Merge tag 'leds_for_4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszews...
[sfrench/cifs-2.6.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "namespaces.h"
7 #include "sort.h"
8 #include "evlist.h"
9 #include "evsel.h"
10 #include "annotate.h"
11 #include "srcline.h"
12 #include "thread.h"
13 #include "ui/progress.h"
14 #include <errno.h>
15 #include <math.h>
16 #include <sys/param.h>
17
18 static bool hists__filter_entry_by_dso(struct hists *hists,
19                                        struct hist_entry *he);
20 static bool hists__filter_entry_by_thread(struct hists *hists,
21                                           struct hist_entry *he);
22 static bool hists__filter_entry_by_symbol(struct hists *hists,
23                                           struct hist_entry *he);
24 static bool hists__filter_entry_by_socket(struct hists *hists,
25                                           struct hist_entry *he);
26
27 u16 hists__col_len(struct hists *hists, enum hist_column col)
28 {
29         return hists->col_len[col];
30 }
31
32 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34         hists->col_len[col] = len;
35 }
36
37 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
38 {
39         if (len > hists__col_len(hists, col)) {
40                 hists__set_col_len(hists, col, len);
41                 return true;
42         }
43         return false;
44 }
45
46 void hists__reset_col_len(struct hists *hists)
47 {
48         enum hist_column col;
49
50         for (col = 0; col < HISTC_NR_COLS; ++col)
51                 hists__set_col_len(hists, col, 0);
52 }
53
54 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
55 {
56         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
57
58         if (hists__col_len(hists, dso) < unresolved_col_width &&
59             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
60             !symbol_conf.dso_list)
61                 hists__set_col_len(hists, dso, unresolved_col_width);
62 }
63
64 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
65 {
66         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
67         int symlen;
68         u16 len;
69
70         /*
71          * +4 accounts for '[x] ' priv level info
72          * +2 accounts for 0x prefix on raw addresses
73          * +3 accounts for ' y ' symtab origin info
74          */
75         if (h->ms.sym) {
76                 symlen = h->ms.sym->namelen + 4;
77                 if (verbose > 0)
78                         symlen += BITS_PER_LONG / 4 + 2 + 3;
79                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
80         } else {
81                 symlen = unresolved_col_width + 4 + 2;
82                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
84         }
85
86         len = thread__comm_len(h->thread);
87         if (hists__new_col_len(hists, HISTC_COMM, len))
88                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
89
90         if (h->ms.map) {
91                 len = dso__name_len(h->ms.map->dso);
92                 hists__new_col_len(hists, HISTC_DSO, len);
93         }
94
95         if (h->parent)
96                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
97
98         if (h->branch_info) {
99                 if (h->branch_info->from.sym) {
100                         symlen = (int)h->branch_info->from.sym->namelen + 4;
101                         if (verbose > 0)
102                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
103                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104
105                         symlen = dso__name_len(h->branch_info->from.map->dso);
106                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
107                 } else {
108                         symlen = unresolved_col_width + 4 + 2;
109                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
110                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
111                 }
112
113                 if (h->branch_info->to.sym) {
114                         symlen = (int)h->branch_info->to.sym->namelen + 4;
115                         if (verbose > 0)
116                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
117                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118
119                         symlen = dso__name_len(h->branch_info->to.map->dso);
120                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
121                 } else {
122                         symlen = unresolved_col_width + 4 + 2;
123                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
124                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
125                 }
126
127                 if (h->branch_info->srcline_from)
128                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
129                                         strlen(h->branch_info->srcline_from));
130                 if (h->branch_info->srcline_to)
131                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
132                                         strlen(h->branch_info->srcline_to));
133         }
134
135         if (h->mem_info) {
136                 if (h->mem_info->daddr.sym) {
137                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
138                                + unresolved_col_width + 2;
139                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140                                            symlen);
141                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142                                            symlen + 1);
143                 } else {
144                         symlen = unresolved_col_width + 4 + 2;
145                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
146                                            symlen);
147                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
148                                            symlen);
149                 }
150
151                 if (h->mem_info->iaddr.sym) {
152                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
153                                + unresolved_col_width + 2;
154                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
155                                            symlen);
156                 } else {
157                         symlen = unresolved_col_width + 4 + 2;
158                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
159                                            symlen);
160                 }
161
162                 if (h->mem_info->daddr.map) {
163                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
164                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
165                                            symlen);
166                 } else {
167                         symlen = unresolved_col_width + 4 + 2;
168                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169                 }
170         } else {
171                 symlen = unresolved_col_width + 4 + 2;
172                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
173                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
174                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
175         }
176
177         hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
178         hists__new_col_len(hists, HISTC_CPU, 3);
179         hists__new_col_len(hists, HISTC_SOCKET, 6);
180         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
181         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
182         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
183         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
184         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
185         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
186
187         if (h->srcline) {
188                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
189                 hists__new_col_len(hists, HISTC_SRCLINE, len);
190         }
191
192         if (h->srcfile)
193                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
194
195         if (h->transaction)
196                 hists__new_col_len(hists, HISTC_TRANSACTION,
197                                    hist_entry__transaction_len());
198
199         if (h->trace_output)
200                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
201 }
202
203 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
204 {
205         struct rb_node *next = rb_first(&hists->entries);
206         struct hist_entry *n;
207         int row = 0;
208
209         hists__reset_col_len(hists);
210
211         while (next && row++ < max_rows) {
212                 n = rb_entry(next, struct hist_entry, rb_node);
213                 if (!n->filtered)
214                         hists__calc_col_len(hists, n);
215                 next = rb_next(&n->rb_node);
216         }
217 }
218
219 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
220                                         unsigned int cpumode, u64 period)
221 {
222         switch (cpumode) {
223         case PERF_RECORD_MISC_KERNEL:
224                 he_stat->period_sys += period;
225                 break;
226         case PERF_RECORD_MISC_USER:
227                 he_stat->period_us += period;
228                 break;
229         case PERF_RECORD_MISC_GUEST_KERNEL:
230                 he_stat->period_guest_sys += period;
231                 break;
232         case PERF_RECORD_MISC_GUEST_USER:
233                 he_stat->period_guest_us += period;
234                 break;
235         default:
236                 break;
237         }
238 }
239
240 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
241                                 u64 weight)
242 {
243
244         he_stat->period         += period;
245         he_stat->weight         += weight;
246         he_stat->nr_events      += 1;
247 }
248
249 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
250 {
251         dest->period            += src->period;
252         dest->period_sys        += src->period_sys;
253         dest->period_us         += src->period_us;
254         dest->period_guest_sys  += src->period_guest_sys;
255         dest->period_guest_us   += src->period_guest_us;
256         dest->nr_events         += src->nr_events;
257         dest->weight            += src->weight;
258 }
259
260 static void he_stat__decay(struct he_stat *he_stat)
261 {
262         he_stat->period = (he_stat->period * 7) / 8;
263         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
264         /* XXX need decay for weight too? */
265 }
266
267 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
268
269 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
270 {
271         u64 prev_period = he->stat.period;
272         u64 diff;
273
274         if (prev_period == 0)
275                 return true;
276
277         he_stat__decay(&he->stat);
278         if (symbol_conf.cumulate_callchain)
279                 he_stat__decay(he->stat_acc);
280         decay_callchain(he->callchain);
281
282         diff = prev_period - he->stat.period;
283
284         if (!he->depth) {
285                 hists->stats.total_period -= diff;
286                 if (!he->filtered)
287                         hists->stats.total_non_filtered_period -= diff;
288         }
289
290         if (!he->leaf) {
291                 struct hist_entry *child;
292                 struct rb_node *node = rb_first(&he->hroot_out);
293                 while (node) {
294                         child = rb_entry(node, struct hist_entry, rb_node);
295                         node = rb_next(node);
296
297                         if (hists__decay_entry(hists, child))
298                                 hists__delete_entry(hists, child);
299                 }
300         }
301
302         return he->stat.period == 0;
303 }
304
305 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
306 {
307         struct rb_root *root_in;
308         struct rb_root *root_out;
309
310         if (he->parent_he) {
311                 root_in  = &he->parent_he->hroot_in;
312                 root_out = &he->parent_he->hroot_out;
313         } else {
314                 if (hists__has(hists, need_collapse))
315                         root_in = &hists->entries_collapsed;
316                 else
317                         root_in = hists->entries_in;
318                 root_out = &hists->entries;
319         }
320
321         rb_erase(&he->rb_node_in, root_in);
322         rb_erase(&he->rb_node, root_out);
323
324         --hists->nr_entries;
325         if (!he->filtered)
326                 --hists->nr_non_filtered_entries;
327
328         hist_entry__delete(he);
329 }
330
331 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
332 {
333         struct rb_node *next = rb_first(&hists->entries);
334         struct hist_entry *n;
335
336         while (next) {
337                 n = rb_entry(next, struct hist_entry, rb_node);
338                 next = rb_next(&n->rb_node);
339                 if (((zap_user && n->level == '.') ||
340                      (zap_kernel && n->level != '.') ||
341                      hists__decay_entry(hists, n))) {
342                         hists__delete_entry(hists, n);
343                 }
344         }
345 }
346
347 void hists__delete_entries(struct hists *hists)
348 {
349         struct rb_node *next = rb_first(&hists->entries);
350         struct hist_entry *n;
351
352         while (next) {
353                 n = rb_entry(next, struct hist_entry, rb_node);
354                 next = rb_next(&n->rb_node);
355
356                 hists__delete_entry(hists, n);
357         }
358 }
359
360 /*
361  * histogram, sorted on item, collects periods
362  */
363
364 static int hist_entry__init(struct hist_entry *he,
365                             struct hist_entry *template,
366                             bool sample_self)
367 {
368         *he = *template;
369
370         if (symbol_conf.cumulate_callchain) {
371                 he->stat_acc = malloc(sizeof(he->stat));
372                 if (he->stat_acc == NULL)
373                         return -ENOMEM;
374                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
375                 if (!sample_self)
376                         memset(&he->stat, 0, sizeof(he->stat));
377         }
378
379         map__get(he->ms.map);
380
381         if (he->branch_info) {
382                 /*
383                  * This branch info is (a part of) allocated from
384                  * sample__resolve_bstack() and will be freed after
385                  * adding new entries.  So we need to save a copy.
386                  */
387                 he->branch_info = malloc(sizeof(*he->branch_info));
388                 if (he->branch_info == NULL) {
389                         map__zput(he->ms.map);
390                         free(he->stat_acc);
391                         return -ENOMEM;
392                 }
393
394                 memcpy(he->branch_info, template->branch_info,
395                        sizeof(*he->branch_info));
396
397                 map__get(he->branch_info->from.map);
398                 map__get(he->branch_info->to.map);
399         }
400
401         if (he->mem_info) {
402                 map__get(he->mem_info->iaddr.map);
403                 map__get(he->mem_info->daddr.map);
404         }
405
406         if (symbol_conf.use_callchain)
407                 callchain_init(he->callchain);
408
409         if (he->raw_data) {
410                 he->raw_data = memdup(he->raw_data, he->raw_size);
411
412                 if (he->raw_data == NULL) {
413                         map__put(he->ms.map);
414                         if (he->branch_info) {
415                                 map__put(he->branch_info->from.map);
416                                 map__put(he->branch_info->to.map);
417                                 free(he->branch_info);
418                         }
419                         if (he->mem_info) {
420                                 map__put(he->mem_info->iaddr.map);
421                                 map__put(he->mem_info->daddr.map);
422                         }
423                         free(he->stat_acc);
424                         return -ENOMEM;
425                 }
426         }
427         INIT_LIST_HEAD(&he->pairs.node);
428         thread__get(he->thread);
429         he->hroot_in  = RB_ROOT;
430         he->hroot_out = RB_ROOT;
431
432         if (!symbol_conf.report_hierarchy)
433                 he->leaf = true;
434
435         return 0;
436 }
437
438 static void *hist_entry__zalloc(size_t size)
439 {
440         return zalloc(size + sizeof(struct hist_entry));
441 }
442
443 static void hist_entry__free(void *ptr)
444 {
445         free(ptr);
446 }
447
448 static struct hist_entry_ops default_ops = {
449         .new    = hist_entry__zalloc,
450         .free   = hist_entry__free,
451 };
452
453 static struct hist_entry *hist_entry__new(struct hist_entry *template,
454                                           bool sample_self)
455 {
456         struct hist_entry_ops *ops = template->ops;
457         size_t callchain_size = 0;
458         struct hist_entry *he;
459         int err = 0;
460
461         if (!ops)
462                 ops = template->ops = &default_ops;
463
464         if (symbol_conf.use_callchain)
465                 callchain_size = sizeof(struct callchain_root);
466
467         he = ops->new(callchain_size);
468         if (he) {
469                 err = hist_entry__init(he, template, sample_self);
470                 if (err) {
471                         ops->free(he);
472                         he = NULL;
473                 }
474         }
475
476         return he;
477 }
478
479 static u8 symbol__parent_filter(const struct symbol *parent)
480 {
481         if (symbol_conf.exclude_other && parent == NULL)
482                 return 1 << HIST_FILTER__PARENT;
483         return 0;
484 }
485
486 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
487 {
488         if (!symbol_conf.use_callchain)
489                 return;
490
491         he->hists->callchain_period += period;
492         if (!he->filtered)
493                 he->hists->callchain_non_filtered_period += period;
494 }
495
496 static struct hist_entry *hists__findnew_entry(struct hists *hists,
497                                                struct hist_entry *entry,
498                                                struct addr_location *al,
499                                                bool sample_self)
500 {
501         struct rb_node **p;
502         struct rb_node *parent = NULL;
503         struct hist_entry *he;
504         int64_t cmp;
505         u64 period = entry->stat.period;
506         u64 weight = entry->stat.weight;
507
508         p = &hists->entries_in->rb_node;
509
510         while (*p != NULL) {
511                 parent = *p;
512                 he = rb_entry(parent, struct hist_entry, rb_node_in);
513
514                 /*
515                  * Make sure that it receives arguments in a same order as
516                  * hist_entry__collapse() so that we can use an appropriate
517                  * function when searching an entry regardless which sort
518                  * keys were used.
519                  */
520                 cmp = hist_entry__cmp(he, entry);
521
522                 if (!cmp) {
523                         if (sample_self) {
524                                 he_stat__add_period(&he->stat, period, weight);
525                                 hist_entry__add_callchain_period(he, period);
526                         }
527                         if (symbol_conf.cumulate_callchain)
528                                 he_stat__add_period(he->stat_acc, period, weight);
529
530                         /*
531                          * This mem info was allocated from sample__resolve_mem
532                          * and will not be used anymore.
533                          */
534                         zfree(&entry->mem_info);
535
536                         /* If the map of an existing hist_entry has
537                          * become out-of-date due to an exec() or
538                          * similar, update it.  Otherwise we will
539                          * mis-adjust symbol addresses when computing
540                          * the history counter to increment.
541                          */
542                         if (he->ms.map != entry->ms.map) {
543                                 map__put(he->ms.map);
544                                 he->ms.map = map__get(entry->ms.map);
545                         }
546                         goto out;
547                 }
548
549                 if (cmp < 0)
550                         p = &(*p)->rb_left;
551                 else
552                         p = &(*p)->rb_right;
553         }
554
555         he = hist_entry__new(entry, sample_self);
556         if (!he)
557                 return NULL;
558
559         if (sample_self)
560                 hist_entry__add_callchain_period(he, period);
561         hists->nr_entries++;
562
563         rb_link_node(&he->rb_node_in, parent, p);
564         rb_insert_color(&he->rb_node_in, hists->entries_in);
565 out:
566         if (sample_self)
567                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
568         if (symbol_conf.cumulate_callchain)
569                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
570         return he;
571 }
572
573 static struct hist_entry*
574 __hists__add_entry(struct hists *hists,
575                    struct addr_location *al,
576                    struct symbol *sym_parent,
577                    struct branch_info *bi,
578                    struct mem_info *mi,
579                    struct perf_sample *sample,
580                    bool sample_self,
581                    struct hist_entry_ops *ops)
582 {
583         struct namespaces *ns = thread__namespaces(al->thread);
584         struct hist_entry entry = {
585                 .thread = al->thread,
586                 .comm = thread__comm(al->thread),
587                 .cgroup_id = {
588                         .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
589                         .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
590                 },
591                 .ms = {
592                         .map    = al->map,
593                         .sym    = al->sym,
594                 },
595                 .socket  = al->socket,
596                 .cpu     = al->cpu,
597                 .cpumode = al->cpumode,
598                 .ip      = al->addr,
599                 .level   = al->level,
600                 .stat = {
601                         .nr_events = 1,
602                         .period = sample->period,
603                         .weight = sample->weight,
604                 },
605                 .parent = sym_parent,
606                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
607                 .hists  = hists,
608                 .branch_info = bi,
609                 .mem_info = mi,
610                 .transaction = sample->transaction,
611                 .raw_data = sample->raw_data,
612                 .raw_size = sample->raw_size,
613                 .ops = ops,
614         };
615
616         return hists__findnew_entry(hists, &entry, al, sample_self);
617 }
618
619 struct hist_entry *hists__add_entry(struct hists *hists,
620                                     struct addr_location *al,
621                                     struct symbol *sym_parent,
622                                     struct branch_info *bi,
623                                     struct mem_info *mi,
624                                     struct perf_sample *sample,
625                                     bool sample_self)
626 {
627         return __hists__add_entry(hists, al, sym_parent, bi, mi,
628                                   sample, sample_self, NULL);
629 }
630
631 struct hist_entry *hists__add_entry_ops(struct hists *hists,
632                                         struct hist_entry_ops *ops,
633                                         struct addr_location *al,
634                                         struct symbol *sym_parent,
635                                         struct branch_info *bi,
636                                         struct mem_info *mi,
637                                         struct perf_sample *sample,
638                                         bool sample_self)
639 {
640         return __hists__add_entry(hists, al, sym_parent, bi, mi,
641                                   sample, sample_self, ops);
642 }
643
644 static int
645 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
646                     struct addr_location *al __maybe_unused)
647 {
648         return 0;
649 }
650
651 static int
652 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
653                         struct addr_location *al __maybe_unused)
654 {
655         return 0;
656 }
657
658 static int
659 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
660 {
661         struct perf_sample *sample = iter->sample;
662         struct mem_info *mi;
663
664         mi = sample__resolve_mem(sample, al);
665         if (mi == NULL)
666                 return -ENOMEM;
667
668         iter->priv = mi;
669         return 0;
670 }
671
672 static int
673 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
674 {
675         u64 cost;
676         struct mem_info *mi = iter->priv;
677         struct hists *hists = evsel__hists(iter->evsel);
678         struct perf_sample *sample = iter->sample;
679         struct hist_entry *he;
680
681         if (mi == NULL)
682                 return -EINVAL;
683
684         cost = sample->weight;
685         if (!cost)
686                 cost = 1;
687
688         /*
689          * must pass period=weight in order to get the correct
690          * sorting from hists__collapse_resort() which is solely
691          * based on periods. We want sorting be done on nr_events * weight
692          * and this is indirectly achieved by passing period=weight here
693          * and the he_stat__add_period() function.
694          */
695         sample->period = cost;
696
697         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
698                               sample, true);
699         if (!he)
700                 return -ENOMEM;
701
702         iter->he = he;
703         return 0;
704 }
705
706 static int
707 iter_finish_mem_entry(struct hist_entry_iter *iter,
708                       struct addr_location *al __maybe_unused)
709 {
710         struct perf_evsel *evsel = iter->evsel;
711         struct hists *hists = evsel__hists(evsel);
712         struct hist_entry *he = iter->he;
713         int err = -EINVAL;
714
715         if (he == NULL)
716                 goto out;
717
718         hists__inc_nr_samples(hists, he->filtered);
719
720         err = hist_entry__append_callchain(he, iter->sample);
721
722 out:
723         /*
724          * We don't need to free iter->priv (mem_info) here since the mem info
725          * was either already freed in hists__findnew_entry() or passed to a
726          * new hist entry by hist_entry__new().
727          */
728         iter->priv = NULL;
729
730         iter->he = NULL;
731         return err;
732 }
733
734 static int
735 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
736 {
737         struct branch_info *bi;
738         struct perf_sample *sample = iter->sample;
739
740         bi = sample__resolve_bstack(sample, al);
741         if (!bi)
742                 return -ENOMEM;
743
744         iter->curr = 0;
745         iter->total = sample->branch_stack->nr;
746
747         iter->priv = bi;
748         return 0;
749 }
750
751 static int
752 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
753                              struct addr_location *al __maybe_unused)
754 {
755         return 0;
756 }
757
758 static int
759 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
760 {
761         struct branch_info *bi = iter->priv;
762         int i = iter->curr;
763
764         if (bi == NULL)
765                 return 0;
766
767         if (iter->curr >= iter->total)
768                 return 0;
769
770         al->map = bi[i].to.map;
771         al->sym = bi[i].to.sym;
772         al->addr = bi[i].to.addr;
773         return 1;
774 }
775
776 static int
777 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
778 {
779         struct branch_info *bi;
780         struct perf_evsel *evsel = iter->evsel;
781         struct hists *hists = evsel__hists(evsel);
782         struct perf_sample *sample = iter->sample;
783         struct hist_entry *he = NULL;
784         int i = iter->curr;
785         int err = 0;
786
787         bi = iter->priv;
788
789         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
790                 goto out;
791
792         /*
793          * The report shows the percentage of total branches captured
794          * and not events sampled. Thus we use a pseudo period of 1.
795          */
796         sample->period = 1;
797         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
798
799         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
800                               sample, true);
801         if (he == NULL)
802                 return -ENOMEM;
803
804         hists__inc_nr_samples(hists, he->filtered);
805
806 out:
807         iter->he = he;
808         iter->curr++;
809         return err;
810 }
811
812 static int
813 iter_finish_branch_entry(struct hist_entry_iter *iter,
814                          struct addr_location *al __maybe_unused)
815 {
816         zfree(&iter->priv);
817         iter->he = NULL;
818
819         return iter->curr >= iter->total ? 0 : -1;
820 }
821
822 static int
823 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
824                           struct addr_location *al __maybe_unused)
825 {
826         return 0;
827 }
828
829 static int
830 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
831 {
832         struct perf_evsel *evsel = iter->evsel;
833         struct perf_sample *sample = iter->sample;
834         struct hist_entry *he;
835
836         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
837                               sample, true);
838         if (he == NULL)
839                 return -ENOMEM;
840
841         iter->he = he;
842         return 0;
843 }
844
845 static int
846 iter_finish_normal_entry(struct hist_entry_iter *iter,
847                          struct addr_location *al __maybe_unused)
848 {
849         struct hist_entry *he = iter->he;
850         struct perf_evsel *evsel = iter->evsel;
851         struct perf_sample *sample = iter->sample;
852
853         if (he == NULL)
854                 return 0;
855
856         iter->he = NULL;
857
858         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
859
860         return hist_entry__append_callchain(he, sample);
861 }
862
863 static int
864 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
865                               struct addr_location *al __maybe_unused)
866 {
867         struct hist_entry **he_cache;
868
869         callchain_cursor_commit(&callchain_cursor);
870
871         /*
872          * This is for detecting cycles or recursions so that they're
873          * cumulated only one time to prevent entries more than 100%
874          * overhead.
875          */
876         he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
877         if (he_cache == NULL)
878                 return -ENOMEM;
879
880         iter->priv = he_cache;
881         iter->curr = 0;
882
883         return 0;
884 }
885
886 static int
887 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
888                                  struct addr_location *al)
889 {
890         struct perf_evsel *evsel = iter->evsel;
891         struct hists *hists = evsel__hists(evsel);
892         struct perf_sample *sample = iter->sample;
893         struct hist_entry **he_cache = iter->priv;
894         struct hist_entry *he;
895         int err = 0;
896
897         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
898                               sample, true);
899         if (he == NULL)
900                 return -ENOMEM;
901
902         iter->he = he;
903         he_cache[iter->curr++] = he;
904
905         hist_entry__append_callchain(he, sample);
906
907         /*
908          * We need to re-initialize the cursor since callchain_append()
909          * advanced the cursor to the end.
910          */
911         callchain_cursor_commit(&callchain_cursor);
912
913         hists__inc_nr_samples(hists, he->filtered);
914
915         return err;
916 }
917
918 static int
919 iter_next_cumulative_entry(struct hist_entry_iter *iter,
920                            struct addr_location *al)
921 {
922         struct callchain_cursor_node *node;
923
924         node = callchain_cursor_current(&callchain_cursor);
925         if (node == NULL)
926                 return 0;
927
928         return fill_callchain_info(al, node, iter->hide_unresolved);
929 }
930
931 static int
932 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
933                                struct addr_location *al)
934 {
935         struct perf_evsel *evsel = iter->evsel;
936         struct perf_sample *sample = iter->sample;
937         struct hist_entry **he_cache = iter->priv;
938         struct hist_entry *he;
939         struct hist_entry he_tmp = {
940                 .hists = evsel__hists(evsel),
941                 .cpu = al->cpu,
942                 .thread = al->thread,
943                 .comm = thread__comm(al->thread),
944                 .ip = al->addr,
945                 .ms = {
946                         .map = al->map,
947                         .sym = al->sym,
948                 },
949                 .parent = iter->parent,
950                 .raw_data = sample->raw_data,
951                 .raw_size = sample->raw_size,
952         };
953         int i;
954         struct callchain_cursor cursor;
955
956         callchain_cursor_snapshot(&cursor, &callchain_cursor);
957
958         callchain_cursor_advance(&callchain_cursor);
959
960         /*
961          * Check if there's duplicate entries in the callchain.
962          * It's possible that it has cycles or recursive calls.
963          */
964         for (i = 0; i < iter->curr; i++) {
965                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
966                         /* to avoid calling callback function */
967                         iter->he = NULL;
968                         return 0;
969                 }
970         }
971
972         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
973                               sample, false);
974         if (he == NULL)
975                 return -ENOMEM;
976
977         iter->he = he;
978         he_cache[iter->curr++] = he;
979
980         if (symbol_conf.use_callchain)
981                 callchain_append(he->callchain, &cursor, sample->period);
982         return 0;
983 }
984
985 static int
986 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
987                              struct addr_location *al __maybe_unused)
988 {
989         zfree(&iter->priv);
990         iter->he = NULL;
991
992         return 0;
993 }
994
995 const struct hist_iter_ops hist_iter_mem = {
996         .prepare_entry          = iter_prepare_mem_entry,
997         .add_single_entry       = iter_add_single_mem_entry,
998         .next_entry             = iter_next_nop_entry,
999         .add_next_entry         = iter_add_next_nop_entry,
1000         .finish_entry           = iter_finish_mem_entry,
1001 };
1002
1003 const struct hist_iter_ops hist_iter_branch = {
1004         .prepare_entry          = iter_prepare_branch_entry,
1005         .add_single_entry       = iter_add_single_branch_entry,
1006         .next_entry             = iter_next_branch_entry,
1007         .add_next_entry         = iter_add_next_branch_entry,
1008         .finish_entry           = iter_finish_branch_entry,
1009 };
1010
1011 const struct hist_iter_ops hist_iter_normal = {
1012         .prepare_entry          = iter_prepare_normal_entry,
1013         .add_single_entry       = iter_add_single_normal_entry,
1014         .next_entry             = iter_next_nop_entry,
1015         .add_next_entry         = iter_add_next_nop_entry,
1016         .finish_entry           = iter_finish_normal_entry,
1017 };
1018
1019 const struct hist_iter_ops hist_iter_cumulative = {
1020         .prepare_entry          = iter_prepare_cumulative_entry,
1021         .add_single_entry       = iter_add_single_cumulative_entry,
1022         .next_entry             = iter_next_cumulative_entry,
1023         .add_next_entry         = iter_add_next_cumulative_entry,
1024         .finish_entry           = iter_finish_cumulative_entry,
1025 };
1026
1027 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1028                          int max_stack_depth, void *arg)
1029 {
1030         int err, err2;
1031         struct map *alm = NULL;
1032
1033         if (al && al->map)
1034                 alm = map__get(al->map);
1035
1036         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1037                                         iter->evsel, al, max_stack_depth);
1038         if (err)
1039                 return err;
1040
1041         iter->max_stack = max_stack_depth;
1042
1043         err = iter->ops->prepare_entry(iter, al);
1044         if (err)
1045                 goto out;
1046
1047         err = iter->ops->add_single_entry(iter, al);
1048         if (err)
1049                 goto out;
1050
1051         if (iter->he && iter->add_entry_cb) {
1052                 err = iter->add_entry_cb(iter, al, true, arg);
1053                 if (err)
1054                         goto out;
1055         }
1056
1057         while (iter->ops->next_entry(iter, al)) {
1058                 err = iter->ops->add_next_entry(iter, al);
1059                 if (err)
1060                         break;
1061
1062                 if (iter->he && iter->add_entry_cb) {
1063                         err = iter->add_entry_cb(iter, al, false, arg);
1064                         if (err)
1065                                 goto out;
1066                 }
1067         }
1068
1069 out:
1070         err2 = iter->ops->finish_entry(iter, al);
1071         if (!err)
1072                 err = err2;
1073
1074         map__put(alm);
1075
1076         return err;
1077 }
1078
1079 int64_t
1080 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1081 {
1082         struct hists *hists = left->hists;
1083         struct perf_hpp_fmt *fmt;
1084         int64_t cmp = 0;
1085
1086         hists__for_each_sort_list(hists, fmt) {
1087                 if (perf_hpp__is_dynamic_entry(fmt) &&
1088                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1089                         continue;
1090
1091                 cmp = fmt->cmp(fmt, left, right);
1092                 if (cmp)
1093                         break;
1094         }
1095
1096         return cmp;
1097 }
1098
1099 int64_t
1100 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1101 {
1102         struct hists *hists = left->hists;
1103         struct perf_hpp_fmt *fmt;
1104         int64_t cmp = 0;
1105
1106         hists__for_each_sort_list(hists, fmt) {
1107                 if (perf_hpp__is_dynamic_entry(fmt) &&
1108                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1109                         continue;
1110
1111                 cmp = fmt->collapse(fmt, left, right);
1112                 if (cmp)
1113                         break;
1114         }
1115
1116         return cmp;
1117 }
1118
1119 void hist_entry__delete(struct hist_entry *he)
1120 {
1121         struct hist_entry_ops *ops = he->ops;
1122
1123         thread__zput(he->thread);
1124         map__zput(he->ms.map);
1125
1126         if (he->branch_info) {
1127                 map__zput(he->branch_info->from.map);
1128                 map__zput(he->branch_info->to.map);
1129                 free_srcline(he->branch_info->srcline_from);
1130                 free_srcline(he->branch_info->srcline_to);
1131                 zfree(&he->branch_info);
1132         }
1133
1134         if (he->mem_info) {
1135                 map__zput(he->mem_info->iaddr.map);
1136                 map__zput(he->mem_info->daddr.map);
1137                 zfree(&he->mem_info);
1138         }
1139
1140         if (he->inline_node) {
1141                 inline_node__delete(he->inline_node);
1142                 he->inline_node = NULL;
1143         }
1144
1145         zfree(&he->stat_acc);
1146         free_srcline(he->srcline);
1147         if (he->srcfile && he->srcfile[0])
1148                 free(he->srcfile);
1149         free_callchain(he->callchain);
1150         free(he->trace_output);
1151         free(he->raw_data);
1152         ops->free(he);
1153 }
1154
1155 /*
1156  * If this is not the last column, then we need to pad it according to the
1157  * pre-calculated max lenght for this column, otherwise don't bother adding
1158  * spaces because that would break viewing this with, for instance, 'less',
1159  * that would show tons of trailing spaces when a long C++ demangled method
1160  * names is sampled.
1161 */
1162 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1163                                    struct perf_hpp_fmt *fmt, int printed)
1164 {
1165         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1166                 const int width = fmt->width(fmt, hpp, he->hists);
1167                 if (printed < width) {
1168                         advance_hpp(hpp, printed);
1169                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1170                 }
1171         }
1172
1173         return printed;
1174 }
1175
1176 /*
1177  * collapse the histogram
1178  */
1179
1180 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1181 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1182                                        enum hist_filter type);
1183
1184 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1185
1186 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1187 {
1188         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1189 }
1190
1191 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1192                                                 enum hist_filter type,
1193                                                 fmt_chk_fn check)
1194 {
1195         struct perf_hpp_fmt *fmt;
1196         bool type_match = false;
1197         struct hist_entry *parent = he->parent_he;
1198
1199         switch (type) {
1200         case HIST_FILTER__THREAD:
1201                 if (symbol_conf.comm_list == NULL &&
1202                     symbol_conf.pid_list == NULL &&
1203                     symbol_conf.tid_list == NULL)
1204                         return;
1205                 break;
1206         case HIST_FILTER__DSO:
1207                 if (symbol_conf.dso_list == NULL)
1208                         return;
1209                 break;
1210         case HIST_FILTER__SYMBOL:
1211                 if (symbol_conf.sym_list == NULL)
1212                         return;
1213                 break;
1214         case HIST_FILTER__PARENT:
1215         case HIST_FILTER__GUEST:
1216         case HIST_FILTER__HOST:
1217         case HIST_FILTER__SOCKET:
1218         case HIST_FILTER__C2C:
1219         default:
1220                 return;
1221         }
1222
1223         /* if it's filtered by own fmt, it has to have filter bits */
1224         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1225                 if (check(fmt)) {
1226                         type_match = true;
1227                         break;
1228                 }
1229         }
1230
1231         if (type_match) {
1232                 /*
1233                  * If the filter is for current level entry, propagate
1234                  * filter marker to parents.  The marker bit was
1235                  * already set by default so it only needs to clear
1236                  * non-filtered entries.
1237                  */
1238                 if (!(he->filtered & (1 << type))) {
1239                         while (parent) {
1240                                 parent->filtered &= ~(1 << type);
1241                                 parent = parent->parent_he;
1242                         }
1243                 }
1244         } else {
1245                 /*
1246                  * If current entry doesn't have matching formats, set
1247                  * filter marker for upper level entries.  it will be
1248                  * cleared if its lower level entries is not filtered.
1249                  *
1250                  * For lower-level entries, it inherits parent's
1251                  * filter bit so that lower level entries of a
1252                  * non-filtered entry won't set the filter marker.
1253                  */
1254                 if (parent == NULL)
1255                         he->filtered |= (1 << type);
1256                 else
1257                         he->filtered |= (parent->filtered & (1 << type));
1258         }
1259 }
1260
1261 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1262 {
1263         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1264                                             check_thread_entry);
1265
1266         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1267                                             perf_hpp__is_dso_entry);
1268
1269         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1270                                             perf_hpp__is_sym_entry);
1271
1272         hists__apply_filters(he->hists, he);
1273 }
1274
1275 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1276                                                  struct rb_root *root,
1277                                                  struct hist_entry *he,
1278                                                  struct hist_entry *parent_he,
1279                                                  struct perf_hpp_list *hpp_list)
1280 {
1281         struct rb_node **p = &root->rb_node;
1282         struct rb_node *parent = NULL;
1283         struct hist_entry *iter, *new;
1284         struct perf_hpp_fmt *fmt;
1285         int64_t cmp;
1286
1287         while (*p != NULL) {
1288                 parent = *p;
1289                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1290
1291                 cmp = 0;
1292                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1293                         cmp = fmt->collapse(fmt, iter, he);
1294                         if (cmp)
1295                                 break;
1296                 }
1297
1298                 if (!cmp) {
1299                         he_stat__add_stat(&iter->stat, &he->stat);
1300                         return iter;
1301                 }
1302
1303                 if (cmp < 0)
1304                         p = &parent->rb_left;
1305                 else
1306                         p = &parent->rb_right;
1307         }
1308
1309         new = hist_entry__new(he, true);
1310         if (new == NULL)
1311                 return NULL;
1312
1313         hists->nr_entries++;
1314
1315         /* save related format list for output */
1316         new->hpp_list = hpp_list;
1317         new->parent_he = parent_he;
1318
1319         hist_entry__apply_hierarchy_filters(new);
1320
1321         /* some fields are now passed to 'new' */
1322         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1323                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1324                         he->trace_output = NULL;
1325                 else
1326                         new->trace_output = NULL;
1327
1328                 if (perf_hpp__is_srcline_entry(fmt))
1329                         he->srcline = NULL;
1330                 else
1331                         new->srcline = NULL;
1332
1333                 if (perf_hpp__is_srcfile_entry(fmt))
1334                         he->srcfile = NULL;
1335                 else
1336                         new->srcfile = NULL;
1337         }
1338
1339         rb_link_node(&new->rb_node_in, parent, p);
1340         rb_insert_color(&new->rb_node_in, root);
1341         return new;
1342 }
1343
1344 static int hists__hierarchy_insert_entry(struct hists *hists,
1345                                          struct rb_root *root,
1346                                          struct hist_entry *he)
1347 {
1348         struct perf_hpp_list_node *node;
1349         struct hist_entry *new_he = NULL;
1350         struct hist_entry *parent = NULL;
1351         int depth = 0;
1352         int ret = 0;
1353
1354         list_for_each_entry(node, &hists->hpp_formats, list) {
1355                 /* skip period (overhead) and elided columns */
1356                 if (node->level == 0 || node->skip)
1357                         continue;
1358
1359                 /* insert copy of 'he' for each fmt into the hierarchy */
1360                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1361                 if (new_he == NULL) {
1362                         ret = -1;
1363                         break;
1364                 }
1365
1366                 root = &new_he->hroot_in;
1367                 new_he->depth = depth++;
1368                 parent = new_he;
1369         }
1370
1371         if (new_he) {
1372                 new_he->leaf = true;
1373
1374                 if (symbol_conf.use_callchain) {
1375                         callchain_cursor_reset(&callchain_cursor);
1376                         if (callchain_merge(&callchain_cursor,
1377                                             new_he->callchain,
1378                                             he->callchain) < 0)
1379                                 ret = -1;
1380                 }
1381         }
1382
1383         /* 'he' is no longer used */
1384         hist_entry__delete(he);
1385
1386         /* return 0 (or -1) since it already applied filters */
1387         return ret;
1388 }
1389
1390 static int hists__collapse_insert_entry(struct hists *hists,
1391                                         struct rb_root *root,
1392                                         struct hist_entry *he)
1393 {
1394         struct rb_node **p = &root->rb_node;
1395         struct rb_node *parent = NULL;
1396         struct hist_entry *iter;
1397         int64_t cmp;
1398
1399         if (symbol_conf.report_hierarchy)
1400                 return hists__hierarchy_insert_entry(hists, root, he);
1401
1402         while (*p != NULL) {
1403                 parent = *p;
1404                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1405
1406                 cmp = hist_entry__collapse(iter, he);
1407
1408                 if (!cmp) {
1409                         int ret = 0;
1410
1411                         he_stat__add_stat(&iter->stat, &he->stat);
1412                         if (symbol_conf.cumulate_callchain)
1413                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1414
1415                         if (symbol_conf.use_callchain) {
1416                                 callchain_cursor_reset(&callchain_cursor);
1417                                 if (callchain_merge(&callchain_cursor,
1418                                                     iter->callchain,
1419                                                     he->callchain) < 0)
1420                                         ret = -1;
1421                         }
1422                         hist_entry__delete(he);
1423                         return ret;
1424                 }
1425
1426                 if (cmp < 0)
1427                         p = &(*p)->rb_left;
1428                 else
1429                         p = &(*p)->rb_right;
1430         }
1431         hists->nr_entries++;
1432
1433         rb_link_node(&he->rb_node_in, parent, p);
1434         rb_insert_color(&he->rb_node_in, root);
1435         return 1;
1436 }
1437
1438 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1439 {
1440         struct rb_root *root;
1441
1442         pthread_mutex_lock(&hists->lock);
1443
1444         root = hists->entries_in;
1445         if (++hists->entries_in > &hists->entries_in_array[1])
1446                 hists->entries_in = &hists->entries_in_array[0];
1447
1448         pthread_mutex_unlock(&hists->lock);
1449
1450         return root;
1451 }
1452
1453 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1454 {
1455         hists__filter_entry_by_dso(hists, he);
1456         hists__filter_entry_by_thread(hists, he);
1457         hists__filter_entry_by_symbol(hists, he);
1458         hists__filter_entry_by_socket(hists, he);
1459 }
1460
1461 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1462 {
1463         struct rb_root *root;
1464         struct rb_node *next;
1465         struct hist_entry *n;
1466         int ret;
1467
1468         if (!hists__has(hists, need_collapse))
1469                 return 0;
1470
1471         hists->nr_entries = 0;
1472
1473         root = hists__get_rotate_entries_in(hists);
1474
1475         next = rb_first(root);
1476
1477         while (next) {
1478                 if (session_done())
1479                         break;
1480                 n = rb_entry(next, struct hist_entry, rb_node_in);
1481                 next = rb_next(&n->rb_node_in);
1482
1483                 rb_erase(&n->rb_node_in, root);
1484                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1485                 if (ret < 0)
1486                         return -1;
1487
1488                 if (ret) {
1489                         /*
1490                          * If it wasn't combined with one of the entries already
1491                          * collapsed, we need to apply the filters that may have
1492                          * been set by, say, the hist_browser.
1493                          */
1494                         hists__apply_filters(hists, n);
1495                 }
1496                 if (prog)
1497                         ui_progress__update(prog, 1);
1498         }
1499         return 0;
1500 }
1501
1502 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1503 {
1504         struct hists *hists = a->hists;
1505         struct perf_hpp_fmt *fmt;
1506         int64_t cmp = 0;
1507
1508         hists__for_each_sort_list(hists, fmt) {
1509                 if (perf_hpp__should_skip(fmt, a->hists))
1510                         continue;
1511
1512                 cmp = fmt->sort(fmt, a, b);
1513                 if (cmp)
1514                         break;
1515         }
1516
1517         return cmp;
1518 }
1519
1520 static void hists__reset_filter_stats(struct hists *hists)
1521 {
1522         hists->nr_non_filtered_entries = 0;
1523         hists->stats.total_non_filtered_period = 0;
1524 }
1525
1526 void hists__reset_stats(struct hists *hists)
1527 {
1528         hists->nr_entries = 0;
1529         hists->stats.total_period = 0;
1530
1531         hists__reset_filter_stats(hists);
1532 }
1533
1534 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1535 {
1536         hists->nr_non_filtered_entries++;
1537         hists->stats.total_non_filtered_period += h->stat.period;
1538 }
1539
1540 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1541 {
1542         if (!h->filtered)
1543                 hists__inc_filter_stats(hists, h);
1544
1545         hists->nr_entries++;
1546         hists->stats.total_period += h->stat.period;
1547 }
1548
1549 static void hierarchy_recalc_total_periods(struct hists *hists)
1550 {
1551         struct rb_node *node;
1552         struct hist_entry *he;
1553
1554         node = rb_first(&hists->entries);
1555
1556         hists->stats.total_period = 0;
1557         hists->stats.total_non_filtered_period = 0;
1558
1559         /*
1560          * recalculate total period using top-level entries only
1561          * since lower level entries only see non-filtered entries
1562          * but upper level entries have sum of both entries.
1563          */
1564         while (node) {
1565                 he = rb_entry(node, struct hist_entry, rb_node);
1566                 node = rb_next(node);
1567
1568                 hists->stats.total_period += he->stat.period;
1569                 if (!he->filtered)
1570                         hists->stats.total_non_filtered_period += he->stat.period;
1571         }
1572 }
1573
1574 static void hierarchy_insert_output_entry(struct rb_root *root,
1575                                           struct hist_entry *he)
1576 {
1577         struct rb_node **p = &root->rb_node;
1578         struct rb_node *parent = NULL;
1579         struct hist_entry *iter;
1580         struct perf_hpp_fmt *fmt;
1581
1582         while (*p != NULL) {
1583                 parent = *p;
1584                 iter = rb_entry(parent, struct hist_entry, rb_node);
1585
1586                 if (hist_entry__sort(he, iter) > 0)
1587                         p = &parent->rb_left;
1588                 else
1589                         p = &parent->rb_right;
1590         }
1591
1592         rb_link_node(&he->rb_node, parent, p);
1593         rb_insert_color(&he->rb_node, root);
1594
1595         /* update column width of dynamic entry */
1596         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1597                 if (perf_hpp__is_dynamic_entry(fmt))
1598                         fmt->sort(fmt, he, NULL);
1599         }
1600 }
1601
1602 static void hists__hierarchy_output_resort(struct hists *hists,
1603                                            struct ui_progress *prog,
1604                                            struct rb_root *root_in,
1605                                            struct rb_root *root_out,
1606                                            u64 min_callchain_hits,
1607                                            bool use_callchain)
1608 {
1609         struct rb_node *node;
1610         struct hist_entry *he;
1611
1612         *root_out = RB_ROOT;
1613         node = rb_first(root_in);
1614
1615         while (node) {
1616                 he = rb_entry(node, struct hist_entry, rb_node_in);
1617                 node = rb_next(node);
1618
1619                 hierarchy_insert_output_entry(root_out, he);
1620
1621                 if (prog)
1622                         ui_progress__update(prog, 1);
1623
1624                 hists->nr_entries++;
1625                 if (!he->filtered) {
1626                         hists->nr_non_filtered_entries++;
1627                         hists__calc_col_len(hists, he);
1628                 }
1629
1630                 if (!he->leaf) {
1631                         hists__hierarchy_output_resort(hists, prog,
1632                                                        &he->hroot_in,
1633                                                        &he->hroot_out,
1634                                                        min_callchain_hits,
1635                                                        use_callchain);
1636                         continue;
1637                 }
1638
1639                 if (!use_callchain)
1640                         continue;
1641
1642                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1643                         u64 total = he->stat.period;
1644
1645                         if (symbol_conf.cumulate_callchain)
1646                                 total = he->stat_acc->period;
1647
1648                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1649                 }
1650
1651                 callchain_param.sort(&he->sorted_chain, he->callchain,
1652                                      min_callchain_hits, &callchain_param);
1653         }
1654 }
1655
1656 static void __hists__insert_output_entry(struct rb_root *entries,
1657                                          struct hist_entry *he,
1658                                          u64 min_callchain_hits,
1659                                          bool use_callchain)
1660 {
1661         struct rb_node **p = &entries->rb_node;
1662         struct rb_node *parent = NULL;
1663         struct hist_entry *iter;
1664         struct perf_hpp_fmt *fmt;
1665
1666         if (use_callchain) {
1667                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1668                         u64 total = he->stat.period;
1669
1670                         if (symbol_conf.cumulate_callchain)
1671                                 total = he->stat_acc->period;
1672
1673                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1674                 }
1675                 callchain_param.sort(&he->sorted_chain, he->callchain,
1676                                       min_callchain_hits, &callchain_param);
1677         }
1678
1679         while (*p != NULL) {
1680                 parent = *p;
1681                 iter = rb_entry(parent, struct hist_entry, rb_node);
1682
1683                 if (hist_entry__sort(he, iter) > 0)
1684                         p = &(*p)->rb_left;
1685                 else
1686                         p = &(*p)->rb_right;
1687         }
1688
1689         rb_link_node(&he->rb_node, parent, p);
1690         rb_insert_color(&he->rb_node, entries);
1691
1692         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1693                 if (perf_hpp__is_dynamic_entry(fmt) &&
1694                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1695                         fmt->sort(fmt, he, NULL);  /* update column width */
1696         }
1697 }
1698
1699 static void output_resort(struct hists *hists, struct ui_progress *prog,
1700                           bool use_callchain, hists__resort_cb_t cb)
1701 {
1702         struct rb_root *root;
1703         struct rb_node *next;
1704         struct hist_entry *n;
1705         u64 callchain_total;
1706         u64 min_callchain_hits;
1707
1708         callchain_total = hists->callchain_period;
1709         if (symbol_conf.filter_relative)
1710                 callchain_total = hists->callchain_non_filtered_period;
1711
1712         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1713
1714         hists__reset_stats(hists);
1715         hists__reset_col_len(hists);
1716
1717         if (symbol_conf.report_hierarchy) {
1718                 hists__hierarchy_output_resort(hists, prog,
1719                                                &hists->entries_collapsed,
1720                                                &hists->entries,
1721                                                min_callchain_hits,
1722                                                use_callchain);
1723                 hierarchy_recalc_total_periods(hists);
1724                 return;
1725         }
1726
1727         if (hists__has(hists, need_collapse))
1728                 root = &hists->entries_collapsed;
1729         else
1730                 root = hists->entries_in;
1731
1732         next = rb_first(root);
1733         hists->entries = RB_ROOT;
1734
1735         while (next) {
1736                 n = rb_entry(next, struct hist_entry, rb_node_in);
1737                 next = rb_next(&n->rb_node_in);
1738
1739                 if (cb && cb(n))
1740                         continue;
1741
1742                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1743                 hists__inc_stats(hists, n);
1744
1745                 if (!n->filtered)
1746                         hists__calc_col_len(hists, n);
1747
1748                 if (prog)
1749                         ui_progress__update(prog, 1);
1750         }
1751 }
1752
1753 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1754 {
1755         bool use_callchain;
1756
1757         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1758                 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1759         else
1760                 use_callchain = symbol_conf.use_callchain;
1761
1762         use_callchain |= symbol_conf.show_branchflag_count;
1763
1764         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1765 }
1766
1767 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1768 {
1769         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1770 }
1771
1772 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1773                              hists__resort_cb_t cb)
1774 {
1775         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1776 }
1777
1778 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1779 {
1780         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1781                 return false;
1782
1783         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1784                 return true;
1785
1786         return false;
1787 }
1788
1789 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1790 {
1791         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1792
1793         while (can_goto_child(he, HMD_NORMAL)) {
1794                 node = rb_last(&he->hroot_out);
1795                 he = rb_entry(node, struct hist_entry, rb_node);
1796         }
1797         return node;
1798 }
1799
1800 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1801 {
1802         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1803
1804         if (can_goto_child(he, hmd))
1805                 node = rb_first(&he->hroot_out);
1806         else
1807                 node = rb_next(node);
1808
1809         while (node == NULL) {
1810                 he = he->parent_he;
1811                 if (he == NULL)
1812                         break;
1813
1814                 node = rb_next(&he->rb_node);
1815         }
1816         return node;
1817 }
1818
1819 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1820 {
1821         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1822
1823         node = rb_prev(node);
1824         if (node)
1825                 return rb_hierarchy_last(node);
1826
1827         he = he->parent_he;
1828         if (he == NULL)
1829                 return NULL;
1830
1831         return &he->rb_node;
1832 }
1833
1834 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1835 {
1836         struct rb_node *node;
1837         struct hist_entry *child;
1838         float percent;
1839
1840         if (he->leaf)
1841                 return false;
1842
1843         node = rb_first(&he->hroot_out);
1844         child = rb_entry(node, struct hist_entry, rb_node);
1845
1846         while (node && child->filtered) {
1847                 node = rb_next(node);
1848                 child = rb_entry(node, struct hist_entry, rb_node);
1849         }
1850
1851         if (node)
1852                 percent = hist_entry__get_percent_limit(child);
1853         else
1854                 percent = 0;
1855
1856         return node && percent >= limit;
1857 }
1858
1859 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1860                                        enum hist_filter filter)
1861 {
1862         h->filtered &= ~(1 << filter);
1863
1864         if (symbol_conf.report_hierarchy) {
1865                 struct hist_entry *parent = h->parent_he;
1866
1867                 while (parent) {
1868                         he_stat__add_stat(&parent->stat, &h->stat);
1869
1870                         parent->filtered &= ~(1 << filter);
1871
1872                         if (parent->filtered)
1873                                 goto next;
1874
1875                         /* force fold unfiltered entry for simplicity */
1876                         parent->unfolded = false;
1877                         parent->has_no_entry = false;
1878                         parent->row_offset = 0;
1879                         parent->nr_rows = 0;
1880 next:
1881                         parent = parent->parent_he;
1882                 }
1883         }
1884
1885         if (h->filtered)
1886                 return;
1887
1888         /* force fold unfiltered entry for simplicity */
1889         h->unfolded = false;
1890         h->has_no_entry = false;
1891         h->row_offset = 0;
1892         h->nr_rows = 0;
1893
1894         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1895
1896         hists__inc_filter_stats(hists, h);
1897         hists__calc_col_len(hists, h);
1898 }
1899
1900
1901 static bool hists__filter_entry_by_dso(struct hists *hists,
1902                                        struct hist_entry *he)
1903 {
1904         if (hists->dso_filter != NULL &&
1905             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1906                 he->filtered |= (1 << HIST_FILTER__DSO);
1907                 return true;
1908         }
1909
1910         return false;
1911 }
1912
1913 static bool hists__filter_entry_by_thread(struct hists *hists,
1914                                           struct hist_entry *he)
1915 {
1916         if (hists->thread_filter != NULL &&
1917             he->thread != hists->thread_filter) {
1918                 he->filtered |= (1 << HIST_FILTER__THREAD);
1919                 return true;
1920         }
1921
1922         return false;
1923 }
1924
1925 static bool hists__filter_entry_by_symbol(struct hists *hists,
1926                                           struct hist_entry *he)
1927 {
1928         if (hists->symbol_filter_str != NULL &&
1929             (!he->ms.sym || strstr(he->ms.sym->name,
1930                                    hists->symbol_filter_str) == NULL)) {
1931                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1932                 return true;
1933         }
1934
1935         return false;
1936 }
1937
1938 static bool hists__filter_entry_by_socket(struct hists *hists,
1939                                           struct hist_entry *he)
1940 {
1941         if ((hists->socket_filter > -1) &&
1942             (he->socket != hists->socket_filter)) {
1943                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1944                 return true;
1945         }
1946
1947         return false;
1948 }
1949
1950 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1951
1952 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1953 {
1954         struct rb_node *nd;
1955
1956         hists->stats.nr_non_filtered_samples = 0;
1957
1958         hists__reset_filter_stats(hists);
1959         hists__reset_col_len(hists);
1960
1961         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1962                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1963
1964                 if (filter(hists, h))
1965                         continue;
1966
1967                 hists__remove_entry_filter(hists, h, type);
1968         }
1969 }
1970
1971 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1972 {
1973         struct rb_node **p = &root->rb_node;
1974         struct rb_node *parent = NULL;
1975         struct hist_entry *iter;
1976         struct rb_root new_root = RB_ROOT;
1977         struct rb_node *nd;
1978
1979         while (*p != NULL) {
1980                 parent = *p;
1981                 iter = rb_entry(parent, struct hist_entry, rb_node);
1982
1983                 if (hist_entry__sort(he, iter) > 0)
1984                         p = &(*p)->rb_left;
1985                 else
1986                         p = &(*p)->rb_right;
1987         }
1988
1989         rb_link_node(&he->rb_node, parent, p);
1990         rb_insert_color(&he->rb_node, root);
1991
1992         if (he->leaf || he->filtered)
1993                 return;
1994
1995         nd = rb_first(&he->hroot_out);
1996         while (nd) {
1997                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1998
1999                 nd = rb_next(nd);
2000                 rb_erase(&h->rb_node, &he->hroot_out);
2001
2002                 resort_filtered_entry(&new_root, h);
2003         }
2004
2005         he->hroot_out = new_root;
2006 }
2007
2008 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2009 {
2010         struct rb_node *nd;
2011         struct rb_root new_root = RB_ROOT;
2012
2013         hists->stats.nr_non_filtered_samples = 0;
2014
2015         hists__reset_filter_stats(hists);
2016         hists__reset_col_len(hists);
2017
2018         nd = rb_first(&hists->entries);
2019         while (nd) {
2020                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2021                 int ret;
2022
2023                 ret = hist_entry__filter(h, type, arg);
2024
2025                 /*
2026                  * case 1. non-matching type
2027                  * zero out the period, set filter marker and move to child
2028                  */
2029                 if (ret < 0) {
2030                         memset(&h->stat, 0, sizeof(h->stat));
2031                         h->filtered |= (1 << type);
2032
2033                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2034                 }
2035                 /*
2036                  * case 2. matched type (filter out)
2037                  * set filter marker and move to next
2038                  */
2039                 else if (ret == 1) {
2040                         h->filtered |= (1 << type);
2041
2042                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2043                 }
2044                 /*
2045                  * case 3. ok (not filtered)
2046                  * add period to hists and parents, erase the filter marker
2047                  * and move to next sibling
2048                  */
2049                 else {
2050                         hists__remove_entry_filter(hists, h, type);
2051
2052                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2053                 }
2054         }
2055
2056         hierarchy_recalc_total_periods(hists);
2057
2058         /*
2059          * resort output after applying a new filter since filter in a lower
2060          * hierarchy can change periods in a upper hierarchy.
2061          */
2062         nd = rb_first(&hists->entries);
2063         while (nd) {
2064                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2065
2066                 nd = rb_next(nd);
2067                 rb_erase(&h->rb_node, &hists->entries);
2068
2069                 resort_filtered_entry(&new_root, h);
2070         }
2071
2072         hists->entries = new_root;
2073 }
2074
2075 void hists__filter_by_thread(struct hists *hists)
2076 {
2077         if (symbol_conf.report_hierarchy)
2078                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2079                                         hists->thread_filter);
2080         else
2081                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2082                                       hists__filter_entry_by_thread);
2083 }
2084
2085 void hists__filter_by_dso(struct hists *hists)
2086 {
2087         if (symbol_conf.report_hierarchy)
2088                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2089                                         hists->dso_filter);
2090         else
2091                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2092                                       hists__filter_entry_by_dso);
2093 }
2094
2095 void hists__filter_by_symbol(struct hists *hists)
2096 {
2097         if (symbol_conf.report_hierarchy)
2098                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2099                                         hists->symbol_filter_str);
2100         else
2101                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2102                                       hists__filter_entry_by_symbol);
2103 }
2104
2105 void hists__filter_by_socket(struct hists *hists)
2106 {
2107         if (symbol_conf.report_hierarchy)
2108                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2109                                         &hists->socket_filter);
2110         else
2111                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2112                                       hists__filter_entry_by_socket);
2113 }
2114
2115 void events_stats__inc(struct events_stats *stats, u32 type)
2116 {
2117         ++stats->nr_events[0];
2118         ++stats->nr_events[type];
2119 }
2120
2121 void hists__inc_nr_events(struct hists *hists, u32 type)
2122 {
2123         events_stats__inc(&hists->stats, type);
2124 }
2125
2126 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2127 {
2128         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2129         if (!filtered)
2130                 hists->stats.nr_non_filtered_samples++;
2131 }
2132
2133 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2134                                                  struct hist_entry *pair)
2135 {
2136         struct rb_root *root;
2137         struct rb_node **p;
2138         struct rb_node *parent = NULL;
2139         struct hist_entry *he;
2140         int64_t cmp;
2141
2142         if (hists__has(hists, need_collapse))
2143                 root = &hists->entries_collapsed;
2144         else
2145                 root = hists->entries_in;
2146
2147         p = &root->rb_node;
2148
2149         while (*p != NULL) {
2150                 parent = *p;
2151                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2152
2153                 cmp = hist_entry__collapse(he, pair);
2154
2155                 if (!cmp)
2156                         goto out;
2157
2158                 if (cmp < 0)
2159                         p = &(*p)->rb_left;
2160                 else
2161                         p = &(*p)->rb_right;
2162         }
2163
2164         he = hist_entry__new(pair, true);
2165         if (he) {
2166                 memset(&he->stat, 0, sizeof(he->stat));
2167                 he->hists = hists;
2168                 if (symbol_conf.cumulate_callchain)
2169                         memset(he->stat_acc, 0, sizeof(he->stat));
2170                 rb_link_node(&he->rb_node_in, parent, p);
2171                 rb_insert_color(&he->rb_node_in, root);
2172                 hists__inc_stats(hists, he);
2173                 he->dummy = true;
2174         }
2175 out:
2176         return he;
2177 }
2178
2179 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2180                                                     struct rb_root *root,
2181                                                     struct hist_entry *pair)
2182 {
2183         struct rb_node **p;
2184         struct rb_node *parent = NULL;
2185         struct hist_entry *he;
2186         struct perf_hpp_fmt *fmt;
2187
2188         p = &root->rb_node;
2189         while (*p != NULL) {
2190                 int64_t cmp = 0;
2191
2192                 parent = *p;
2193                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2194
2195                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2196                         cmp = fmt->collapse(fmt, he, pair);
2197                         if (cmp)
2198                                 break;
2199                 }
2200                 if (!cmp)
2201                         goto out;
2202
2203                 if (cmp < 0)
2204                         p = &parent->rb_left;
2205                 else
2206                         p = &parent->rb_right;
2207         }
2208
2209         he = hist_entry__new(pair, true);
2210         if (he) {
2211                 rb_link_node(&he->rb_node_in, parent, p);
2212                 rb_insert_color(&he->rb_node_in, root);
2213
2214                 he->dummy = true;
2215                 he->hists = hists;
2216                 memset(&he->stat, 0, sizeof(he->stat));
2217                 hists__inc_stats(hists, he);
2218         }
2219 out:
2220         return he;
2221 }
2222
2223 static struct hist_entry *hists__find_entry(struct hists *hists,
2224                                             struct hist_entry *he)
2225 {
2226         struct rb_node *n;
2227
2228         if (hists__has(hists, need_collapse))
2229                 n = hists->entries_collapsed.rb_node;
2230         else
2231                 n = hists->entries_in->rb_node;
2232
2233         while (n) {
2234                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2235                 int64_t cmp = hist_entry__collapse(iter, he);
2236
2237                 if (cmp < 0)
2238                         n = n->rb_left;
2239                 else if (cmp > 0)
2240                         n = n->rb_right;
2241                 else
2242                         return iter;
2243         }
2244
2245         return NULL;
2246 }
2247
2248 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2249                                                       struct hist_entry *he)
2250 {
2251         struct rb_node *n = root->rb_node;
2252
2253         while (n) {
2254                 struct hist_entry *iter;
2255                 struct perf_hpp_fmt *fmt;
2256                 int64_t cmp = 0;
2257
2258                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2259                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2260                         cmp = fmt->collapse(fmt, iter, he);
2261                         if (cmp)
2262                                 break;
2263                 }
2264
2265                 if (cmp < 0)
2266                         n = n->rb_left;
2267                 else if (cmp > 0)
2268                         n = n->rb_right;
2269                 else
2270                         return iter;
2271         }
2272
2273         return NULL;
2274 }
2275
2276 static void hists__match_hierarchy(struct rb_root *leader_root,
2277                                    struct rb_root *other_root)
2278 {
2279         struct rb_node *nd;
2280         struct hist_entry *pos, *pair;
2281
2282         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2283                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2284                 pair = hists__find_hierarchy_entry(other_root, pos);
2285
2286                 if (pair) {
2287                         hist_entry__add_pair(pair, pos);
2288                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2289                 }
2290         }
2291 }
2292
2293 /*
2294  * Look for pairs to link to the leader buckets (hist_entries):
2295  */
2296 void hists__match(struct hists *leader, struct hists *other)
2297 {
2298         struct rb_root *root;
2299         struct rb_node *nd;
2300         struct hist_entry *pos, *pair;
2301
2302         if (symbol_conf.report_hierarchy) {
2303                 /* hierarchy report always collapses entries */
2304                 return hists__match_hierarchy(&leader->entries_collapsed,
2305                                               &other->entries_collapsed);
2306         }
2307
2308         if (hists__has(leader, need_collapse))
2309                 root = &leader->entries_collapsed;
2310         else
2311                 root = leader->entries_in;
2312
2313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2314                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2315                 pair = hists__find_entry(other, pos);
2316
2317                 if (pair)
2318                         hist_entry__add_pair(pair, pos);
2319         }
2320 }
2321
2322 static int hists__link_hierarchy(struct hists *leader_hists,
2323                                  struct hist_entry *parent,
2324                                  struct rb_root *leader_root,
2325                                  struct rb_root *other_root)
2326 {
2327         struct rb_node *nd;
2328         struct hist_entry *pos, *leader;
2329
2330         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2331                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2332
2333                 if (hist_entry__has_pairs(pos)) {
2334                         bool found = false;
2335
2336                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2337                                 if (leader->hists == leader_hists) {
2338                                         found = true;
2339                                         break;
2340                                 }
2341                         }
2342                         if (!found)
2343                                 return -1;
2344                 } else {
2345                         leader = add_dummy_hierarchy_entry(leader_hists,
2346                                                            leader_root, pos);
2347                         if (leader == NULL)
2348                                 return -1;
2349
2350                         /* do not point parent in the pos */
2351                         leader->parent_he = parent;
2352
2353                         hist_entry__add_pair(pos, leader);
2354                 }
2355
2356                 if (!pos->leaf) {
2357                         if (hists__link_hierarchy(leader_hists, leader,
2358                                                   &leader->hroot_in,
2359                                                   &pos->hroot_in) < 0)
2360                                 return -1;
2361                 }
2362         }
2363         return 0;
2364 }
2365
2366 /*
2367  * Look for entries in the other hists that are not present in the leader, if
2368  * we find them, just add a dummy entry on the leader hists, with period=0,
2369  * nr_events=0, to serve as the list header.
2370  */
2371 int hists__link(struct hists *leader, struct hists *other)
2372 {
2373         struct rb_root *root;
2374         struct rb_node *nd;
2375         struct hist_entry *pos, *pair;
2376
2377         if (symbol_conf.report_hierarchy) {
2378                 /* hierarchy report always collapses entries */
2379                 return hists__link_hierarchy(leader, NULL,
2380                                              &leader->entries_collapsed,
2381                                              &other->entries_collapsed);
2382         }
2383
2384         if (hists__has(other, need_collapse))
2385                 root = &other->entries_collapsed;
2386         else
2387                 root = other->entries_in;
2388
2389         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2390                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2391
2392                 if (!hist_entry__has_pairs(pos)) {
2393                         pair = hists__add_dummy_entry(leader, pos);
2394                         if (pair == NULL)
2395                                 return -1;
2396                         hist_entry__add_pair(pos, pair);
2397                 }
2398         }
2399
2400         return 0;
2401 }
2402
2403 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2404                           struct perf_sample *sample, bool nonany_branch_mode)
2405 {
2406         struct branch_info *bi;
2407
2408         /* If we have branch cycles always annotate them. */
2409         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2410                 int i;
2411
2412                 bi = sample__resolve_bstack(sample, al);
2413                 if (bi) {
2414                         struct addr_map_symbol *prev = NULL;
2415
2416                         /*
2417                          * Ignore errors, still want to process the
2418                          * other entries.
2419                          *
2420                          * For non standard branch modes always
2421                          * force no IPC (prev == NULL)
2422                          *
2423                          * Note that perf stores branches reversed from
2424                          * program order!
2425                          */
2426                         for (i = bs->nr - 1; i >= 0; i--) {
2427                                 addr_map_symbol__account_cycles(&bi[i].from,
2428                                         nonany_branch_mode ? NULL : prev,
2429                                         bi[i].flags.cycles);
2430                                 prev = &bi[i].to;
2431                         }
2432                         free(bi);
2433                 }
2434         }
2435 }
2436
2437 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2438 {
2439         struct perf_evsel *pos;
2440         size_t ret = 0;
2441
2442         evlist__for_each_entry(evlist, pos) {
2443                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2444                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2445         }
2446
2447         return ret;
2448 }
2449
2450
2451 u64 hists__total_period(struct hists *hists)
2452 {
2453         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2454                 hists->stats.total_period;
2455 }
2456
2457 int parse_filter_percentage(const struct option *opt __maybe_unused,
2458                             const char *arg, int unset __maybe_unused)
2459 {
2460         if (!strcmp(arg, "relative"))
2461                 symbol_conf.filter_relative = true;
2462         else if (!strcmp(arg, "absolute"))
2463                 symbol_conf.filter_relative = false;
2464         else {
2465                 pr_debug("Invalid percentage: %s\n", arg);
2466                 return -1;
2467         }
2468
2469         return 0;
2470 }
2471
2472 int perf_hist_config(const char *var, const char *value)
2473 {
2474         if (!strcmp(var, "hist.percentage"))
2475                 return parse_filter_percentage(NULL, value, 0);
2476
2477         return 0;
2478 }
2479
2480 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2481 {
2482         memset(hists, 0, sizeof(*hists));
2483         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2484         hists->entries_in = &hists->entries_in_array[0];
2485         hists->entries_collapsed = RB_ROOT;
2486         hists->entries = RB_ROOT;
2487         pthread_mutex_init(&hists->lock, NULL);
2488         hists->socket_filter = -1;
2489         hists->hpp_list = hpp_list;
2490         INIT_LIST_HEAD(&hists->hpp_formats);
2491         return 0;
2492 }
2493
2494 static void hists__delete_remaining_entries(struct rb_root *root)
2495 {
2496         struct rb_node *node;
2497         struct hist_entry *he;
2498
2499         while (!RB_EMPTY_ROOT(root)) {
2500                 node = rb_first(root);
2501                 rb_erase(node, root);
2502
2503                 he = rb_entry(node, struct hist_entry, rb_node_in);
2504                 hist_entry__delete(he);
2505         }
2506 }
2507
2508 static void hists__delete_all_entries(struct hists *hists)
2509 {
2510         hists__delete_entries(hists);
2511         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2512         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2513         hists__delete_remaining_entries(&hists->entries_collapsed);
2514 }
2515
2516 static void hists_evsel__exit(struct perf_evsel *evsel)
2517 {
2518         struct hists *hists = evsel__hists(evsel);
2519         struct perf_hpp_fmt *fmt, *pos;
2520         struct perf_hpp_list_node *node, *tmp;
2521
2522         hists__delete_all_entries(hists);
2523
2524         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2525                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2526                         list_del(&fmt->list);
2527                         free(fmt);
2528                 }
2529                 list_del(&node->list);
2530                 free(node);
2531         }
2532 }
2533
2534 static int hists_evsel__init(struct perf_evsel *evsel)
2535 {
2536         struct hists *hists = evsel__hists(evsel);
2537
2538         __hists__init(hists, &perf_hpp_list);
2539         return 0;
2540 }
2541
2542 /*
2543  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2544  * stored in the rbtree...
2545  */
2546
2547 int hists__init(void)
2548 {
2549         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2550                                             hists_evsel__init,
2551                                             hists_evsel__exit);
2552         if (err)
2553                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2554
2555         return err;
2556 }
2557
2558 void perf_hpp_list__init(struct perf_hpp_list *list)
2559 {
2560         INIT_LIST_HEAD(&list->fields);
2561         INIT_LIST_HEAD(&list->sorts);
2562 }