have_tsc = true;
1028                         else
1029                                 return false;
1030                 }
1031         }
1032         return have_tsc;
1033 }
1034
1035 static bool intel_pt_have_mtc(struct intel_pt *pt)
1036 {
1037         struct evsel *evsel;
1038         u64 config;
1039
1040         evlist__for_each_entry(pt->session->evlist, evsel) {
1041                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1042                     (config & pt->mtc_bit))
1043                         return true;
1044         }
1045         return false;
1046 }
1047
1048 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1049 {
1050         struct evsel *evsel;
1051
1052         evlist__for_each_entry(pt->session->evlist, evsel) {
1053                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1054                     evsel->core.attr.aux_sample_size)
1055                         return true;
1056         }
1057         return false;
1058 }
1059
1060 static u64 intel_pt_ctl(struct intel_pt *pt)
1061 {
1062         struct evsel *evsel;
1063         u64 config;
1064
1065         evlist__for_each_entry(pt->session->evlist, evsel) {
1066                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1067                         return config;
1068         }
1069         return 0;
1070 }
1071
1072 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1073 {
1074         u64 quot, rem;
1075
1076         quot = ns / pt->tc.time_mult;
1077         rem  = ns % pt->tc.time_mult;
1078         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1079                 pt->tc.time_mult;
1080 }
1081
1082 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1083 {
1084         size_t sz = sizeof(struct ip_callchain);
1085
1086         /* Add 1 to callchain_sz for callchain context */
1087         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1088         return zalloc(sz);
1089 }
1090
1091 static int intel_pt_callchain_init(struct intel_pt *pt)
1092 {
1093         struct evsel *evsel;
1094
1095         evlist__for_each_entry(pt->session->evlist, evsel) {
1096                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1097                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1098         }
1099
1100         pt->chain = intel_pt_alloc_chain(pt);
1101         if (!pt->chain)
1102                 return -ENOMEM;
1103
1104         return 0;
1105 }
1106
1107 static void intel_pt_add_callchain(struct intel_pt *pt,
1108                                    struct perf_sample *sample)
1109 {
1110         struct thread *thread = machine__findnew_thread(pt->machine,
1111                                                         sample->pid,
1112                                                         sample->tid);
1113
1114         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1115                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1116                                   pt->kernel_start);
1117
1118         sample->callchain = pt->chain;
1119 }
1120
1121 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1122 {
1123         size_t sz = sizeof(struct branch_stack);
1124
1125         sz += entry_cnt * sizeof(struct branch_entry);
1126         return zalloc(sz);
1127 }
1128
1129 static int intel_pt_br_stack_init(struct intel_pt *pt)
1130 {
1131         struct evsel *evsel;
1132
1133         evlist__for_each_entry(pt->session->evlist, evsel) {
1134                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1135                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1136         }
1137
1138         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1139         if (!pt->br_stack)
1140                 return -ENOMEM;
1141
1142         return 0;
1143 }
1144
1145 static void intel_pt_add_br_stack(struct intel_pt *pt,
1146                                   struct perf_sample *sample)
1147 {
1148         struct thread *thread = machine__findnew_thread(pt->machine,
1149                                                         sample->pid,
1150                                                         sample->tid);
1151
1152         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1153                                      pt->br_stack_sz, sample->ip,
1154                                      pt->kernel_start);
1155
1156         sample->branch_stack = pt->br_stack;
1157 }
1158
1159 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1160 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1161
1162 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1163                                                    unsigned int queue_nr)
1164 {
1165         struct intel_pt_params params = { .get_trace = 0, };
1166         struct perf_env *env = pt->machine->env;
1167         struct intel_pt_queue *ptq;
1168
1169         ptq = zalloc(sizeof(struct intel_pt_queue));
1170         if (!ptq)
1171                 return NULL;
1172
1173         if (pt->synth_opts.callchain) {
1174                 ptq->chain = intel_pt_alloc_chain(pt);
1175                 if (!ptq->chain)
1176                         goto out_free;
1177         }
1178
1179         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1180                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1181
1182                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1183                 if (!ptq->last_branch)
1184                         goto out_free;
1185         }
1186
1187         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1188         if (!ptq->event_buf)
1189                 goto out_free;
1190
1191         ptq->pt = pt;
1192         ptq->queue_nr = queue_nr;
1193         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1194         ptq->pid = -1;
1195         ptq->tid = -1;
1196         ptq->cpu = -1;
1197         ptq->next_tid = -1;
1198
1199         params.get_trace = intel_pt_get_trace;
1200         params.walk_insn = intel_pt_walk_next_insn;
1201         params.lookahead = intel_pt_lookahead;
1202         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1203         params.data = ptq;
1204         params.return_compression = intel_pt_return_compression(pt);
1205         params.branch_enable = intel_pt_branch_enable(pt);
1206         params.ctl = intel_pt_ctl(pt);
1207         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1208         params.mtc_period = intel_pt_mtc_period(pt);
1209         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1210         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1211         params.quick = pt->synth_opts.quick;
1212         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1213         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1214         params.first_timestamp = pt->first_timestamp;
1215         params.max_loops = pt->max_loops;
1216
1217         if (pt->filts.cnt > 0)
1218                 params.pgd_ip = intel_pt_pgd_ip;
1219
1220         if (pt->synth_opts.instructions) {
1221                 if (pt->synth_opts.period) {
1222                         switch (pt->synth_opts.period_type) {
1223                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1224                                 params.period_type =
1225                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1226                                 params.period = pt->synth_opts.period;
1227                                 break;
1228                         case PERF_ITRACE_PERIOD_TICKS:
1229                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1230                                 params.period = pt->synth_opts.period;
1231                                 break;
1232                         case PERF_ITRACE_PERIOD_NANOSECS:
1233                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1234                                 params.period = intel_pt_ns_to_ticks(pt,
1235                                                         pt->synth_opts.period);
1236                                 break;
1237                         default:
1238                                 break;
1239                         }
1240                 }
1241
1242                 if (!params.period) {
1243                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1244                         params.period = 1;
1245                 }
1246         }
1247
1248         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1249                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1250
1251         ptq->decoder = intel_pt_decoder_new(&params);
1252         if (!ptq->decoder)
1253                 goto out_free;
1254
1255         return ptq;
1256
1257 out_free:
1258         zfree(&ptq->event_buf);
1259         zfree(&ptq->last_branch);
1260         zfree(&ptq->chain);
1261         free(ptq);
1262         return NULL;
1263 }
1264
1265 static void intel_pt_free_queue(void *priv)
1266 {
1267         struct intel_pt_queue *ptq = priv;
1268
1269         if (!ptq)
1270                 return;
1271         thread__zput(ptq->thread);
1272         thread__zput(ptq->unknown_guest_thread);
1273         intel_pt_decoder_free(ptq->decoder);
1274         zfree(&ptq->event_buf);
1275         zfree(&ptq->last_branch);
1276         zfree(&ptq->chain);
1277         free(ptq);
1278 }
1279
1280 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1281 {
1282         unsigned int i;
1283
1284         pt->first_timestamp = timestamp;
1285
1286         for (i = 0; i < pt->queues.nr_queues; i++) {
1287                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1288                 struct intel_pt_queue *ptq = queue->priv;
1289
1290                 if (ptq && ptq->decoder)
1291                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1292         }
1293 }
1294
1295 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1296                                      struct auxtrace_queue *queue)
1297 {
1298         struct intel_pt_queue *ptq = queue->priv;
1299
1300         if (queue->tid == -1 || pt->have_sched_switch) {
1301                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1302                 if (ptq->tid == -1)
1303                         ptq->pid = -1;
1304                 thread__zput(ptq->thread);
1305         }
1306
1307         if (!ptq->thread && ptq->tid != -1)
1308                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1309
1310         if (ptq->thread) {
1311                 ptq->pid = ptq->thread->pid_;
1312                 if (queue->cpu == -1)
1313                         ptq->cpu = ptq->thread->cpu;
1314         }
1315 }
1316
1317 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1318 {
1319         ptq->insn_len = 0;
1320         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1321                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1322         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1323                 if (!ptq->state->to_ip)
1324                         ptq->flags = PERF_IP_FLAG_BRANCH |
1325                                      PERF_IP_FLAG_TRACE_END;
1326                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1327                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1328                                      PERF_IP_FLAG_VMEXIT;
1329                 else
1330                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1331                                      PERF_IP_FLAG_ASYNC |
1332                                      PERF_IP_FLAG_INTERRUPT;
1333         } else {
1334                 if (ptq->state->from_ip)
1335                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1336                 else
1337                         ptq->flags = PERF_IP_FLAG_BRANCH |
1338                                      PERF_IP_FLAG_TRACE_BEGIN;
1339                 if (ptq->state->flags & INTEL_PT_IN_TX)
1340                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1341                 ptq->insn_len = ptq->state->insn_len;
1342                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1343         }
1344
1345         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1346                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1347         if (ptq->state->type & INTEL_PT_TRACE_END)
1348                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1349 }
1350
1351 static void intel_pt_setup_time_range(struct intel_pt *pt,
1352                                       struct intel_pt_queue *ptq)
1353 {
1354         if (!pt->range_cnt)
1355                 return;
1356
1357         ptq->sel_timestamp = pt->time_ranges[0].start;
1358         ptq->sel_idx = 0;
1359
1360         if (ptq->sel_timestamp) {
1361                 ptq->sel_start = true;
1362         } else {
1363                 ptq->sel_timestamp = pt->time_ranges[0].end;
1364                 ptq->sel_start = false;
1365         }
1366 }
1367
1368 static int intel_pt_setup_queue(struct intel_pt *pt,
1369                                 struct auxtrace_queue *queue,
1370                                 unsigned int queue_nr)
1371 {
1372         struct intel_pt_queue *ptq = queue->priv;
1373
1374         if (list_empty(&queue->head))
1375                 return 0;
1376
1377         if (!ptq) {
1378                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1379                 if (!ptq)
1380                         return -ENOMEM;
1381                 queue->priv = ptq;
1382
1383                 if (queue->cpu != -1)
1384                         ptq->cpu = queue->cpu;
1385                 ptq->tid = queue->tid;
1386
1387                 ptq->cbr_seen = UINT_MAX;
1388
1389                 if (pt->sampling_mode && !pt->snapshot_mode &&
1390                     pt->timeless_decoding)
1391                         ptq->step_through_buffers = true;
1392
1393                 ptq->sync_switch = pt->sync_switch;
1394
1395                 intel_pt_setup_time_range(pt, ptq);
1396         }
1397
1398         if (!ptq->on_heap &&
1399             (!ptq->sync_switch ||
1400              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1401                 const struct intel_pt_state *state;
1402                 int ret;
1403
1404                 if (pt->timeless_decoding)
1405                         return 0;
1406
1407                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1408                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1409                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1410
1411                 if (ptq->sel_start && ptq->sel_timestamp) {
1412                         ret = intel_pt_fast_forward(ptq->decoder,
1413                                                     ptq->sel_timestamp);
1414                         if (ret)
1415                                 return ret;
1416                 }
1417
1418                 while (1) {
1419                         state = intel_pt_decode(ptq->decoder);
1420                         if (state->err) {
1421                                 if (state->err == INTEL_PT_ERR_NODATA) {
1422                                         intel_pt_log("queue %u has no timestamp\n",
1423                                                      queue_nr);
1424                                         return 0;
1425                                 }
1426                                 continue;
1427                         }
1428                         if (state->timestamp)
1429                                 break;
1430                 }
1431
1432                 ptq->timestamp = state->timestamp;
1433                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1434                              queue_nr, ptq->timestamp);
1435                 ptq->state = state;
1436                 ptq->have_sample = true;
1437                 if (ptq->sel_start && ptq->sel_timestamp &&
1438                     ptq->timestamp < ptq->sel_timestamp)
1439                         ptq->have_sample = false;
1440                 intel_pt_sample_flags(ptq);
1441                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1442                 if (ret)
1443                         return ret;
1444                 ptq->on_heap = true;
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int intel_pt_setup_queues(struct intel_pt *pt)
1451 {
1452         unsigned int i;
1453         int ret;
1454
1455         for (i = 0; i < pt->queues.nr_queues; i++) {
1456                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1457                 if (ret)
1458                         return ret;
1459         }
1460         return 0;
1461 }
1462
1463 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1464 {
1465         return pt->synth_opts.initial_skip &&
1466                pt->num_events++ < pt->synth_opts.initial_skip;
1467 }
1468
1469 /*
1470  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1471  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1472  * from this decoder state.
1473  */
1474 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1475 {
1476         return pt->synth_opts.initial_skip &&
1477                pt->num_events + 4 < pt->synth_opts.initial_skip;
1478 }
1479
1480 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1481                                    union perf_event *event,
1482                                    struct perf_sample *sample)
1483 {
1484         event->sample.header.type = PERF_RECORD_SAMPLE;
1485         event->sample.header.size = sizeof(struct perf_event_header);
1486
1487         sample->pid = ptq->pid;
1488         sample->tid = ptq->tid;
1489         sample->cpu = ptq->cpu;
1490         sample->insn_len = ptq->insn_len;
1491         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1492 }
1493
1494 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1495                                    struct intel_pt_queue *ptq,
1496                                    union perf_event *event,
1497                                    struct perf_sample *sample)
1498 {
1499         intel_pt_prep_a_sample(ptq, event, sample);
1500
1501         if (!pt->timeless_decoding)
1502                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1503
1504         sample->ip = ptq->state->from_ip;
1505         sample->addr = ptq->state->to_ip;
1506         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1507         sample->period = 1;
1508         sample->flags = ptq->flags;
1509
1510         event->sample.header.misc = sample->cpumode;
1511 }
1512
1513 static int intel_pt_inject_event(union perf_event *event,
1514                                  struct perf_sample *sample, u64 type)
1515 {
1516         event->header.size = perf_event__sample_event_size(sample, type, 0);
1517         return perf_event__synthesize_sample(event, type, 0, sample);
1518 }
1519
1520 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1521                                       union perf_event *event,
1522                                       struct perf_sample *sample, u64 type)
1523 {
1524         if (!pt->synth_opts.inject)
1525                 return 0;
1526
1527         return intel_pt_inject_event(event, sample, type);
1528 }
1529
1530 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1531                                         union perf_event *event,
1532                                         struct perf_sample *sample, u64 type)
1533 {
1534         int ret;
1535
1536         ret = intel_pt_opt_inject(pt, event, sample, type);
1537         if (ret)
1538                 return ret;
1539
1540         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1541         if (ret)
1542                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1543
1544         return ret;
1545 }
1546
1547 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1548 {
1549         struct intel_pt *pt = ptq->pt;
1550         union perf_event *event = ptq->event_buf;
1551         struct perf_sample sample = { .ip = 0, };
1552         struct dummy_branch_stack {
1553                 u64                     nr;
1554                 u64                     hw_idx;
1555                 struct branch_entry     entries;
1556         } dummy_bs;
1557
1558         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1559                 return 0;
1560
1561         if (intel_pt_skip_event(pt))
1562                 return 0;
1563
1564         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1565
1566         sample.id = ptq->pt->branches_id;
1567         sample.stream_id = ptq->pt->branches_id;
1568
1569         /*
1570          * perf report cannot handle events without a branch stack when using
1571          * SORT_MODE__BRANCH so make a dummy one.
1572          */
1573         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1574                 dummy_bs = (struct dummy_branch_stack){
1575                         .nr = 1,
1576                         .hw_idx = -1ULL,
1577                         .entries = {
1578                                 .from = sample.ip,
1579                                 .to = sample.addr,
1580                         },
1581                 };
1582                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1583         }
1584
1585         if (ptq->sample_ipc)
1586                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1587         if (sample.cyc_cnt) {
1588                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1589                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1590                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1591         }
1592
1593         return intel_pt_deliver_synth_event(pt, event, &sample,
1594                                             pt->branches_sample_type);
1595 }
1596
1597 static void intel_pt_prep_sample(struct intel_pt *pt,
1598                                  struct intel_pt_queue *ptq,
1599                                  union perf_event *event,
1600                                  struct perf_sample *sample)
1601 {
1602         intel_pt_prep_b_sample(pt, ptq, event, sample);
1603
1604         if (pt->synth_opts.callchain) {
1605                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1606                                      pt->synth_opts.callchain_sz + 1,
1607                                      sample->ip, pt->kernel_start);
1608                 sample->callchain = ptq->chain;
1609         }
1610
1611         if (pt->synth_opts.last_branch) {
1612                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1613                                         pt->br_stack_sz);
1614                 sample->branch_stack = ptq->last_branch;
1615         }
1616 }
1617
1618 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1619 {
1620         struct intel_pt *pt = ptq->pt;
1621         union perf_event *event = ptq->event_buf;
1622         struct perf_sample sample = { .ip = 0, };
1623
1624         if (intel_pt_skip_event(pt))
1625                 return 0;
1626
1627         intel_pt_prep_sample(pt, ptq, event, &sample);
1628
1629         sample.id = ptq->pt->instructions_id;
1630         sample.stream_id = ptq->pt->instructions_id;
1631         if (pt->synth_opts.quick)
1632                 sample.period = 1;
1633         else
1634                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1635
1636         if (ptq->sample_ipc)
1637                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1638         if (sample.cyc_cnt) {
1639                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1640                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1641                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1642         }
1643
1644         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1645
1646         return intel_pt_deliver_synth_event(pt, event, &sample,
1647                                             pt->instructions_sample_type);
1648 }
1649
1650 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1651 {
1652         struct intel_pt *pt = ptq->pt;
1653         union perf_event *event = ptq->event_buf;
1654         struct perf_sample sample = { .ip = 0, };
1655
1656         if (intel_pt_skip_event(pt))
1657                 return 0;
1658
1659         intel_pt_prep_sample(pt, ptq, event, &sample);
1660
1661         sample.id = ptq->pt->transactions_id;
1662         sample.stream_id = ptq->pt->transactions_id;
1663
1664         return intel_pt_deliver_synth_event(pt, event, &sample,
1665                                             pt->transactions_sample_type);
1666 }
1667
1668 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1669                                    struct intel_pt_queue *ptq,
1670                                    union perf_event *event,
1671                                    struct perf_sample *sample)
1672 {
1673         intel_pt_prep_sample(pt, ptq, event, sample);
1674
1675         /*
1676          * Zero IP is used to mean "trace start" but that is not the case for
1677          * power or PTWRITE events with no IP, so clear the flags.
1678          */
1679         if (!sample->ip)
1680                 sample->flags = 0;
1681 }
1682
1683 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1684 {
1685         struct intel_pt *pt = ptq->pt;
1686         union perf_event *event = ptq->event_buf;
1687         struct perf_sample sample = { .ip = 0, };
1688         struct perf_synth_intel_ptwrite raw;
1689
1690         if (intel_pt_skip_event(pt))
1691                 return 0;
1692
1693         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1694
1695         sample.id = ptq->pt->ptwrites_id;
1696         sample.stream_id = ptq->pt->ptwrites_id;
1697
1698         raw.flags = 0;
1699         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1700         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1701
1702         sample.raw_size = perf_synth__raw_size(raw);
1703         sample.raw_data = perf_synth__raw_data(&raw);
1704
1705         return intel_pt_deliver_synth_event(pt, event, &sample,
1706                                             pt->ptwrites_sample_type);
1707 }
1708
1709 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1710 {
1711         struct intel_pt *pt = ptq->pt;
1712         union perf_event *event = ptq->event_buf;
1713         struct perf_sample sample = { .ip = 0, };
1714         struct perf_synth_intel_cbr raw;
1715         u32 flags;
1716
1717         if (intel_pt_skip_cbr_event(pt))
1718                 return 0;
1719
1720         ptq->cbr_seen = ptq->state->cbr;
1721
1722         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1723
1724         sample.id = ptq->pt->cbr_id;
1725         sample.stream_id = ptq->pt->cbr_id;
1726
1727         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1728         raw.flags = cpu_to_le32(flags);
1729         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1730         raw.reserved3 = 0;
1731
1732         sample.raw_size = perf_synth__raw_size(raw);
1733         sample.raw_data = perf_synth__raw_data(&raw);
1734
1735         return intel_pt_deliver_synth_event(pt, event, &sample,
1736                                             pt->pwr_events_sample_type);
1737 }
1738
1739 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1740 {
1741         struct intel_pt *pt = ptq->pt;
1742         union perf_event *event = ptq->event_buf;
1743         struct perf_sample sample = { .ip = 0, };
1744         struct perf_synth_intel_psb raw;
1745
1746         if (intel_pt_skip_event(pt))
1747                 return 0;
1748
1749         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1750
1751         sample.id = ptq->pt->psb_id;
1752         sample.stream_id = ptq->pt->psb_id;
1753         sample.flags = 0;
1754
1755         raw.reserved = 0;
1756         raw.offset = ptq->state->psb_offset;
1757
1758         sample.raw_size = perf_synth__raw_size(raw);
1759         sample.raw_data = perf_synth__raw_data(&raw);
1760
1761         return intel_pt_deliver_synth_event(pt, event, &sample,
1762                                             pt->pwr_events_sample_type);
1763 }
1764
1765 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1766 {
1767         struct intel_pt *pt = ptq->pt;
1768         union perf_event *event = ptq->event_buf;
1769         struct perf_sample sample = { .ip = 0, };
1770         struct perf_synth_intel_mwait raw;
1771
1772         if (intel_pt_skip_event(pt))
1773                 return 0;
1774
1775         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1776
1777         sample.id = ptq->pt->mwait_id;
1778         sample.stream_id = ptq->pt->mwait_id;
1779
1780         raw.reserved = 0;
1781         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1782
1783         sample.raw_size = perf_synth__raw_size(raw);
1784         sample.raw_data = perf_synth__raw_data(&raw);
1785
1786         return intel_pt_deliver_synth_event(pt, event, &sample,
1787                                             pt->pwr_events_sample_type);
1788 }
1789
1790 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1791 {
1792         struct intel_pt *pt = ptq->pt;
1793         union perf_event *event = ptq->event_buf;
1794         struct perf_sample sample = { .ip = 0, };
1795         struct perf_synth_intel_pwre raw;
1796
1797         if (intel_pt_skip_event(pt))
1798                 return 0;
1799
1800         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1801
1802         sample.id = ptq->pt->pwre_id;
1803         sample.stream_id = ptq->pt->pwre_id;
1804
1805         raw.reserved = 0;
1806         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1807
1808         sample.raw_size = perf_synth__raw_size(raw);
1809         sample.raw_data = perf_synth__raw_data(&raw);
1810
1811         return intel_pt_deliver_synth_event(pt, event, &sample,
1812                                             pt->pwr_events_sample_type);
1813 }
1814
1815 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1816 {
1817         struct intel_pt *pt = ptq->pt;
1818         union perf_event *event = ptq->event_buf;
1819         struct perf_sample sample = { .ip = 0, };
1820         struct perf_synth_intel_exstop raw;
1821
1822         if (intel_pt_skip_event(pt))
1823                 return 0;
1824
1825         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1826
1827         sample.id = ptq->pt->exstop_id;
1828         sample.stream_id = ptq->pt->exstop_id;
1829
1830         raw.flags = 0;
1831         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1832
1833         sample.raw_size = perf_synth__raw_size(raw);
1834         sample.raw_data = perf_synth__raw_data(&raw);
1835
1836         return intel_pt_deliver_synth_event(pt, event, &sample,
1837                                             pt->pwr_events_sample_type);
1838 }
1839
1840 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1841 {
1842         struct intel_pt *pt = ptq->pt;
1843         union perf_event *event = ptq->event_buf;
1844         struct perf_sample sample = { .ip = 0, };
1845         struct perf_synth_intel_pwrx raw;
1846
1847         if (intel_pt_skip_event(pt))
1848                 return 0;
1849
1850         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1851
1852         sample.id = ptq->pt->pwrx_id;
1853         sample.stream_id = ptq->pt->pwrx_id;
1854
1855         raw.reserved = 0;
1856         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1857
1858         sample.raw_size = perf_synth__raw_size(raw);
1859         sample.raw_data = perf_synth__raw_data(&raw);
1860
1861         return intel_pt_deliver_synth_event(pt, event, &sample,
1862                                             pt->pwr_events_sample_type);
1863 }
1864
1865 /*
1866  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1867  * intel_pt_add_gp_regs().
1868  */
1869 static const int pebs_gp_regs[] = {
1870         [PERF_REG_X86_FLAGS]    = 1,
1871         [PERF_REG_X86_IP]       = 2,
1872         [PERF_REG_X86_AX]       = 3,
1873         [PERF_REG_X86_CX]       = 4,
1874         [PERF_REG_X86_DX]       = 5,
1875         [PERF_REG_X86_BX]       = 6,
1876         [PERF_REG_X86_SP]       = 7,
1877         [PERF_REG_X86_BP]       = 8,
1878         [PERF_REG_X86_SI]       = 9,
1879         [PERF_REG_X86_DI]       = 10,
1880         [PERF_REG_X86_R8]       = 11,
1881         [PERF_REG_X86_R9]       = 12,
1882         [PERF_REG_X86_R10]      = 13,
1883         [PERF_REG_X86_R11]      = 14,
1884         [PERF_REG_X86_R12]      = 15,
1885         [PERF_REG_X86_R13]      = 16,
1886         [PERF_REG_X86_R14]      = 17,
1887         [PERF_REG_X86_R15]      = 18,
1888 };
1889
1890 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1891                                  const struct intel_pt_blk_items *items,
1892                                  u64 regs_mask)
1893 {
1894         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1895         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1896         u32 bit;
1897         int i;
1898
1899         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1900                 /* Get the PEBS gp_regs array index */
1901                 int n = pebs_gp_regs[i] - 1;
1902
1903                 if (n < 0)
1904                         continue;
1905                 /*
1906                  * Add only registers that were requested (i.e. 'regs_mask') and
1907                  * that were provided (i.e. 'mask'), and update the resulting
1908                  * mask (i.e. 'intr_regs->mask') accordingly.
1909                  */
1910                 if (mask & 1 << n && regs_mask & bit) {
1911                         intr_regs->mask |= bit;
1912                         *pos++ = gp_regs[n];
1913                 }
1914         }
1915
1916         return pos;
1917 }
1918
1919 #ifndef PERF_REG_X86_XMM0
1920 #define PERF_REG_X86_XMM0 32
1921 #endif
1922
1923 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1924                              const struct intel_pt_blk_items *items,
1925                              u64 regs_mask)
1926 {
1927         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1928         const u64 *xmm = items->xmm;
1929
1930         /*
1931          * If there are any XMM registers, then there should be all of them.
1932          * Nevertheless, follow the logic to add only registers that were
1933          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1934          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1935          */
1936         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1937
1938         for (; mask; mask >>= 1, xmm++) {
1939                 if (mask & 1)
1940                         *pos++ = *xmm;
1941         }
1942 }
1943
1944 #define LBR_INFO_MISPRED        (1ULL << 63)
1945 #define LBR_INFO_IN_TX          (1ULL << 62)
1946 #define LBR_INFO_ABORT          (1ULL << 61)
1947 #define LBR_INFO_CYCLES         0xffff
1948
1949 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1950 static u64 intel_pt_lbr_flags(u64 info)
1951 {
1952         union {
1953                 struct branch_flags flags;
1954                 u64 result;
1955         } u;
1956
1957         u.result          = 0;
1958         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1959         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1960         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1961         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1962         u.flags.cycles    = info & LBR_INFO_CYCLES;
1963
1964         return u.result;
1965 }
1966
1967 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1968                               const struct intel_pt_blk_items *items)
1969 {
1970         u64 *to;
1971         int i;
1972
1973         br_stack->nr = 0;
1974
1975         to = &br_stack->entries[0].from;
1976
1977         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1978                 u32 mask = items->mask[i];
1979                 const u64 *from = items->val[i];
1980
1981                 for (; mask; mask >>= 3, from += 3) {
1982                         if ((mask & 7) == 7) {
1983                                 *to++ = from[0];
1984                                 *to++ = from[1];
1985                                 *to++ = intel_pt_lbr_flags(from[2]);
1986                                 br_stack->nr += 1;
1987                         }
1988                 }
1989         }
1990 }
1991
1992 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
1993 {
1994         const struct intel_pt_blk_items *items = &ptq->state->items;
1995         struct perf_sample sample = { .ip = 0, };
1996         union perf_event *event = ptq->event_buf;
1997         struct intel_pt *pt = ptq->pt;
1998         u64 sample_type = evsel->core.attr.sample_type;
1999         u8 cpumode;
2000         u64 regs[8 * sizeof(sample.intr_regs.mask)];
2001
2002         if (intel_pt_skip_event(pt))
2003                 return 0;
2004
2005         intel_pt_prep_a_sample(ptq, event, &sample);
2006
2007         sample.id = id;
2008         sample.stream_id = id;
2009
2010         if (!evsel->core.attr.freq)
2011                 sample.period = evsel->core.attr.sample_period;
2012
2013         /* No support for non-zero CS base */
2014         if (items->has_ip)
2015                 sample.ip = items->ip;
2016         else if (items->has_rip)
2017                 sample.ip = items->rip;
2018         else
2019                 sample.ip = ptq->state->from_ip;
2020
2021         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2022
2023         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2024
2025         sample.cpumode = cpumode;
2026
2027         if (sample_type & PERF_SAMPLE_TIME) {
2028                 u64 timestamp = 0;
2029
2030                 if (items->has_timestamp)
2031                         timestamp = items->timestamp;
2032                 else if (!pt->timeless_decoding)
2033                         timestamp = ptq->timestamp;
2034                 if (timestamp)
2035                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2036         }
2037
2038         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2039             pt->synth_opts.callchain) {
2040                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2041                                      pt->synth_opts.callchain_sz, sample.ip,
2042                                      pt->kernel_start);
2043                 sample.callchain = ptq->chain;
2044         }
2045
2046         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2047             (items->mask[INTEL_PT_GP_REGS_POS] ||
2048              items->mask[INTEL_PT_XMM_POS])) {
2049                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2050                 u64 *pos;
2051
2052                 sample.intr_regs.abi = items->is_32_bit ?
2053                                        PERF_SAMPLE_REGS_ABI_32 :
2054                                        PERF_SAMPLE_REGS_ABI_64;
2055                 sample.intr_regs.regs = regs;
2056
2057                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2058
2059                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2060         }
2061
2062         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2063                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2064                     items->mask[INTEL_PT_LBR_1_POS] ||
2065                     items->mask[INTEL_PT_LBR_2_POS]) {
2066                         intel_pt_add_lbrs(ptq->last_branch, items);
2067                 } else if (pt->synth_opts.last_branch) {
2068                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2069                                                 ptq->last_branch,
2070                                                 pt->br_stack_sz);
2071                 } else {
2072                         ptq->last_branch->nr = 0;
2073                 }
2074                 sample.branch_stack = ptq->last_branch;
2075         }
2076
2077         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2078                 sample.addr = items->mem_access_address;
2079
2080         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2081                 /*
2082                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2083                  * intel_hsw_weight().
2084                  */
2085                 if (items->has_mem_access_latency) {
2086                         u64 weight = items->mem_access_latency >> 32;
2087
2088                         /*
2089                          * Starts from SPR, the mem access latency field
2090                          * contains both cache latency [47:32] and instruction
2091                          * latency [15:0]. The cache latency is the same as the
2092                          * mem access latency on previous platforms.
2093                          *
2094                          * In practice, no memory access could last than 4G
2095                          * cycles. Use latency >> 32 to distinguish the
2096                          * different format of the mem access latency field.
2097                          */
2098                         if (weight > 0) {
2099                                 sample.weight = weight & 0xffff;
2100                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2101                         } else
2102                                 sample.weight = items->mem_access_latency;
2103                 }
2104                 if (!sample.weight && items->has_tsx_aux_info) {
2105                         /* Cycles last block */
2106                         sample.weight = (u32)items->tsx_aux_info;
2107                 }
2108         }
2109
2110         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2111                 u64 ax = items->has_rax ? items->rax : 0;
2112                 /* Refer kernel's intel_hsw_transaction() */
2113                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2114
2115                 /* For RTM XABORTs also log the abort code from AX */
2116                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2117                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2118                 sample.transaction = txn;
2119         }
2120
2121         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2122 }
2123
2124 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2125 {
2126         struct intel_pt *pt = ptq->pt;
2127         struct evsel *evsel = pt->pebs_evsel;
2128         u64 id = evsel->core.id[0];
2129
2130         return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2131 }
2132
2133 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2134 {
2135         const struct intel_pt_blk_items *items = &ptq->state->items;
2136         struct intel_pt_pebs_event *pe;
2137         struct intel_pt *pt = ptq->pt;
2138         int err = -EINVAL;
2139         int hw_id;
2140
2141         if (!items->has_applicable_counters || !items->applicable_counters) {
2142                 if (!pt->single_pebs)
2143                         pr_err("PEBS-via-PT record with no applicable_counters\n");
2144                 return intel_pt_synth_single_pebs_sample(ptq);
2145         }
2146
2147         for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2148                 pe = &ptq->pebs[hw_id];
2149                 if (!pe->evsel) {
2150                         if (!pt->single_pebs)
2151                                 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2152                                        hw_id);
2153                         return intel_pt_synth_single_pebs_sample(ptq);
2154                 }
2155                 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2156                 if (err)
2157                         return err;
2158         }
2159
2160         return err;
2161 }
2162
2163 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2164                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2165 {
2166         union perf_event event;
2167         char msg[MAX_AUXTRACE_ERROR_MSG];
2168         int err;
2169
2170         if (pt->synth_opts.error_minus_flags) {
2171                 if (code == INTEL_PT_ERR_OVR &&
2172                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2173                         return 0;
2174                 if (code == INTEL_PT_ERR_LOST &&
2175                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2176                         return 0;
2177         }
2178
2179         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2180
2181         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2182                              code, cpu, pid, tid, ip, msg, timestamp);
2183
2184         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2185         if (err)
2186                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2187                        err);
2188
2189         return err;
2190 }
2191
2192 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2193                                  const struct intel_pt_state *state)
2194 {
2195         struct intel_pt *pt = ptq->pt;
2196         u64 tm = ptq->timestamp;
2197
2198         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2199
2200         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2201                                     ptq->tid, state->from_ip, tm);
2202 }
2203
2204 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2205 {
2206         struct auxtrace_queue *queue;
2207         pid_t tid = ptq->next_tid;
2208         int err;
2209
2210         if (tid == -1)
2211                 return 0;
2212
2213         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2214
2215         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2216
2217         queue = &pt->queues.queue_array[ptq->queue_nr];
2218         intel_pt_set_pid_tid_cpu(pt, queue);
2219
2220         ptq->next_tid = -1;
2221
2222         return err;
2223 }
2224
2225 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2226 {
2227         struct intel_pt *pt = ptq->pt;
2228
2229         return ip == pt->switch_ip &&
2230                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2231                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2232                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2233 }
2234
2235 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2236                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2237
2238 static int intel_pt_sample(struct intel_pt_queue *ptq)
2239 {
2240         const struct intel_pt_state *state = ptq->state;
2241         struct intel_pt *pt = ptq->pt;
2242         int err;
2243
2244         if (!ptq->have_sample)
2245                 return 0;
2246
2247         ptq->have_sample = false;
2248
2249         if (pt->synth_opts.approx_ipc) {
2250                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2251                 ptq->ipc_cyc_cnt = ptq->state->cycles;
2252                 ptq->sample_ipc = true;
2253         } else {
2254                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2255                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2256                 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2257         }
2258
2259         /*
2260          * Do PEBS first to allow for the possibility that the PEBS timestamp
2261          * precedes the current timestamp.
2262          */
2263         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2264                 err = intel_pt_synth_pebs_sample(ptq);
2265                 if (err)
2266                         return err;
2267         }
2268
2269         if (pt->sample_pwr_events) {
2270                 if (state->type & INTEL_PT_PSB_EVT) {
2271                         err = intel_pt_synth_psb_sample(ptq);
2272                         if (err)
2273                                 return err;
2274                 }
2275                 if (ptq->state->cbr != ptq->cbr_seen) {
2276                         err = intel_pt_synth_cbr_sample(ptq);
2277                         if (err)
2278                                 return err;
2279                 }
2280                 if (state->type & INTEL_PT_PWR_EVT) {
2281                         if (state->type & INTEL_PT_MWAIT_OP) {
2282                                 err = intel_pt_synth_mwait_sample(ptq);
2283                                 if (err)
2284                                         return err;
2285                         }
2286                         if (state->type & INTEL_PT_PWR_ENTRY) {
2287                                 err = intel_pt_synth_pwre_sample(ptq);
2288                                 if (err)
2289                                         return err;
2290                         }
2291                         if (state->type & INTEL_PT_EX_STOP) {
2292                                 err = intel_pt_synth_exstop_sample(ptq);
2293                                 if (err)
2294                                         return err;
2295                         }
2296                         if (state->type & INTEL_PT_PWR_EXIT) {
2297                                 err = intel_pt_synth_pwrx_sample(ptq);
2298                                 if (err)
2299                                         return err;
2300                         }
2301                 }
2302         }
2303
2304         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2305                 err = intel_pt_synth_instruction_sample(ptq);
2306                 if (err)
2307                         return err;
2308         }
2309
2310         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2311                 err = intel_pt_synth_transaction_sample(ptq);
2312                 if (err)
2313                         return err;
2314         }
2315
2316         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2317                 err = intel_pt_synth_ptwrite_sample(ptq);
2318                 if (err)
2319                         return err;
2320         }
2321
2322         if (!(state->type & INTEL_PT_BRANCH))
2323                 return 0;
2324
2325         if (pt->use_thread_stack) {
2326                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2327                                     state->from_ip, state->to_ip, ptq->insn_len,
2328                                     state->trace_nr, pt->callstack,
2329                                     pt->br_stack_sz_plus,
2330                                     pt->mispred_all);
2331         } else {
2332                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2333         }
2334
2335         if (pt->sample_branches) {
2336                 if (state->from_nr != state->to_nr &&
2337                     state->from_ip && state->to_ip) {
2338                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2339                         u64 to_ip = st->to_ip;
2340                         u64 from_ip = st->from_ip;
2341
2342                         /*
2343                          * perf cannot handle having different machines for ip
2344                          * and addr, so create 2 branches.
2345                          */
2346                         st->to_ip = 0;
2347                         err = intel_pt_synth_branch_sample(ptq);
2348                         if (err)
2349                                 return err;
2350                         st->from_ip = 0;
2351                         st->to_ip = to_ip;
2352                         err = intel_pt_synth_branch_sample(ptq);
2353                         st->from_ip = from_ip;
2354                 } else {
2355                         err = intel_pt_synth_branch_sample(ptq);
2356                 }
2357                 if (err)
2358                         return err;
2359         }
2360
2361         if (!ptq->sync_switch)
2362                 return 0;
2363
2364         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2365                 switch (ptq->switch_state) {
2366                 case INTEL_PT_SS_NOT_TRACING:
2367                 case INTEL_PT_SS_UNKNOWN:
2368                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2369                         err = intel_pt_next_tid(pt, ptq);
2370                         if (err)
2371                                 return err;
2372                         ptq->switch_state = INTEL_PT_SS_TRACING;
2373                         break;
2374                 default:
2375                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2376                         return 1;
2377                 }
2378         } else if (!state->to_ip) {
2379                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2380         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2381                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2382         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2383                    state->to_ip == pt->ptss_ip &&
2384                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2385                 ptq->switch_state = INTEL_PT_SS_TRACING;
2386         }
2387
2388         return 0;
2389 }
2390
2391 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2392 {
2393         struct machine *machine = pt->machine;
2394         struct map *map;
2395         struct symbol *sym, *start;
2396         u64 ip, switch_ip = 0;
2397         const char *ptss;
2398
2399         if (ptss_ip)
2400                 *ptss_ip = 0;
2401
2402         map = machine__kernel_map(machine);
2403         if (!map)
2404                 return 0;
2405
2406         if (map__load(map))
2407                 return 0;
2408
2409         start = dso__first_symbol(map->dso);
2410
2411         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2412                 if (sym->binding == STB_GLOBAL &&
2413                     !strcmp(sym->name, "__switch_to")) {
2414                         ip = map->unmap_ip(map, sym->start);
2415                         if (ip >= map->start && ip < map->end) {
2416                                 switch_ip = ip;
2417                                 break;
2418                         }
2419                 }
2420         }
2421
2422         if (!switch_ip || !ptss_ip)
2423                 return 0;
2424
2425         if (pt->have_sched_switch == 1)
2426                 ptss = "perf_trace_sched_switch";
2427         else
2428                 ptss = "__perf_event_task_sched_out";
2429
2430         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2431                 if (!strcmp(sym->name, ptss)) {
2432                         ip = map->unmap_ip(map, sym->start);
2433                         if (ip >= map->start && ip < map->end) {
2434                                 *ptss_ip = ip;
2435                                 break;
2436                         }
2437                 }
2438         }
2439
2440         return switch_ip;
2441 }
2442
2443 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2444 {
2445         unsigned int i;
2446
2447         pt->sync_switch = true;
2448
2449         for (i = 0; i < pt->queues.nr_queues; i++) {
2450                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2451                 struct intel_pt_queue *ptq = queue->priv;
2452
2453                 if (ptq)
2454                         ptq->sync_switch = true;
2455         }
2456 }
2457
2458 /*
2459  * To filter against time ranges, it is only necessary to look at the next start
2460  * or end time.
2461  */
2462 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2463 {
2464         struct intel_pt *pt = ptq->pt;
2465
2466         if (ptq->sel_start) {
2467                 /* Next time is an end time */
2468                 ptq->sel_start = false;
2469                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2470                 return true;
2471         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2472                 /* Next time is a start time */
2473                 ptq->sel_start = true;
2474                 ptq->sel_idx += 1;
2475                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2476                 return true;
2477         }
2478
2479         /* No next time */
2480         return false;
2481 }
2482
2483 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2484 {
2485         int err;
2486
2487         while (1) {
2488                 if (ptq->sel_start) {
2489                         if (ptq->timestamp >= ptq->sel_timestamp) {
2490                                 /* After start time, so consider next time */
2491                                 intel_pt_next_time(ptq);
2492                                 if (!ptq->sel_timestamp) {
2493                                         /* No end time */
2494                                         return 0;
2495                                 }
2496                                 /* Check against end time */
2497                                 continue;
2498                         }
2499                         /* Before start time, so fast forward */
2500                         ptq->have_sample = false;
2501                         if (ptq->sel_timestamp > *ff_timestamp) {
2502                                 if (ptq->sync_switch) {
2503                                         intel_pt_next_tid(ptq->pt, ptq);
2504                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2505                                 }
2506                                 *ff_timestamp = ptq->sel_timestamp;
2507                                 err = intel_pt_fast_forward(ptq->decoder,
2508                                                             ptq->sel_timestamp);
2509                                 if (err)
2510                                         return err;
2511                         }
2512                         return 0;
2513                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2514                         /* After end time, so consider next time */
2515                         if (!intel_pt_next_time(ptq)) {
2516                                 /* No next time range, so stop decoding */
2517                                 ptq->have_sample = false;
2518                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2519                                 return 1;
2520                         }
2521                         /* Check against next start time */
2522                         continue;
2523                 } else {
2524                         /* Before end time */
2525                         return 0;
2526                 }
2527         }
2528 }
2529
2530 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2531 {
2532         const struct intel_pt_state *state = ptq->state;
2533         struct intel_pt *pt = ptq->pt;
2534         u64 ff_timestamp = 0;
2535         int err;
2536
2537         if (!pt->kernel_start) {
2538                 pt->kernel_start = machine__kernel_start(pt->machine);
2539                 if (pt->per_cpu_mmaps &&
2540                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2541                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2542                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2543                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2544                         if (pt->switch_ip) {
2545                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2546                                              pt->switch_ip, pt->ptss_ip);
2547                                 intel_pt_enable_sync_switch(pt);
2548                         }
2549                 }
2550         }
2551
2552         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2553                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2554         while (1) {
2555                 err = intel_pt_sample(ptq);
2556                 if (err)
2557                         return err;
2558
2559                 state = intel_pt_decode(ptq->decoder);
2560                 if (state->err) {
2561                         if (state->err == INTEL_PT_ERR_NODATA)
2562                                 return 1;
2563                         if (ptq->sync_switch &&
2564                             state->from_ip >= pt->kernel_start) {
2565                                 ptq->sync_switch = false;
2566                                 intel_pt_next_tid(pt, ptq);
2567                         }
2568                         ptq->timestamp = state->est_timestamp;
2569                         if (pt->synth_opts.errors) {
2570                                 err = intel_ptq_synth_error(ptq, state);
2571                                 if (err)
2572                                         return err;
2573                         }
2574                         continue;
2575                 }
2576
2577                 ptq->state = state;
2578                 ptq->have_sample = true;
2579                 intel_pt_sample_flags(ptq);
2580
2581                 /* Use estimated TSC upon return to user space */
2582                 if (pt->est_tsc &&
2583                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2584                     state->to_ip && state->to_ip < pt->kernel_start) {
2585                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2586                                      state->timestamp, state->est_timestamp);
2587                         ptq->timestamp = state->est_timestamp;
2588                 /* Use estimated TSC in unknown switch state */
2589                 } else if (ptq->sync_switch &&
2590                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2591                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2592                            ptq->next_tid == -1) {
2593                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2594                                      state->timestamp, state->est_timestamp);
2595                         ptq->timestamp = state->est_timestamp;
2596                 } else if (state->timestamp > ptq->timestamp) {
2597                         ptq->timestamp = state->timestamp;
2598                 }
2599
2600                 if (ptq->sel_timestamp) {
2601                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2602                         if (err)
2603                                 return err;
2604                 }
2605
2606                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2607                         *timestamp = ptq->timestamp;
2608                         return 0;
2609                 }
2610         }
2611         return 0;
2612 }
2613
2614 static inline int intel_pt_update_queues(struct intel_pt *pt)
2615 {
2616         if (pt->queues.new_data) {
2617                 pt->queues.new_data = false;
2618                 return intel_pt_setup_queues(pt);
2619         }
2620         return 0;
2621 }
2622
2623 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2624 {
2625         unsigned int queue_nr;
2626         u64 ts;
2627         int ret;
2628
2629         while (1) {
2630                 struct auxtrace_queue *queue;
2631                 struct intel_pt_queue *ptq;
2632
2633                 if (!pt->heap.heap_cnt)
2634                         return 0;
2635
2636                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2637                         return 0;
2638
2639                 queue_nr = pt->heap.heap_array[0].queue_nr;
2640                 queue = &pt->queues.queue_array[queue_nr];
2641                 ptq = queue->priv;
2642
2643                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2644                              queue_nr, pt->heap.heap_array[0].ordinal,
2645                              timestamp);
2646
2647                 auxtrace_heap__pop(&pt->heap);
2648
2649                 if (pt->heap.heap_cnt) {
2650                         ts = pt->heap.heap_array[0].ordinal + 1;
2651                         if (ts > timestamp)
2652                                 ts = timestamp;
2653                 } else {
2654                         ts = timestamp;
2655                 }
2656
2657                 intel_pt_set_pid_tid_cpu(pt, queue);
2658
2659                 ret = intel_pt_run_decoder(ptq, &ts);
2660
2661                 if (ret < 0) {
2662                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2663                         return ret;
2664                 }
2665
2666                 if (!ret) {
2667                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2668                         if (ret < 0)
2669                                 return ret;
2670                 } else {
2671                         ptq->on_heap = false;
2672                 }
2673         }
2674
2675         return 0;
2676 }
2677
2678 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2679                                             u64 time_)
2680 {
2681         struct auxtrace_queues *queues = &pt->queues;
2682         unsigned int i;
2683         u64 ts = 0;
2684
2685         for (i = 0; i < queues->nr_queues; i++) {
2686                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2687                 struct intel_pt_queue *ptq = queue->priv;
2688
2689                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2690                         ptq->time = time_;
2691                         intel_pt_set_pid_tid_cpu(pt, queue);
2692                         intel_pt_run_decoder(ptq, &ts);
2693                 }
2694         }
2695         return 0;
2696 }
2697
2698 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2699                                             struct auxtrace_queue *queue,
2700                                             struct perf_sample *sample)
2701 {
2702         struct machine *m = ptq->pt->machine;
2703
2704         ptq->pid = sample->pid;
2705         ptq->tid = sample->tid;
2706         ptq->cpu = queue->cpu;
2707
2708         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2709                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2710
2711         thread__zput(ptq->thread);
2712
2713         if (ptq->tid == -1)
2714                 return;
2715
2716         if (ptq->pid == -1) {
2717                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2718                 if (ptq->thread)
2719                         ptq->pid = ptq->thread->pid_;
2720                 return;
2721         }
2722
2723         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2724 }
2725
2726 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2727                                             struct perf_sample *sample)
2728 {
2729         struct auxtrace_queue *queue;
2730         struct intel_pt_queue *ptq;
2731         u64 ts = 0;
2732
2733         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2734         if (!queue)
2735                 return -EINVAL;
2736
2737         ptq = queue->priv;
2738         if (!ptq)
2739                 return 0;
2740
2741         ptq->stop = false;
2742         ptq->time = sample->time;
2743         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2744         intel_pt_run_decoder(ptq, &ts);
2745         return 0;
2746 }
2747
2748 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2749 {
2750         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2751                                     sample->pid, sample->tid, 0, sample->time);
2752 }
2753
2754 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2755 {
2756         unsigned i, j;
2757
2758         if (cpu < 0 || !pt->queues.nr_queues)
2759                 return NULL;
2760
2761         if ((unsigned)cpu >= pt->queues.nr_queues)
2762                 i = pt->queues.nr_queues - 1;
2763         else
2764                 i = cpu;
2765
2766         if (pt->queues.queue_array[i].cpu == cpu)
2767                 return pt->queues.queue_array[i].priv;
2768
2769         for (j = 0; i > 0; j++) {
2770                 if (pt->queues.queue_array[--i].cpu == cpu)
2771                         return pt->queues.queue_array[i].priv;
2772         }
2773
2774         for (; j < pt->queues.nr_queues; j++) {
2775                 if (pt->queues.queue_array[j].cpu == cpu)
2776                         return pt->queues.queue_array[j].priv;
2777         }
2778
2779         return NULL;
2780 }
2781
2782 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2783                                 u64 timestamp)
2784 {
2785         struct intel_pt_queue *ptq;
2786         int err;
2787
2788         if (!pt->sync_switch)
2789                 return 1;
2790
2791         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2792         if (!ptq || !ptq->sync_switch)
2793                 return 1;
2794
2795         switch (ptq->switch_state) {
2796         case INTEL_PT_SS_NOT_TRACING:
2797                 break;
2798         case INTEL_PT_SS_UNKNOWN:
2799         case INTEL_PT_SS_TRACING:
2800                 ptq->next_tid = tid;
2801                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2802                 return 0;
2803         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2804                 if (!ptq->on_heap) {
2805                         ptq->timestamp = perf_time_to_tsc(timestamp,
2806                                                           &pt->tc);
2807                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2808                                                  ptq->timestamp);
2809                         if (err)
2810                                 return err;
2811                         ptq->on_heap = true;
2812                 }
2813                 ptq->switch_state = INTEL_PT_SS_TRACING;
2814                 break;
2815         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2816                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2817                 break;
2818         default:
2819                 break;
2820         }
2821
2822         ptq->next_tid = -1;
2823
2824         return 1;
2825 }
2826
2827 static int intel_pt_process_switch(struct intel_pt *pt,
2828                                    struct perf_sample *sample)
2829 {
2830         pid_t tid;
2831         int cpu, ret;
2832         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2833
2834         if (evsel != pt->switch_evsel)
2835                 return 0;
2836
2837         tid = evsel__intval(evsel, sample, "next_pid");
2838         cpu = sample->cpu;
2839
2840         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2841                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2842                      &pt->tc));
2843
2844         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2845         if (ret <= 0)
2846                 return ret;
2847
2848         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2849 }
2850
2851 static int intel_pt_context_switch_in(struct intel_pt *pt,
2852                                       struct perf_sample *sample)
2853 {
2854         pid_t pid = sample->pid;
2855         pid_t tid = sample->tid;
2856         int cpu = sample->cpu;
2857
2858         if (pt->sync_switch) {
2859                 struct intel_pt_queue *ptq;
2860
2861                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2862                 if (ptq && ptq->sync_switch) {
2863                         ptq->next_tid = -1;
2864                         switch (ptq->switch_state) {
2865                         case INTEL_PT_SS_NOT_TRACING:
2866                         case INTEL_PT_SS_UNKNOWN:
2867                         case INTEL_PT_SS_TRACING:
2868                                 break;
2869                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2870                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2871                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2872                                 break;
2873                         default:
2874                                 break;
2875                         }
2876                 }
2877         }
2878
2879         /*
2880          * If the current tid has not been updated yet, ensure it is now that
2881          * a "switch in" event has occurred.
2882          */
2883         if (machine__get_current_tid(pt->machine, cpu) == tid)
2884                 return 0;
2885
2886         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2887 }
2888
2889 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2890                                    struct perf_sample *sample)
2891 {
2892         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2893         pid_t pid, tid;
2894         int cpu, ret;
2895
2896         cpu = sample->cpu;
2897
2898         if (pt->have_sched_switch == 3) {
2899                 if (!out)
2900                         return intel_pt_context_switch_in(pt, sample);
2901                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2902                         pr_err("Expecting CPU-wide context switch event\n");
2903                         return -EINVAL;
2904                 }
2905                 pid = event->context_switch.next_prev_pid;
2906                 tid = event->context_switch.next_prev_tid;
2907         } else {
2908                 if (out)
2909                         return 0;
2910                 pid = sample->pid;
2911                 tid = sample->tid;
2912         }
2913
2914         if (tid == -1)
2915                 intel_pt_log("context_switch event has no tid\n");
2916
2917         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2918         if (ret <= 0)
2919                 return ret;
2920
2921         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2922 }
2923
2924 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2925                                          union perf_event *event,
2926                                          struct perf_sample *sample)
2927 {
2928         if (!pt->per_cpu_mmaps)
2929                 return 0;
2930
2931         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2932                      sample->cpu, event->itrace_start.pid,
2933                      event->itrace_start.tid, sample->time,
2934                      perf_time_to_tsc(sample->time, &pt->tc));
2935
2936         return machine__set_current_tid(pt->machine, sample->cpu,
2937                                         event->itrace_start.pid,
2938                                         event->itrace_start.tid);
2939 }
2940
2941 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
2942                                              union perf_event *event,
2943                                              struct perf_sample *sample)
2944 {
2945         u64 hw_id = event->aux_output_hw_id.hw_id;
2946         struct auxtrace_queue *queue;
2947         struct intel_pt_queue *ptq;
2948         struct evsel *evsel;
2949
2950         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2951         evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
2952         if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
2953                 pr_err("Bad AUX output hardware ID\n");
2954                 return -EINVAL;
2955         }
2956
2957         ptq = queue->priv;
2958
2959         ptq->pebs[hw_id].evsel = evsel;
2960         ptq->pebs[hw_id].id = sample->id;
2961
2962         return 0;
2963 }
2964
2965 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2966                              struct addr_location *al)
2967 {
2968         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2969                 if (!thread__find_map(thread, cpumode, addr, al))
2970                         return -1;
2971         }
2972
2973         return 0;
2974 }
2975
2976 /* Invalidate all instruction cache entries that overlap the text poke */
2977 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2978 {
2979         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2980         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2981         /* Assume text poke begins in a basic block no more than 4096 bytes */
2982         int cnt = 4096 + event->text_poke.new_len;
2983         struct thread *thread = pt->unknown_thread;
2984         struct addr_location al = { .map = NULL };
2985         struct machine *machine = pt->machine;
2986         struct intel_pt_cache_entry *e;
2987         u64 offset;
2988
2989         if (!event->text_poke.new_len)
2990                 return 0;
2991
2992         for (; cnt; cnt--, addr--) {
2993                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2994                         if (addr < event->text_poke.addr)
2995                                 return 0;
2996                         continue;
2997                 }
2998
2999                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
3000                         continue;
3001
3002                 offset = al.map->map_ip(al.map, addr);
3003
3004                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3005                 if (!e)
3006                         continue;
3007
3008                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3009                         /*
3010                          * No overlap. Working backwards there cannot be another
3011                          * basic block that overlaps the text poke if there is a
3012                          * branch instruction before the text poke address.
3013                          */
3014                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
3015                                 return 0;
3016                 } else {
3017                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
3018                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3019                                      al.map->dso->long_name, addr);
3020                 }
3021         }
3022
3023         return 0;
3024 }
3025
3026 static int intel_pt_process_event(struct perf_session *session,
3027                                   union perf_event *event,
3028                                   struct perf_sample *sample,
3029                                   struct perf_tool *tool)
3030 {
3031         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3032                                            auxtrace);
3033         u64 timestamp;
3034         int err = 0;
3035
3036         if (dump_trace)
3037                 return 0;
3038
3039         if (!tool->ordered_events) {
3040                 pr_err("Intel Processor Trace requires ordered events\n");
3041                 return -EINVAL;
3042         }
3043
3044         if (sample->time && sample->time != (u64)-1)
3045                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3046         else
3047                 timestamp = 0;
3048
3049         if (timestamp || pt->timeless_decoding) {
3050                 err = intel_pt_update_queues(pt);
3051                 if (err)
3052                         return err;
3053         }
3054
3055         if (pt->timeless_decoding) {
3056                 if (pt->sampling_mode) {
3057                         if (sample->aux_sample.size)
3058                                 err = intel_pt_process_timeless_sample(pt,
3059                                                                        sample);
3060                 } else if (event->header.type == PERF_RECORD_EXIT) {
3061                         err = intel_pt_process_timeless_queues(pt,
3062                                                                event->fork.tid,
3063                                                                sample->time);
3064                 }
3065         } else if (timestamp) {
3066                 if (!pt->first_timestamp)
3067                         intel_pt_first_timestamp(pt, timestamp);
3068                 err = intel_pt_process_queues(pt, timestamp);
3069         }
3070         if (err)
3071                 return err;
3072
3073         if (event->header.type == PERF_RECORD_SAMPLE) {
3074                 if (pt->synth_opts.add_callchain && !sample->callchain)
3075                         intel_pt_add_callchain(pt, sample);
3076                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3077                         intel_pt_add_br_stack(pt, sample);
3078         }
3079
3080         if (event->header.type == PERF_RECORD_AUX &&
3081             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3082             pt->synth_opts.errors) {
3083                 err = intel_pt_lost(pt, sample);
3084                 if (err)
3085                         return err;
3086         }
3087
3088         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3089                 err = intel_pt_process_switch(pt, sample);
3090         else if (event->header.type == PERF_RECORD_ITRACE_START)
3091                 err = intel_pt_process_itrace_start(pt, event, sample);
3092         else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3093                 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3094         else if (event->header.type == PERF_RECORD_SWITCH ||
3095                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3096                 err = intel_pt_context_switch(pt, event, sample);
3097
3098         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3099                 err = intel_pt_text_poke(pt, event);
3100
3101         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3102                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3103                              event->header.type, sample->cpu, sample->time, timestamp);
3104                 intel_pt_log_event(event);
3105         }
3106
3107         return err;
3108 }
3109
3110 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3111 {
3112         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3113                                            auxtrace);
3114         int ret;
3115
3116         if (dump_trace)
3117                 return 0;
3118
3119         if (!tool->ordered_events)
3120                 return -EINVAL;
3121
3122         ret = intel_pt_update_queues(pt);
3123         if (ret < 0)
3124                 return ret;
3125
3126         if (pt->timeless_decoding)
3127                 return intel_pt_process_timeless_queues(pt, -1,
3128                                                         MAX_TIMESTAMP - 1);
3129
3130         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3131 }
3132
3133 static void intel_pt_free_events(struct perf_session *session)
3134 {
3135         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3136                                            auxtrace);
3137         struct auxtrace_queues *queues = &pt->queues;
3138         unsigned int i;
3139
3140         for (i = 0; i < queues->nr_queues; i++) {
3141                 intel_pt_free_queue(queues->queue_array[i].priv);
3142                 queues->queue_array[i].priv = NULL;
3143         }
3144         intel_pt_log_disable();
3145         auxtrace_queues__free(queues);
3146 }
3147
3148 static void intel_pt_free(struct perf_session *session)
3149 {
3150         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3151                                            auxtrace);
3152
3153         auxtrace_heap__free(&pt->heap);
3154         intel_pt_free_events(session);
3155         session->auxtrace = NULL;
3156         intel_pt_free_vmcs_info(pt);
3157         thread__put(pt->unknown_thread);
3158         addr_filters__exit(&pt->filts);
3159         zfree(&pt->chain);
3160         zfree(&pt->filter);
3161         zfree(&pt->time_ranges);
3162         free(pt);
3163 }
3164
3165 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3166                                        struct evsel *evsel)
3167 {
3168         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3169                                            auxtrace);
3170
3171         return evsel->core.attr.type == pt->pmu_type;
3172 }
3173
3174 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3175                                            union perf_event *event,
3176                                            struct perf_tool *tool __maybe_unused)
3177 {
3178         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3179                                            auxtrace);
3180
3181         if (!pt->data_queued) {
3182                 struct auxtrace_buffer *buffer;
3183                 off_t data_offset;
3184                 int fd = perf_data__fd(session->data);
3185                 int err;
3186
3187                 if (perf_data__is_pipe(session->data)) {
3188                         data_offset = 0;
3189                 } else {
3190                         data_offset = lseek(fd, 0, SEEK_CUR);
3191                         if (data_offset == -1)
3192                                 return -errno;
3193                 }
3194
3195                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3196                                                  data_offset, &buffer);
3197                 if (err)
3198                         return err;
3199
3200                 /* Dump here now we have copied a piped trace out of the pipe */
3201                 if (dump_trace) {
3202                         if (auxtrace_buffer__get_data(buffer, fd)) {
3203                                 intel_pt_dump_event(pt, buffer->data,
3204                                                     buffer->size);
3205                                 auxtrace_buffer__put_data(buffer);
3206                         }
3207                 }
3208         }
3209
3210         return 0;
3211 }
3212
3213 static int intel_pt_queue_data(struct perf_session *session,
3214                                struct perf_sample *sample,
3215                                union perf_event *event, u64 data_offset)
3216 {
3217         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3218                                            auxtrace);
3219         u64 timestamp;
3220
3221         if (event) {
3222                 return auxtrace_queues__add_event(&pt->queues, session, event,
3223                                                   data_offset, NULL);
3224         }
3225
3226         if (sample->time && sample->time != (u64)-1)
3227                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3228         else
3229                 timestamp = 0;
3230
3231         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3232                                            data_offset, timestamp);
3233 }
3234
3235 struct intel_pt_synth {
3236         struct perf_tool dummy_tool;
3237         struct perf_session *session;
3238 };
3239
3240 static int intel_pt_event_synth(struct perf_tool *tool,
3241                                 union perf_event *event,
3242                                 struct perf_sample *sample __maybe_unused,
3243                                 struct machine *machine __maybe_unused)
3244 {
3245         struct intel_pt_synth *intel_pt_synth =
3246                         container_of(tool, struct intel_pt_synth, dummy_tool);
3247
3248         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3249                                                  NULL);
3250 }
3251
3252 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3253                                 struct perf_event_attr *attr, u64 id)
3254 {
3255         struct intel_pt_synth intel_pt_synth;
3256         int err;
3257
3258         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3259                  name, id, (u64)attr->sample_type);
3260
3261         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3262         intel_pt_synth.session = session;
3263
3264         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3265                                           &id, intel_pt_event_synth);
3266         if (err)
3267                 pr_err("%s: failed to synthesize '%s' event type\n",
3268                        __func__, name);
3269
3270         return err;
3271 }
3272
3273 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3274                                     const char *name)
3275 {
3276         struct evsel *evsel;
3277
3278         evlist__for_each_entry(evlist, evsel) {
3279                 if (evsel->core.id && evsel->core.id[0] == id) {
3280                         if (evsel->name)
3281                                 zfree(&evsel->name);
3282                         evsel->name = strdup(name);
3283                         break;
3284                 }
3285         }
3286 }
3287
3288 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3289                                          struct evlist *evlist)
3290 {
3291         struct evsel *evsel;
3292
3293         evlist__for_each_entry(evlist, evsel) {
3294                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3295                         return evsel;
3296         }
3297
3298         return NULL;
3299 }
3300
3301 static int intel_pt_synth_events(struct intel_pt *pt,
3302                                  struct perf_session *session)
3303 {
3304         struct evlist *evlist = session->evlist;
3305         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3306         struct perf_event_attr attr;
3307         u64 id;
3308         int err;
3309
3310         if (!evsel) {
3311                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3312                 return 0;
3313         }
3314
3315         memset(&attr, 0, sizeof(struct perf_event_attr));
3316         attr.size = sizeof(struct perf_event_attr);
3317         attr.type = PERF_TYPE_HARDWARE;
3318         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3319         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3320                             PERF_SAMPLE_PERIOD;
3321         if (pt->timeless_decoding)
3322                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3323         else
3324                 attr.sample_type |= PERF_SAMPLE_TIME;
3325         if (!pt->per_cpu_mmaps)
3326                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3327         attr.exclude_user = evsel->core.attr.exclude_user;
3328         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3329         attr.exclude_hv = evsel->core.attr.exclude_hv;
3330         attr.exclude_host = evsel->core.attr.exclude_host;
3331         attr.exclude_guest = evsel->core.attr.exclude_guest;
3332         attr.sample_id_all = evsel->core.attr.sample_id_all;
3333         attr.read_format = evsel->core.attr.read_format;
3334
3335         id = evsel->core.id[0] + 1000000000;
3336         if (!id)
3337                 id = 1;
3338
3339         if (pt->synth_opts.branches) {
3340                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3341                 attr.sample_period = 1;
3342                 attr.sample_type |= PERF_SAMPLE_ADDR;
3343                 err = intel_pt_synth_event(session, "branches", &attr, id);
3344                 if (err)
3345                         return err;
3346                 pt->sample_branches = true;
3347                 pt->branches_sample_type = attr.sample_type;
3348                 pt->branches_id = id;
3349                 id += 1;
3350                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3351         }
3352
3353         if (pt->synth_opts.callchain)
3354                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3355         if (pt->synth_opts.last_branch) {
3356                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3357                 /*
3358                  * We don't use the hardware index, but the sample generation
3359                  * code uses the new format branch_stack with this field,
3360                  * so the event attributes must indicate that it's present.
3361                  */
3362                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3363         }
3364
3365         if (pt->synth_opts.instructions) {
3366                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3367                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3368                         attr.sample_period =
3369                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3370                 else
3371                         attr.sample_period = pt->synth_opts.period;
3372                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3373                 if (err)
3374                         return err;
3375                 pt->sample_instructions = true;
3376                 pt->instructions_sample_type = attr.sample_type;
3377                 pt->instructions_id = id;
3378                 id += 1;
3379         }
3380
3381         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3382         attr.sample_period = 1;
3383
3384         if (pt->synth_opts.transactions) {
3385                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3386                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3387                 if (err)
3388                         return err;
3389                 pt->sample_transactions = true;
3390                 pt->transactions_sample_type = attr.sample_type;
3391                 pt->transactions_id = id;
3392                 intel_pt_set_event_name(evlist, id, "transactions");
3393                 id += 1;
3394         }
3395
3396         attr.type = PERF_TYPE_SYNTH;
3397         attr.sample_type |= PERF_SAMPLE_RAW;
3398
3399         if (pt->synth_opts.ptwrites) {
3400                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3401                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3402                 if (err)
3403                         return err;
3404                 pt->sample_ptwrites = true;
3405                 pt->ptwrites_sample_type = attr.sample_type;
3406                 pt->ptwrites_id = id;
3407                 intel_pt_set_event_name(evlist, id, "ptwrite");
3408                 id += 1;
3409         }
3410
3411         if (pt->synth_opts.pwr_events) {
3412                 pt->sample_pwr_events = true;
3413                 pt->pwr_events_sample_type = attr.sample_type;
3414
3415                 attr.config = PERF_SYNTH_INTEL_CBR;
3416                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3417                 if (err)
3418                         return err;
3419                 pt->cbr_id = id;
3420                 intel_pt_set_event_name(evlist, id, "cbr");
3421                 id += 1;
3422
3423                 attr.config = PERF_SYNTH_INTEL_PSB;
3424                 err = intel_pt_synth_event(session, "psb", &attr, id);
3425                 if (err)
3426                         return err;
3427                 pt->psb_id = id;
3428                 intel_pt_set_event_name(evlist, id, "psb");
3429                 id += 1;
3430         }
3431
3432         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3433                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3434                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3435                 if (err)
3436                         return err;
3437                 pt->mwait_id = id;
3438                 intel_pt_set_event_name(evlist, id, "mwait");
3439                 id += 1;
3440
3441                 attr.config = PERF_SYNTH_INTEL_PWRE;
3442                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3443                 if (err)
3444                         return err;
3445                 pt->pwre_id = id;
3446                 intel_pt_set_event_name(evlist, id, "pwre");
3447                 id += 1;
3448
3449                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3450                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3451                 if (err)
3452                         return err;
3453                 pt->exstop_id = id;
3454                 intel_pt_set_event_name(evlist, id, "exstop");
3455                 id += 1;
3456
3457                 attr.config = PERF_SYNTH_INTEL_PWRX;
3458                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3459                 if (err)
3460                         return err;
3461                 pt->pwrx_id = id;
3462                 intel_pt_set_event_name(evlist, id, "pwrx");
3463                 id += 1;
3464         }
3465
3466         return 0;
3467 }
3468
3469 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3470 {
3471         struct evsel *evsel;
3472
3473         if (!pt->synth_opts.other_events)
3474                 return;
3475
3476         evlist__for_each_entry(pt->session->evlist, evsel) {
3477                 if (evsel->core.attr.aux_output && evsel->core.id) {
3478                         if (pt->single_pebs) {
3479                                 pt->single_pebs = false;
3480                                 return;
3481                         }
3482                         pt->single_pebs = true;
3483                         pt->sample_pebs = true;
3484                         pt->pebs_evsel = evsel;
3485                 }
3486         }
3487 }
3488
3489 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3490 {
3491         struct evsel *evsel;
3492
3493         evlist__for_each_entry_reverse(evlist, evsel) {
3494                 const char *name = evsel__name(evsel);
3495
3496                 if (!strcmp(name, "sched:sched_switch"))
3497                         return evsel;
3498         }
3499
3500         return NULL;
3501 }
3502
3503 static bool intel_pt_find_switch(struct evlist *evlist)
3504 {
3505         struct evsel *evsel;
3506
3507         evlist__for_each_entry(evlist, evsel) {
3508                 if (evsel->core.attr.context_switch)
3509                         return true;
3510         }
3511
3512         return false;
3513 }
3514
3515 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3516 {
3517         struct intel_pt *pt = data;
3518
3519         if (!strcmp(var, "intel-pt.mispred-all"))
3520                 pt->mispred_all = perf_config_bool(var, value);
3521
3522         if (!strcmp(var, "intel-pt.max-loops"))
3523                 perf_config_int(&pt->max_loops, var, value);
3524
3525         return 0;
3526 }
3527
3528 /* Find least TSC which converts to ns or later */
3529 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3530 {
3531         u64 tsc, tm;
3532
3533         tsc = perf_time_to_tsc(ns, &pt->tc);
3534
3535         while (1) {
3536                 tm = tsc_to_perf_time(tsc, &pt->tc);
3537                 if (tm < ns)
3538                         break;
3539                 tsc -= 1;
3540         }
3541
3542         while (tm < ns)
3543                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3544
3545         return tsc;
3546 }
3547
3548 /* Find greatest TSC which converts to ns or earlier */
3549 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3550 {
3551         u64 tsc, tm;
3552
3553         tsc = perf_time_to_tsc(ns, &pt->tc);
3554
3555         while (1) {
3556                 tm = tsc_to_perf_time(tsc, &pt->tc);
3557                 if (tm > ns)
3558                         break;
3559                 tsc += 1;
3560         }
3561
3562         while (tm > ns)
3563                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3564
3565         return tsc;
3566 }
3567
3568 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3569                                       struct itrace_synth_opts *opts)
3570 {
3571         struct perf_time_interval *p = opts->ptime_range;
3572         int n = opts->range_num;
3573         int i;
3574
3575         if (!n || !p || pt->timeless_decoding)
3576                 return 0;
3577
3578         pt->time_ranges = calloc(n, sizeof(struct range));
3579         if (!pt->time_ranges)
3580                 return -ENOMEM;
3581
3582         pt->range_cnt = n;
3583
3584         intel_pt_log("%s: %u range(s)\n", __func__, n);
3585
3586         for (i = 0; i < n; i++) {
3587                 struct range *r = &pt->time_ranges[i];
3588                 u64 ts = p[i].start;
3589                 u64 te = p[i].end;
3590
3591                 /*
3592                  * Take care to ensure the TSC range matches the perf-time range
3593                  * when converted back to perf-time.
3594                  */
3595                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3596                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3597
3598                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3599                              i, ts, te);
3600                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3601                              i, r->start, r->end);
3602         }
3603
3604         return 0;
3605 }
3606
3607 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3608 {
3609         struct intel_pt_vmcs_info *vmcs_info;
3610         u64 tsc_offset, vmcs;
3611         char *p = *args;
3612
3613         errno = 0;
3614
3615         p = skip_spaces(p);
3616         if (!*p)
3617                 return 1;
3618
3619         tsc_offset = strtoull(p, &p, 0);
3620         if (errno)
3621                 return -errno;
3622         p = skip_spaces(p);
3623         if (*p != ':') {
3624                 pt->dflt_tsc_offset = tsc_offset;
3625                 *args = p;
3626                 return 0;
3627         }
3628         while (1) {
3629                 vmcs = strtoull(p, &p, 0);
3630                 if (errno)
3631                         return -errno;
3632                 if (!vmcs)
3633                         return -EINVAL;
3634                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3635                 if (!vmcs_info)
3636                         return -ENOMEM;
3637                 p = skip_spaces(p);
3638                 if (*p != ',')
3639                         break;
3640                 p += 1;
3641         }
3642         *args = p;
3643         return 0;
3644 }
3645
3646 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3647 {
3648         char *args = pt->synth_opts.vm_tm_corr_args;
3649         int ret;
3650
3651         if (!args)
3652                 return 0;
3653
3654         do {
3655                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3656         } while (!ret);
3657
3658         if (ret < 0) {
3659                 pr_err("Failed to parse VM Time Correlation options\n");
3660                 return ret;
3661         }
3662
3663         return 0;
3664 }
3665
3666 static const char * const intel_pt_info_fmts[] = {
3667         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3668         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3669         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3670         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3671         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3672         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3673         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3674         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3675         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3676         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3677         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3678         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3679         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3680         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3681         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3682         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3683 };
3684
3685 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3686 {
3687         int i;
3688
3689         if (!dump_trace)
3690                 return;
3691
3692         for (i = start; i <= finish; i++)
3693                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3694 }
3695
3696 static void intel_pt_print_info_str(const char *name, const char *str)
3697 {
3698         if (!dump_trace)
3699                 return;
3700
3701         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3702 }
3703
3704 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3705 {
3706         return auxtrace_info->header.size >=
3707                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3708 }
3709
3710 int intel_pt_process_auxtrace_info(union perf_event *event,
3711                                    struct perf_session *session)
3712 {
3713         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3714         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3715         struct intel_pt *pt;
3716         void *info_end;
3717         __u64 *info;
3718         int err;
3719
3720         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3721                                         min_sz)
3722                 return -EINVAL;
3723
3724         pt = zalloc(sizeof(struct intel_pt));
3725         if (!pt)
3726                 return -ENOMEM;
3727
3728         pt->vmcs_info = RB_ROOT;
3729
3730         addr_filters__init(&pt->filts);
3731
3732         err = perf_config(intel_pt_perf_config, pt);
3733         if (err)
3734                 goto err_free;
3735
3736         err = auxtrace_queues__init(&pt->queues);
3737         if (err)
3738                 goto err_free;
3739
3740         if (session->itrace_synth_opts->set) {
3741                 pt->synth_opts = *session->itrace_synth_opts;
3742         } else {
3743                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
3744
3745                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3746                 if (!opts->default_no_sample && !opts->inject) {
3747                         pt->synth_opts.branches = false;
3748                         pt->synth_opts.callchain = true;
3749                         pt->synth_opts.add_callchain = true;
3750                 }
3751                 pt->synth_opts.thread_stack = opts->thread_stack;
3752         }
3753
3754         if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
3755                 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3756
3757         pt->session = session;
3758         pt->machine = &session->machines.host; /* No kvm support */
3759         pt->auxtrace_type = auxtrace_info->type;
3760         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3761         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3762         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3763         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3764         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3765         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3766         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3767         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3768         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3769         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3770         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3771                             INTEL_PT_PER_CPU_MMAPS);
3772
3773         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3774                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3775                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3776                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3777                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3778                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3779                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3780                                     INTEL_PT_CYC_BIT);
3781         }
3782
3783         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3784                 pt->max_non_turbo_ratio =
3785                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3786                 intel_pt_print_info(&auxtrace_info->priv[0],
3787                                     INTEL_PT_MAX_NONTURBO_RATIO,
3788                                     INTEL_PT_MAX_NONTURBO_RATIO);
3789         }
3790
3791         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3792         info_end = (void *)info + auxtrace_info->header.size;
3793
3794         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3795                 size_t len;
3796
3797                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3798                 intel_pt_print_info(&auxtrace_info->priv[0],
3799                                     INTEL_PT_FILTER_STR_LEN,
3800                                     INTEL_PT_FILTER_STR_LEN);
3801                 if (len) {
3802                         const char *filter = (const char *)info;
3803
3804                         len = roundup(len + 1, 8);
3805                         info += len >> 3;
3806                         if ((void *)info > info_end) {
3807                                 pr_err("%s: bad filter string length\n", __func__);
3808                                 err = -EINVAL;
3809                                 goto err_free_queues;
3810                         }
3811                         pt->filter = memdup(filter, len);
3812                         if (!pt->filter) {
3813                                 err = -ENOMEM;
3814                                 goto err_free_queues;
3815                         }
3816                         if (session->header.needs_swap)
3817                                 mem_bswap_64(pt->filter, len);
3818                         if (pt->filter[len - 1]) {
3819                                 pr_err("%s: filter string not null terminated\n", __func__);
3820                                 err = -EINVAL;
3821                                 goto err_free_queues;
3822                         }
3823                         err = addr_filters__parse_bare_filter(&pt->filts,
3824                                                               filter);
3825                         if (err)
3826                                 goto err_free_queues;
3827                 }
3828                 intel_pt_print_info_str("Filter string", pt->filter);
3829         }
3830
3831         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3832         if (pt->timeless_decoding && !pt->tc.time_mult)
3833                 pt->tc.time_mult = 1;
3834         pt->have_tsc = intel_pt_have_tsc(pt);
3835         pt->sampling_mode = intel_pt_sampling_mode(pt);
3836         pt->est_tsc = !pt->timeless_decoding;
3837
3838         if (pt->synth_opts.vm_time_correlation) {
3839                 if (pt->timeless_decoding) {
3840                         pr_err("Intel PT has no time information for VM Time Correlation\n");
3841                         err = -EINVAL;
3842                         goto err_free_queues;
3843                 }
3844                 if (session->itrace_synth_opts->ptime_range) {
3845                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3846                         err = -EINVAL;
3847                         goto err_free_queues;
3848                 }
3849                 /* Currently TSC Offset is calculated using MTC packets */
3850                 if (!intel_pt_have_mtc(pt)) {
3851                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3852                         err = -EINVAL;
3853                         goto err_free_queues;
3854                 }
3855                 err = intel_pt_parse_vm_tm_corr_args(pt);
3856                 if (err)
3857                         goto err_free_queues;
3858         }
3859
3860         pt->unknown_thread = thread__new(999999999, 999999999);
3861         if (!pt->unknown_thread) {
3862                 err = -ENOMEM;
3863                 goto err_free_queues;
3864         }
3865
3866         /*
3867          * Since this thread will not be kept in any rbtree not in a
3868          * list, initialize its list node so that at thread__put() the
3869          * current thread lifetime assumption is kept and we don't segfault
3870          * at list_del_init().
3871          */
3872         INIT_LIST_HEAD(&pt->unknown_thread->node);
3873
3874         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3875         if (err)
3876                 goto err_delete_thread;
3877         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3878                 err = -ENOMEM;
3879                 goto err_delete_thread;
3880         }
3881
3882         pt->auxtrace.process_event = intel_pt_process_event;
3883         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3884         pt->auxtrace.queue_data = intel_pt_queue_data;
3885         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3886         pt->auxtrace.flush_events = intel_pt_flush;
3887         pt->auxtrace.free_events = intel_pt_free_events;
3888         pt->auxtrace.free = intel_pt_free;
3889         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3890         session->auxtrace = &pt->auxtrace;
3891
3892         if (dump_trace)
3893                 return 0;
3894
3895         if (pt->have_sched_switch == 1) {
3896                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3897                 if (!pt->switch_evsel) {
3898                         pr_err("%s: missing sched_switch event\n", __func__);
3899                         err = -EINVAL;
3900                         goto err_delete_thread;
3901                 }
3902         } else if (pt->have_sched_switch == 2 &&
3903                    !intel_pt_find_switch(session->evlist)) {
3904                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3905                 err = -EINVAL;
3906                 goto err_delete_thread;
3907         }
3908
3909         if (pt->synth_opts.log)
3910                 intel_pt_log_enable();
3911
3912         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3913         if (pt->tc.time_mult) {
3914                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3915
3916                 if (!pt->max_non_turbo_ratio)
3917                         pt->max_non_turbo_ratio =
3918                                         (tsc_freq + 50000000) / 100000000;
3919                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3920                 intel_pt_log("Maximum non-turbo ratio %u\n",
3921                              pt->max_non_turbo_ratio);
3922                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3923         }
3924
3925         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3926         if (err)
3927                 goto err_delete_thread;
3928
3929         if (pt->synth_opts.calls)
3930                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3931                                        PERF_IP_FLAG_TRACE_END;
3932         if (pt->synth_opts.returns)
3933                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3934                                        PERF_IP_FLAG_TRACE_BEGIN;
3935
3936         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3937             !symbol_conf.use_callchain) {
3938                 symbol_conf.use_callchain = true;
3939                 if (callchain_register_param(&callchain_param) < 0) {
3940                         symbol_conf.use_callchain = false;
3941                         pt->synth_opts.callchain = false;
3942                         pt->synth_opts.add_callchain = false;
3943                 }
3944         }
3945
3946         if (pt->synth_opts.add_callchain) {
3947                 err = intel_pt_callchain_init(pt);
3948                 if (err)
3949                         goto err_delete_thread;
3950         }
3951
3952         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3953                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3954                 pt->br_stack_sz_plus = pt->br_stack_sz;
3955         }
3956
3957         if (pt->synth_opts.add_last_branch) {
3958                 err = intel_pt_br_stack_init(pt);
3959                 if (err)
3960                         goto err_delete_thread;
3961                 /*
3962                  * Additional branch stack size to cater for tracing from the
3963                  * actual sample ip to where the sample time is recorded.
3964                  * Measured at about 200 branches, but generously set to 1024.
3965                  * If kernel space is not being traced, then add just 1 for the
3966                  * branch to kernel space.
3967                  */
3968                 if (intel_pt_tracing_kernel(pt))
3969                         pt->br_stack_sz_plus += 1024;
3970                 else
3971                         pt->br_stack_sz_plus += 1;
3972         }
3973
3974         pt->use_thread_stack = pt->synth_opts.callchain ||
3975                                pt->synth_opts.add_callchain ||
3976                                pt->synth_opts.thread_stack ||
3977                                pt->synth_opts.last_branch ||
3978                                pt->synth_opts.add_last_branch;
3979
3980         pt->callstack = pt->synth_opts.callchain ||
3981                         pt->synth_opts.add_callchain ||
3982                         pt->synth_opts.thread_stack;
3983
3984         err = intel_pt_synth_events(pt, session);
3985         if (err)
3986                 goto err_delete_thread;
3987
3988         intel_pt_setup_pebs_events(pt);
3989
3990         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3991                 err = auxtrace_queue_data(session, true, true);
3992         else
3993                 err = auxtrace_queues__process_index(&pt->queues, session);
3994         if (err)
3995                 goto err_delete_thread;
3996
3997         if (pt->queues.populated)
3998                 pt->data_queued = true;
3999
4000         if (pt->timeless_decoding)
4001                 pr_debug2("Intel PT decoding without timestamps\n");
4002
4003         return 0;
4004
4005 err_delete_thread:
4006         zfree(&pt->chain);
4007         thread__zput(pt->unknown_thread);
4008 err_free_queues:
4009         intel_pt_log_disable();
4010         auxtrace_queues__free(&pt->queues);
4011         session->auxtrace = NULL;
4012 err_free:
4013         addr_filters__exit(&pt->filts);
4014         zfree(&pt->filter);
4015         zfree(&pt->time_ranges);
4016         free(pt);
4017         return err;
4018 }