Merge tag 'sound-5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23
24 #include "evlist.h"
25 #include "evsel.h"
26 #include "header.h"
27 #include "memswap.h"
28 #include "../perf.h"
29 #include "trace-event.h"
30 #include "session.h"
31 #include "symbol.h"
32 #include "debug.h"
33 #include "cpumap.h"
34 #include "pmu.h"
35 #include "vdso.h"
36 #include "strbuf.h"
37 #include "build-id.h"
38 #include "data.h"
39 #include <api/fs/fs.h>
40 #include "asm/bug.h"
41 #include "tool.h"
42 #include "time-utils.h"
43 #include "units.h"
44 #include "cputopo.h"
45 #include "bpf-event.h"
46
47 #include <linux/ctype.h>
48
49 /*
50  * magic2 = "PERFILE2"
51  * must be a numerical value to let the endianness
52  * determine the memory layout. That way we are able
53  * to detect endianness when reading the perf.data file
54  * back.
55  *
56  * we check for legacy (PERFFILE) format.
57  */
58 static const char *__perf_magic1 = "PERFFILE";
59 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
60 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
61
62 #define PERF_MAGIC      __perf_magic2
63
64 const char perf_version_string[] = PERF_VERSION;
65
66 struct perf_file_attr {
67         struct perf_event_attr  attr;
68         struct perf_file_section        ids;
69 };
70
71 struct feat_fd {
72         struct perf_header      *ph;
73         int                     fd;
74         void                    *buf;   /* Either buf != NULL or fd >= 0 */
75         ssize_t                 offset;
76         size_t                  size;
77         struct perf_evsel       *events;
78 };
79
80 void perf_header__set_feat(struct perf_header *header, int feat)
81 {
82         set_bit(feat, header->adds_features);
83 }
84
85 void perf_header__clear_feat(struct perf_header *header, int feat)
86 {
87         clear_bit(feat, header->adds_features);
88 }
89
90 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 {
92         return test_bit(feat, header->adds_features);
93 }
94
95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 {
97         ssize_t ret = writen(ff->fd, buf, size);
98
99         if (ret != (ssize_t)size)
100                 return ret < 0 ? (int)ret : -1;
101         return 0;
102 }
103
104 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
105 {
106         /* struct perf_event_header::size is u16 */
107         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108         size_t new_size = ff->size;
109         void *addr;
110
111         if (size + ff->offset > max_size)
112                 return -E2BIG;
113
114         while (size > (new_size - ff->offset))
115                 new_size <<= 1;
116         new_size = min(max_size, new_size);
117
118         if (ff->size < new_size) {
119                 addr = realloc(ff->buf, new_size);
120                 if (!addr)
121                         return -ENOMEM;
122                 ff->buf = addr;
123                 ff->size = new_size;
124         }
125
126         memcpy(ff->buf + ff->offset, buf, size);
127         ff->offset += size;
128
129         return 0;
130 }
131
132 /* Return: 0 if succeded, -ERR if failed. */
133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 {
135         if (!ff->buf)
136                 return __do_write_fd(ff, buf, size);
137         return __do_write_buf(ff, buf, size);
138 }
139
140 /* Return: 0 if succeded, -ERR if failed. */
141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 {
143         u64 *p = (u64 *) set;
144         int i, ret;
145
146         ret = do_write(ff, &size, sizeof(size));
147         if (ret < 0)
148                 return ret;
149
150         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151                 ret = do_write(ff, p + i, sizeof(*p));
152                 if (ret < 0)
153                         return ret;
154         }
155
156         return 0;
157 }
158
159 /* Return: 0 if succeded, -ERR if failed. */
160 int write_padded(struct feat_fd *ff, const void *bf,
161                  size_t count, size_t count_aligned)
162 {
163         static const char zero_buf[NAME_ALIGN];
164         int err = do_write(ff, bf, count);
165
166         if (!err)
167                 err = do_write(ff, zero_buf, count_aligned - count);
168
169         return err;
170 }
171
172 #define string_size(str)                                                \
173         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174
175 /* Return: 0 if succeded, -ERR if failed. */
176 static int do_write_string(struct feat_fd *ff, const char *str)
177 {
178         u32 len, olen;
179         int ret;
180
181         olen = strlen(str) + 1;
182         len = PERF_ALIGN(olen, NAME_ALIGN);
183
184         /* write len, incl. \0 */
185         ret = do_write(ff, &len, sizeof(len));
186         if (ret < 0)
187                 return ret;
188
189         return write_padded(ff, str, olen, len);
190 }
191
192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 {
194         ssize_t ret = readn(ff->fd, addr, size);
195
196         if (ret != size)
197                 return ret < 0 ? (int)ret : -1;
198         return 0;
199 }
200
201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 {
203         if (size > (ssize_t)ff->size - ff->offset)
204                 return -1;
205
206         memcpy(addr, ff->buf + ff->offset, size);
207         ff->offset += size;
208
209         return 0;
210
211 }
212
213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 {
215         if (!ff->buf)
216                 return __do_read_fd(ff, addr, size);
217         return __do_read_buf(ff, addr, size);
218 }
219
220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 {
222         int ret;
223
224         ret = __do_read(ff, addr, sizeof(*addr));
225         if (ret)
226                 return ret;
227
228         if (ff->ph->needs_swap)
229                 *addr = bswap_32(*addr);
230         return 0;
231 }
232
233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 {
235         int ret;
236
237         ret = __do_read(ff, addr, sizeof(*addr));
238         if (ret)
239                 return ret;
240
241         if (ff->ph->needs_swap)
242                 *addr = bswap_64(*addr);
243         return 0;
244 }
245
246 static char *do_read_string(struct feat_fd *ff)
247 {
248         u32 len;
249         char *buf;
250
251         if (do_read_u32(ff, &len))
252                 return NULL;
253
254         buf = malloc(len);
255         if (!buf)
256                 return NULL;
257
258         if (!__do_read(ff, buf, len)) {
259                 /*
260                  * strings are padded by zeroes
261                  * thus the actual strlen of buf
262                  * may be less than len
263                  */
264                 return buf;
265         }
266
267         free(buf);
268         return NULL;
269 }
270
271 /* Return: 0 if succeded, -ERR if failed. */
272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 {
274         unsigned long *set;
275         u64 size, *p;
276         int i, ret;
277
278         ret = do_read_u64(ff, &size);
279         if (ret)
280                 return ret;
281
282         set = bitmap_alloc(size);
283         if (!set)
284                 return -ENOMEM;
285
286         p = (u64 *) set;
287
288         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289                 ret = do_read_u64(ff, p + i);
290                 if (ret < 0) {
291                         free(set);
292                         return ret;
293                 }
294         }
295
296         *pset  = set;
297         *psize = size;
298         return 0;
299 }
300
301 static int write_tracing_data(struct feat_fd *ff,
302                               struct perf_evlist *evlist)
303 {
304         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305                 return -1;
306
307         return read_tracing_data(ff->fd, &evlist->entries);
308 }
309
310 static int write_build_id(struct feat_fd *ff,
311                           struct perf_evlist *evlist __maybe_unused)
312 {
313         struct perf_session *session;
314         int err;
315
316         session = container_of(ff->ph, struct perf_session, header);
317
318         if (!perf_session__read_build_ids(session, true))
319                 return -1;
320
321         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322                 return -1;
323
324         err = perf_session__write_buildid_table(session, ff);
325         if (err < 0) {
326                 pr_debug("failed to write buildid table\n");
327                 return err;
328         }
329         perf_session__cache_build_ids(session);
330
331         return 0;
332 }
333
334 static int write_hostname(struct feat_fd *ff,
335                           struct perf_evlist *evlist __maybe_unused)
336 {
337         struct utsname uts;
338         int ret;
339
340         ret = uname(&uts);
341         if (ret < 0)
342                 return -1;
343
344         return do_write_string(ff, uts.nodename);
345 }
346
347 static int write_osrelease(struct feat_fd *ff,
348                            struct perf_evlist *evlist __maybe_unused)
349 {
350         struct utsname uts;
351         int ret;
352
353         ret = uname(&uts);
354         if (ret < 0)
355                 return -1;
356
357         return do_write_string(ff, uts.release);
358 }
359
360 static int write_arch(struct feat_fd *ff,
361                       struct perf_evlist *evlist __maybe_unused)
362 {
363         struct utsname uts;
364         int ret;
365
366         ret = uname(&uts);
367         if (ret < 0)
368                 return -1;
369
370         return do_write_string(ff, uts.machine);
371 }
372
373 static int write_version(struct feat_fd *ff,
374                          struct perf_evlist *evlist __maybe_unused)
375 {
376         return do_write_string(ff, perf_version_string);
377 }
378
379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 {
381         FILE *file;
382         char *buf = NULL;
383         char *s, *p;
384         const char *search = cpuinfo_proc;
385         size_t len = 0;
386         int ret = -1;
387
388         if (!search)
389                 return -1;
390
391         file = fopen("/proc/cpuinfo", "r");
392         if (!file)
393                 return -1;
394
395         while (getline(&buf, &len, file) > 0) {
396                 ret = strncmp(buf, search, strlen(search));
397                 if (!ret)
398                         break;
399         }
400
401         if (ret) {
402                 ret = -1;
403                 goto done;
404         }
405
406         s = buf;
407
408         p = strchr(buf, ':');
409         if (p && *(p+1) == ' ' && *(p+2))
410                 s = p + 2;
411         p = strchr(s, '\n');
412         if (p)
413                 *p = '\0';
414
415         /* squash extra space characters (branding string) */
416         p = s;
417         while (*p) {
418                 if (isspace(*p)) {
419                         char *r = p + 1;
420                         char *q = skip_spaces(r);
421                         *p = ' ';
422                         if (q != (p+1))
423                                 while ((*r++ = *q++));
424                 }
425                 p++;
426         }
427         ret = do_write_string(ff, s);
428 done:
429         free(buf);
430         fclose(file);
431         return ret;
432 }
433
434 static int write_cpudesc(struct feat_fd *ff,
435                        struct perf_evlist *evlist __maybe_unused)
436 {
437         const char *cpuinfo_procs[] = CPUINFO_PROC;
438         unsigned int i;
439
440         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
441                 int ret;
442                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
443                 if (ret >= 0)
444                         return ret;
445         }
446         return -1;
447 }
448
449
450 static int write_nrcpus(struct feat_fd *ff,
451                         struct perf_evlist *evlist __maybe_unused)
452 {
453         long nr;
454         u32 nrc, nra;
455         int ret;
456
457         nrc = cpu__max_present_cpu();
458
459         nr = sysconf(_SC_NPROCESSORS_ONLN);
460         if (nr < 0)
461                 return -1;
462
463         nra = (u32)(nr & UINT_MAX);
464
465         ret = do_write(ff, &nrc, sizeof(nrc));
466         if (ret < 0)
467                 return ret;
468
469         return do_write(ff, &nra, sizeof(nra));
470 }
471
472 static int write_event_desc(struct feat_fd *ff,
473                             struct perf_evlist *evlist)
474 {
475         struct perf_evsel *evsel;
476         u32 nre, nri, sz;
477         int ret;
478
479         nre = evlist->nr_entries;
480
481         /*
482          * write number of events
483          */
484         ret = do_write(ff, &nre, sizeof(nre));
485         if (ret < 0)
486                 return ret;
487
488         /*
489          * size of perf_event_attr struct
490          */
491         sz = (u32)sizeof(evsel->attr);
492         ret = do_write(ff, &sz, sizeof(sz));
493         if (ret < 0)
494                 return ret;
495
496         evlist__for_each_entry(evlist, evsel) {
497                 ret = do_write(ff, &evsel->attr, sz);
498                 if (ret < 0)
499                         return ret;
500                 /*
501                  * write number of unique id per event
502                  * there is one id per instance of an event
503                  *
504                  * copy into an nri to be independent of the
505                  * type of ids,
506                  */
507                 nri = evsel->ids;
508                 ret = do_write(ff, &nri, sizeof(nri));
509                 if (ret < 0)
510                         return ret;
511
512                 /*
513                  * write event string as passed on cmdline
514                  */
515                 ret = do_write_string(ff, perf_evsel__name(evsel));
516                 if (ret < 0)
517                         return ret;
518                 /*
519                  * write unique ids for this event
520                  */
521                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
522                 if (ret < 0)
523                         return ret;
524         }
525         return 0;
526 }
527
528 static int write_cmdline(struct feat_fd *ff,
529                          struct perf_evlist *evlist __maybe_unused)
530 {
531         char pbuf[MAXPATHLEN], *buf;
532         int i, ret, n;
533
534         /* actual path to perf binary */
535         buf = perf_exe(pbuf, MAXPATHLEN);
536
537         /* account for binary path */
538         n = perf_env.nr_cmdline + 1;
539
540         ret = do_write(ff, &n, sizeof(n));
541         if (ret < 0)
542                 return ret;
543
544         ret = do_write_string(ff, buf);
545         if (ret < 0)
546                 return ret;
547
548         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
549                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
550                 if (ret < 0)
551                         return ret;
552         }
553         return 0;
554 }
555
556
557 static int write_cpu_topology(struct feat_fd *ff,
558                               struct perf_evlist *evlist __maybe_unused)
559 {
560         struct cpu_topology *tp;
561         u32 i;
562         int ret, j;
563
564         tp = cpu_topology__new();
565         if (!tp)
566                 return -1;
567
568         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
569         if (ret < 0)
570                 goto done;
571
572         for (i = 0; i < tp->core_sib; i++) {
573                 ret = do_write_string(ff, tp->core_siblings[i]);
574                 if (ret < 0)
575                         goto done;
576         }
577         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
578         if (ret < 0)
579                 goto done;
580
581         for (i = 0; i < tp->thread_sib; i++) {
582                 ret = do_write_string(ff, tp->thread_siblings[i]);
583                 if (ret < 0)
584                         break;
585         }
586
587         ret = perf_env__read_cpu_topology_map(&perf_env);
588         if (ret < 0)
589                 goto done;
590
591         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
592                 ret = do_write(ff, &perf_env.cpu[j].core_id,
593                                sizeof(perf_env.cpu[j].core_id));
594                 if (ret < 0)
595                         return ret;
596                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
597                                sizeof(perf_env.cpu[j].socket_id));
598                 if (ret < 0)
599                         return ret;
600         }
601
602         if (!tp->die_sib)
603                 goto done;
604
605         ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
606         if (ret < 0)
607                 goto done;
608
609         for (i = 0; i < tp->die_sib; i++) {
610                 ret = do_write_string(ff, tp->die_siblings[i]);
611                 if (ret < 0)
612                         goto done;
613         }
614
615         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
616                 ret = do_write(ff, &perf_env.cpu[j].die_id,
617                                sizeof(perf_env.cpu[j].die_id));
618                 if (ret < 0)
619                         return ret;
620         }
621
622 done:
623         cpu_topology__delete(tp);
624         return ret;
625 }
626
627
628
629 static int write_total_mem(struct feat_fd *ff,
630                            struct perf_evlist *evlist __maybe_unused)
631 {
632         char *buf = NULL;
633         FILE *fp;
634         size_t len = 0;
635         int ret = -1, n;
636         uint64_t mem;
637
638         fp = fopen("/proc/meminfo", "r");
639         if (!fp)
640                 return -1;
641
642         while (getline(&buf, &len, fp) > 0) {
643                 ret = strncmp(buf, "MemTotal:", 9);
644                 if (!ret)
645                         break;
646         }
647         if (!ret) {
648                 n = sscanf(buf, "%*s %"PRIu64, &mem);
649                 if (n == 1)
650                         ret = do_write(ff, &mem, sizeof(mem));
651         } else
652                 ret = -1;
653         free(buf);
654         fclose(fp);
655         return ret;
656 }
657
658 static int write_numa_topology(struct feat_fd *ff,
659                                struct perf_evlist *evlist __maybe_unused)
660 {
661         struct numa_topology *tp;
662         int ret = -1;
663         u32 i;
664
665         tp = numa_topology__new();
666         if (!tp)
667                 return -ENOMEM;
668
669         ret = do_write(ff, &tp->nr, sizeof(u32));
670         if (ret < 0)
671                 goto err;
672
673         for (i = 0; i < tp->nr; i++) {
674                 struct numa_topology_node *n = &tp->nodes[i];
675
676                 ret = do_write(ff, &n->node, sizeof(u32));
677                 if (ret < 0)
678                         goto err;
679
680                 ret = do_write(ff, &n->mem_total, sizeof(u64));
681                 if (ret)
682                         goto err;
683
684                 ret = do_write(ff, &n->mem_free, sizeof(u64));
685                 if (ret)
686                         goto err;
687
688                 ret = do_write_string(ff, n->cpus);
689                 if (ret < 0)
690                         goto err;
691         }
692
693         ret = 0;
694
695 err:
696         numa_topology__delete(tp);
697         return ret;
698 }
699
700 /*
701  * File format:
702  *
703  * struct pmu_mappings {
704  *      u32     pmu_num;
705  *      struct pmu_map {
706  *              u32     type;
707  *              char    name[];
708  *      }[pmu_num];
709  * };
710  */
711
712 static int write_pmu_mappings(struct feat_fd *ff,
713                               struct perf_evlist *evlist __maybe_unused)
714 {
715         struct perf_pmu *pmu = NULL;
716         u32 pmu_num = 0;
717         int ret;
718
719         /*
720          * Do a first pass to count number of pmu to avoid lseek so this
721          * works in pipe mode as well.
722          */
723         while ((pmu = perf_pmu__scan(pmu))) {
724                 if (!pmu->name)
725                         continue;
726                 pmu_num++;
727         }
728
729         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
730         if (ret < 0)
731                 return ret;
732
733         while ((pmu = perf_pmu__scan(pmu))) {
734                 if (!pmu->name)
735                         continue;
736
737                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
738                 if (ret < 0)
739                         return ret;
740
741                 ret = do_write_string(ff, pmu->name);
742                 if (ret < 0)
743                         return ret;
744         }
745
746         return 0;
747 }
748
749 /*
750  * File format:
751  *
752  * struct group_descs {
753  *      u32     nr_groups;
754  *      struct group_desc {
755  *              char    name[];
756  *              u32     leader_idx;
757  *              u32     nr_members;
758  *      }[nr_groups];
759  * };
760  */
761 static int write_group_desc(struct feat_fd *ff,
762                             struct perf_evlist *evlist)
763 {
764         u32 nr_groups = evlist->nr_groups;
765         struct perf_evsel *evsel;
766         int ret;
767
768         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
769         if (ret < 0)
770                 return ret;
771
772         evlist__for_each_entry(evlist, evsel) {
773                 if (perf_evsel__is_group_leader(evsel) &&
774                     evsel->nr_members > 1) {
775                         const char *name = evsel->group_name ?: "{anon_group}";
776                         u32 leader_idx = evsel->idx;
777                         u32 nr_members = evsel->nr_members;
778
779                         ret = do_write_string(ff, name);
780                         if (ret < 0)
781                                 return ret;
782
783                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
784                         if (ret < 0)
785                                 return ret;
786
787                         ret = do_write(ff, &nr_members, sizeof(nr_members));
788                         if (ret < 0)
789                                 return ret;
790                 }
791         }
792         return 0;
793 }
794
795 /*
796  * Return the CPU id as a raw string.
797  *
798  * Each architecture should provide a more precise id string that
799  * can be use to match the architecture's "mapfile".
800  */
801 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
802 {
803         return NULL;
804 }
805
806 /* Return zero when the cpuid from the mapfile.csv matches the
807  * cpuid string generated on this platform.
808  * Otherwise return non-zero.
809  */
810 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
811 {
812         regex_t re;
813         regmatch_t pmatch[1];
814         int match;
815
816         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
817                 /* Warn unable to generate match particular string. */
818                 pr_info("Invalid regular expression %s\n", mapcpuid);
819                 return 1;
820         }
821
822         match = !regexec(&re, cpuid, 1, pmatch, 0);
823         regfree(&re);
824         if (match) {
825                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
826
827                 /* Verify the entire string matched. */
828                 if (match_len == strlen(cpuid))
829                         return 0;
830         }
831         return 1;
832 }
833
834 /*
835  * default get_cpuid(): nothing gets recorded
836  * actual implementation must be in arch/$(SRCARCH)/util/header.c
837  */
838 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
839 {
840         return -1;
841 }
842
843 static int write_cpuid(struct feat_fd *ff,
844                        struct perf_evlist *evlist __maybe_unused)
845 {
846         char buffer[64];
847         int ret;
848
849         ret = get_cpuid(buffer, sizeof(buffer));
850         if (ret)
851                 return -1;
852
853         return do_write_string(ff, buffer);
854 }
855
856 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
857                               struct perf_evlist *evlist __maybe_unused)
858 {
859         return 0;
860 }
861
862 static int write_auxtrace(struct feat_fd *ff,
863                           struct perf_evlist *evlist __maybe_unused)
864 {
865         struct perf_session *session;
866         int err;
867
868         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
869                 return -1;
870
871         session = container_of(ff->ph, struct perf_session, header);
872
873         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
874         if (err < 0)
875                 pr_err("Failed to write auxtrace index\n");
876         return err;
877 }
878
879 static int write_clockid(struct feat_fd *ff,
880                          struct perf_evlist *evlist __maybe_unused)
881 {
882         return do_write(ff, &ff->ph->env.clockid_res_ns,
883                         sizeof(ff->ph->env.clockid_res_ns));
884 }
885
886 static int write_dir_format(struct feat_fd *ff,
887                             struct perf_evlist *evlist __maybe_unused)
888 {
889         struct perf_session *session;
890         struct perf_data *data;
891
892         session = container_of(ff->ph, struct perf_session, header);
893         data = session->data;
894
895         if (WARN_ON(!perf_data__is_dir(data)))
896                 return -1;
897
898         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
899 }
900
901 #ifdef HAVE_LIBBPF_SUPPORT
902 static int write_bpf_prog_info(struct feat_fd *ff,
903                                struct perf_evlist *evlist __maybe_unused)
904 {
905         struct perf_env *env = &ff->ph->env;
906         struct rb_root *root;
907         struct rb_node *next;
908         int ret;
909
910         down_read(&env->bpf_progs.lock);
911
912         ret = do_write(ff, &env->bpf_progs.infos_cnt,
913                        sizeof(env->bpf_progs.infos_cnt));
914         if (ret < 0)
915                 goto out;
916
917         root = &env->bpf_progs.infos;
918         next = rb_first(root);
919         while (next) {
920                 struct bpf_prog_info_node *node;
921                 size_t len;
922
923                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
924                 next = rb_next(&node->rb_node);
925                 len = sizeof(struct bpf_prog_info_linear) +
926                         node->info_linear->data_len;
927
928                 /* before writing to file, translate address to offset */
929                 bpf_program__bpil_addr_to_offs(node->info_linear);
930                 ret = do_write(ff, node->info_linear, len);
931                 /*
932                  * translate back to address even when do_write() fails,
933                  * so that this function never changes the data.
934                  */
935                 bpf_program__bpil_offs_to_addr(node->info_linear);
936                 if (ret < 0)
937                         goto out;
938         }
939 out:
940         up_read(&env->bpf_progs.lock);
941         return ret;
942 }
943 #else // HAVE_LIBBPF_SUPPORT
944 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
945                                struct perf_evlist *evlist __maybe_unused)
946 {
947         return 0;
948 }
949 #endif // HAVE_LIBBPF_SUPPORT
950
951 static int write_bpf_btf(struct feat_fd *ff,
952                          struct perf_evlist *evlist __maybe_unused)
953 {
954         struct perf_env *env = &ff->ph->env;
955         struct rb_root *root;
956         struct rb_node *next;
957         int ret;
958
959         down_read(&env->bpf_progs.lock);
960
961         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
962                        sizeof(env->bpf_progs.btfs_cnt));
963
964         if (ret < 0)
965                 goto out;
966
967         root = &env->bpf_progs.btfs;
968         next = rb_first(root);
969         while (next) {
970                 struct btf_node *node;
971
972                 node = rb_entry(next, struct btf_node, rb_node);
973                 next = rb_next(&node->rb_node);
974                 ret = do_write(ff, &node->id,
975                                sizeof(u32) * 2 + node->data_size);
976                 if (ret < 0)
977                         goto out;
978         }
979 out:
980         up_read(&env->bpf_progs.lock);
981         return ret;
982 }
983
984 static int cpu_cache_level__sort(const void *a, const void *b)
985 {
986         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
987         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
988
989         return cache_a->level - cache_b->level;
990 }
991
992 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
993 {
994         if (a->level != b->level)
995                 return false;
996
997         if (a->line_size != b->line_size)
998                 return false;
999
1000         if (a->sets != b->sets)
1001                 return false;
1002
1003         if (a->ways != b->ways)
1004                 return false;
1005
1006         if (strcmp(a->type, b->type))
1007                 return false;
1008
1009         if (strcmp(a->size, b->size))
1010                 return false;
1011
1012         if (strcmp(a->map, b->map))
1013                 return false;
1014
1015         return true;
1016 }
1017
1018 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1019 {
1020         char path[PATH_MAX], file[PATH_MAX];
1021         struct stat st;
1022         size_t len;
1023
1024         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1025         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1026
1027         if (stat(file, &st))
1028                 return 1;
1029
1030         scnprintf(file, PATH_MAX, "%s/level", path);
1031         if (sysfs__read_int(file, (int *) &cache->level))
1032                 return -1;
1033
1034         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1035         if (sysfs__read_int(file, (int *) &cache->line_size))
1036                 return -1;
1037
1038         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1039         if (sysfs__read_int(file, (int *) &cache->sets))
1040                 return -1;
1041
1042         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1043         if (sysfs__read_int(file, (int *) &cache->ways))
1044                 return -1;
1045
1046         scnprintf(file, PATH_MAX, "%s/type", path);
1047         if (sysfs__read_str(file, &cache->type, &len))
1048                 return -1;
1049
1050         cache->type[len] = 0;
1051         cache->type = strim(cache->type);
1052
1053         scnprintf(file, PATH_MAX, "%s/size", path);
1054         if (sysfs__read_str(file, &cache->size, &len)) {
1055                 zfree(&cache->type);
1056                 return -1;
1057         }
1058
1059         cache->size[len] = 0;
1060         cache->size = strim(cache->size);
1061
1062         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1063         if (sysfs__read_str(file, &cache->map, &len)) {
1064                 zfree(&cache->map);
1065                 zfree(&cache->type);
1066                 return -1;
1067         }
1068
1069         cache->map[len] = 0;
1070         cache->map = strim(cache->map);
1071         return 0;
1072 }
1073
1074 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1075 {
1076         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1077 }
1078
1079 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1080 {
1081         u32 i, cnt = 0;
1082         long ncpus;
1083         u32 nr, cpu;
1084         u16 level;
1085
1086         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1087         if (ncpus < 0)
1088                 return -1;
1089
1090         nr = (u32)(ncpus & UINT_MAX);
1091
1092         for (cpu = 0; cpu < nr; cpu++) {
1093                 for (level = 0; level < 10; level++) {
1094                         struct cpu_cache_level c;
1095                         int err;
1096
1097                         err = cpu_cache_level__read(&c, cpu, level);
1098                         if (err < 0)
1099                                 return err;
1100
1101                         if (err == 1)
1102                                 break;
1103
1104                         for (i = 0; i < cnt; i++) {
1105                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1106                                         break;
1107                         }
1108
1109                         if (i == cnt)
1110                                 caches[cnt++] = c;
1111                         else
1112                                 cpu_cache_level__free(&c);
1113
1114                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1115                                 goto out;
1116                 }
1117         }
1118  out:
1119         *cntp = cnt;
1120         return 0;
1121 }
1122
1123 #define MAX_CACHES (MAX_NR_CPUS * 4)
1124
1125 static int write_cache(struct feat_fd *ff,
1126                        struct perf_evlist *evlist __maybe_unused)
1127 {
1128         struct cpu_cache_level caches[MAX_CACHES];
1129         u32 cnt = 0, i, version = 1;
1130         int ret;
1131
1132         ret = build_caches(caches, MAX_CACHES, &cnt);
1133         if (ret)
1134                 goto out;
1135
1136         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1137
1138         ret = do_write(ff, &version, sizeof(u32));
1139         if (ret < 0)
1140                 goto out;
1141
1142         ret = do_write(ff, &cnt, sizeof(u32));
1143         if (ret < 0)
1144                 goto out;
1145
1146         for (i = 0; i < cnt; i++) {
1147                 struct cpu_cache_level *c = &caches[i];
1148
1149                 #define _W(v)                                   \
1150                         ret = do_write(ff, &c->v, sizeof(u32)); \
1151                         if (ret < 0)                            \
1152                                 goto out;
1153
1154                 _W(level)
1155                 _W(line_size)
1156                 _W(sets)
1157                 _W(ways)
1158                 #undef _W
1159
1160                 #define _W(v)                                           \
1161                         ret = do_write_string(ff, (const char *) c->v); \
1162                         if (ret < 0)                                    \
1163                                 goto out;
1164
1165                 _W(type)
1166                 _W(size)
1167                 _W(map)
1168                 #undef _W
1169         }
1170
1171 out:
1172         for (i = 0; i < cnt; i++)
1173                 cpu_cache_level__free(&caches[i]);
1174         return ret;
1175 }
1176
1177 static int write_stat(struct feat_fd *ff __maybe_unused,
1178                       struct perf_evlist *evlist __maybe_unused)
1179 {
1180         return 0;
1181 }
1182
1183 static int write_sample_time(struct feat_fd *ff,
1184                              struct perf_evlist *evlist)
1185 {
1186         int ret;
1187
1188         ret = do_write(ff, &evlist->first_sample_time,
1189                        sizeof(evlist->first_sample_time));
1190         if (ret < 0)
1191                 return ret;
1192
1193         return do_write(ff, &evlist->last_sample_time,
1194                         sizeof(evlist->last_sample_time));
1195 }
1196
1197
1198 static int memory_node__read(struct memory_node *n, unsigned long idx)
1199 {
1200         unsigned int phys, size = 0;
1201         char path[PATH_MAX];
1202         struct dirent *ent;
1203         DIR *dir;
1204
1205 #define for_each_memory(mem, dir)                                       \
1206         while ((ent = readdir(dir)))                                    \
1207                 if (strcmp(ent->d_name, ".") &&                         \
1208                     strcmp(ent->d_name, "..") &&                        \
1209                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1210
1211         scnprintf(path, PATH_MAX,
1212                   "%s/devices/system/node/node%lu",
1213                   sysfs__mountpoint(), idx);
1214
1215         dir = opendir(path);
1216         if (!dir) {
1217                 pr_warning("failed: cant' open memory sysfs data\n");
1218                 return -1;
1219         }
1220
1221         for_each_memory(phys, dir) {
1222                 size = max(phys, size);
1223         }
1224
1225         size++;
1226
1227         n->set = bitmap_alloc(size);
1228         if (!n->set) {
1229                 closedir(dir);
1230                 return -ENOMEM;
1231         }
1232
1233         n->node = idx;
1234         n->size = size;
1235
1236         rewinddir(dir);
1237
1238         for_each_memory(phys, dir) {
1239                 set_bit(phys, n->set);
1240         }
1241
1242         closedir(dir);
1243         return 0;
1244 }
1245
1246 static int memory_node__sort(const void *a, const void *b)
1247 {
1248         const struct memory_node *na = a;
1249         const struct memory_node *nb = b;
1250
1251         return na->node - nb->node;
1252 }
1253
1254 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1255 {
1256         char path[PATH_MAX];
1257         struct dirent *ent;
1258         DIR *dir;
1259         u64 cnt = 0;
1260         int ret = 0;
1261
1262         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1263                   sysfs__mountpoint());
1264
1265         dir = opendir(path);
1266         if (!dir) {
1267                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1268                           __func__, path);
1269                 return -1;
1270         }
1271
1272         while (!ret && (ent = readdir(dir))) {
1273                 unsigned int idx;
1274                 int r;
1275
1276                 if (!strcmp(ent->d_name, ".") ||
1277                     !strcmp(ent->d_name, ".."))
1278                         continue;
1279
1280                 r = sscanf(ent->d_name, "node%u", &idx);
1281                 if (r != 1)
1282                         continue;
1283
1284                 if (WARN_ONCE(cnt >= size,
1285                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1286                         return -1;
1287
1288                 ret = memory_node__read(&nodes[cnt++], idx);
1289         }
1290
1291         *cntp = cnt;
1292         closedir(dir);
1293
1294         if (!ret)
1295                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1296
1297         return ret;
1298 }
1299
1300 #define MAX_MEMORY_NODES 2000
1301
1302 /*
1303  * The MEM_TOPOLOGY holds physical memory map for every
1304  * node in system. The format of data is as follows:
1305  *
1306  *  0 - version          | for future changes
1307  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1308  * 16 - count            | number of nodes
1309  *
1310  * For each node we store map of physical indexes for
1311  * each node:
1312  *
1313  * 32 - node id          | node index
1314  * 40 - size             | size of bitmap
1315  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1316  */
1317 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1318                               struct perf_evlist *evlist __maybe_unused)
1319 {
1320         static struct memory_node nodes[MAX_MEMORY_NODES];
1321         u64 bsize, version = 1, i, nr;
1322         int ret;
1323
1324         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1325                               (unsigned long long *) &bsize);
1326         if (ret)
1327                 return ret;
1328
1329         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1330         if (ret)
1331                 return ret;
1332
1333         ret = do_write(ff, &version, sizeof(version));
1334         if (ret < 0)
1335                 goto out;
1336
1337         ret = do_write(ff, &bsize, sizeof(bsize));
1338         if (ret < 0)
1339                 goto out;
1340
1341         ret = do_write(ff, &nr, sizeof(nr));
1342         if (ret < 0)
1343                 goto out;
1344
1345         for (i = 0; i < nr; i++) {
1346                 struct memory_node *n = &nodes[i];
1347
1348                 #define _W(v)                                           \
1349                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1350                         if (ret < 0)                                    \
1351                                 goto out;
1352
1353                 _W(node)
1354                 _W(size)
1355
1356                 #undef _W
1357
1358                 ret = do_write_bitmap(ff, n->set, n->size);
1359                 if (ret < 0)
1360                         goto out;
1361         }
1362
1363 out:
1364         return ret;
1365 }
1366
1367 static int write_compressed(struct feat_fd *ff __maybe_unused,
1368                             struct perf_evlist *evlist __maybe_unused)
1369 {
1370         int ret;
1371
1372         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1373         if (ret)
1374                 return ret;
1375
1376         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1377         if (ret)
1378                 return ret;
1379
1380         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1381         if (ret)
1382                 return ret;
1383
1384         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1385         if (ret)
1386                 return ret;
1387
1388         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1389 }
1390
1391 static void print_hostname(struct feat_fd *ff, FILE *fp)
1392 {
1393         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1394 }
1395
1396 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1397 {
1398         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1399 }
1400
1401 static void print_arch(struct feat_fd *ff, FILE *fp)
1402 {
1403         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1404 }
1405
1406 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1407 {
1408         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1409 }
1410
1411 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1412 {
1413         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1414         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1415 }
1416
1417 static void print_version(struct feat_fd *ff, FILE *fp)
1418 {
1419         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1420 }
1421
1422 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1423 {
1424         int nr, i;
1425
1426         nr = ff->ph->env.nr_cmdline;
1427
1428         fprintf(fp, "# cmdline : ");
1429
1430         for (i = 0; i < nr; i++) {
1431                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1432                 if (!argv_i) {
1433                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1434                 } else {
1435                         char *mem = argv_i;
1436                         do {
1437                                 char *quote = strchr(argv_i, '\'');
1438                                 if (!quote)
1439                                         break;
1440                                 *quote++ = '\0';
1441                                 fprintf(fp, "%s\\\'", argv_i);
1442                                 argv_i = quote;
1443                         } while (1);
1444                         fprintf(fp, "%s ", argv_i);
1445                         free(mem);
1446                 }
1447         }
1448         fputc('\n', fp);
1449 }
1450
1451 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1452 {
1453         struct perf_header *ph = ff->ph;
1454         int cpu_nr = ph->env.nr_cpus_avail;
1455         int nr, i;
1456         char *str;
1457
1458         nr = ph->env.nr_sibling_cores;
1459         str = ph->env.sibling_cores;
1460
1461         for (i = 0; i < nr; i++) {
1462                 fprintf(fp, "# sibling sockets : %s\n", str);
1463                 str += strlen(str) + 1;
1464         }
1465
1466         if (ph->env.nr_sibling_dies) {
1467                 nr = ph->env.nr_sibling_dies;
1468                 str = ph->env.sibling_dies;
1469
1470                 for (i = 0; i < nr; i++) {
1471                         fprintf(fp, "# sibling dies    : %s\n", str);
1472                         str += strlen(str) + 1;
1473                 }
1474         }
1475
1476         nr = ph->env.nr_sibling_threads;
1477         str = ph->env.sibling_threads;
1478
1479         for (i = 0; i < nr; i++) {
1480                 fprintf(fp, "# sibling threads : %s\n", str);
1481                 str += strlen(str) + 1;
1482         }
1483
1484         if (ph->env.nr_sibling_dies) {
1485                 if (ph->env.cpu != NULL) {
1486                         for (i = 0; i < cpu_nr; i++)
1487                                 fprintf(fp, "# CPU %d: Core ID %d, "
1488                                             "Die ID %d, Socket ID %d\n",
1489                                             i, ph->env.cpu[i].core_id,
1490                                             ph->env.cpu[i].die_id,
1491                                             ph->env.cpu[i].socket_id);
1492                 } else
1493                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1494                                     "information is not available\n");
1495         } else {
1496                 if (ph->env.cpu != NULL) {
1497                         for (i = 0; i < cpu_nr; i++)
1498                                 fprintf(fp, "# CPU %d: Core ID %d, "
1499                                             "Socket ID %d\n",
1500                                             i, ph->env.cpu[i].core_id,
1501                                             ph->env.cpu[i].socket_id);
1502                 } else
1503                         fprintf(fp, "# Core ID and Socket ID "
1504                                     "information is not available\n");
1505         }
1506 }
1507
1508 static void print_clockid(struct feat_fd *ff, FILE *fp)
1509 {
1510         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1511                 ff->ph->env.clockid_res_ns * 1000);
1512 }
1513
1514 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1515 {
1516         struct perf_session *session;
1517         struct perf_data *data;
1518
1519         session = container_of(ff->ph, struct perf_session, header);
1520         data = session->data;
1521
1522         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1523 }
1524
1525 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1526 {
1527         struct perf_env *env = &ff->ph->env;
1528         struct rb_root *root;
1529         struct rb_node *next;
1530
1531         down_read(&env->bpf_progs.lock);
1532
1533         root = &env->bpf_progs.infos;
1534         next = rb_first(root);
1535
1536         while (next) {
1537                 struct bpf_prog_info_node *node;
1538
1539                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1540                 next = rb_next(&node->rb_node);
1541
1542                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1543                                                env, fp);
1544         }
1545
1546         up_read(&env->bpf_progs.lock);
1547 }
1548
1549 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1550 {
1551         struct perf_env *env = &ff->ph->env;
1552         struct rb_root *root;
1553         struct rb_node *next;
1554
1555         down_read(&env->bpf_progs.lock);
1556
1557         root = &env->bpf_progs.btfs;
1558         next = rb_first(root);
1559
1560         while (next) {
1561                 struct btf_node *node;
1562
1563                 node = rb_entry(next, struct btf_node, rb_node);
1564                 next = rb_next(&node->rb_node);
1565                 fprintf(fp, "# btf info of id %u\n", node->id);
1566         }
1567
1568         up_read(&env->bpf_progs.lock);
1569 }
1570
1571 static void free_event_desc(struct perf_evsel *events)
1572 {
1573         struct perf_evsel *evsel;
1574
1575         if (!events)
1576                 return;
1577
1578         for (evsel = events; evsel->attr.size; evsel++) {
1579                 zfree(&evsel->name);
1580                 zfree(&evsel->id);
1581         }
1582
1583         free(events);
1584 }
1585
1586 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1587 {
1588         struct perf_evsel *evsel, *events = NULL;
1589         u64 *id;
1590         void *buf = NULL;
1591         u32 nre, sz, nr, i, j;
1592         size_t msz;
1593
1594         /* number of events */
1595         if (do_read_u32(ff, &nre))
1596                 goto error;
1597
1598         if (do_read_u32(ff, &sz))
1599                 goto error;
1600
1601         /* buffer to hold on file attr struct */
1602         buf = malloc(sz);
1603         if (!buf)
1604                 goto error;
1605
1606         /* the last event terminates with evsel->attr.size == 0: */
1607         events = calloc(nre + 1, sizeof(*events));
1608         if (!events)
1609                 goto error;
1610
1611         msz = sizeof(evsel->attr);
1612         if (sz < msz)
1613                 msz = sz;
1614
1615         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1616                 evsel->idx = i;
1617
1618                 /*
1619                  * must read entire on-file attr struct to
1620                  * sync up with layout.
1621                  */
1622                 if (__do_read(ff, buf, sz))
1623                         goto error;
1624
1625                 if (ff->ph->needs_swap)
1626                         perf_event__attr_swap(buf);
1627
1628                 memcpy(&evsel->attr, buf, msz);
1629
1630                 if (do_read_u32(ff, &nr))
1631                         goto error;
1632
1633                 if (ff->ph->needs_swap)
1634                         evsel->needs_swap = true;
1635
1636                 evsel->name = do_read_string(ff);
1637                 if (!evsel->name)
1638                         goto error;
1639
1640                 if (!nr)
1641                         continue;
1642
1643                 id = calloc(nr, sizeof(*id));
1644                 if (!id)
1645                         goto error;
1646                 evsel->ids = nr;
1647                 evsel->id = id;
1648
1649                 for (j = 0 ; j < nr; j++) {
1650                         if (do_read_u64(ff, id))
1651                                 goto error;
1652                         id++;
1653                 }
1654         }
1655 out:
1656         free(buf);
1657         return events;
1658 error:
1659         free_event_desc(events);
1660         events = NULL;
1661         goto out;
1662 }
1663
1664 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1665                                 void *priv __maybe_unused)
1666 {
1667         return fprintf(fp, ", %s = %s", name, val);
1668 }
1669
1670 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1671 {
1672         struct perf_evsel *evsel, *events;
1673         u32 j;
1674         u64 *id;
1675
1676         if (ff->events)
1677                 events = ff->events;
1678         else
1679                 events = read_event_desc(ff);
1680
1681         if (!events) {
1682                 fprintf(fp, "# event desc: not available or unable to read\n");
1683                 return;
1684         }
1685
1686         for (evsel = events; evsel->attr.size; evsel++) {
1687                 fprintf(fp, "# event : name = %s, ", evsel->name);
1688
1689                 if (evsel->ids) {
1690                         fprintf(fp, ", id = {");
1691                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1692                                 if (j)
1693                                         fputc(',', fp);
1694                                 fprintf(fp, " %"PRIu64, *id);
1695                         }
1696                         fprintf(fp, " }");
1697                 }
1698
1699                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1700
1701                 fputc('\n', fp);
1702         }
1703
1704         free_event_desc(events);
1705         ff->events = NULL;
1706 }
1707
1708 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1709 {
1710         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1711 }
1712
1713 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1714 {
1715         int i;
1716         struct numa_node *n;
1717
1718         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1719                 n = &ff->ph->env.numa_nodes[i];
1720
1721                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1722                             " free = %"PRIu64" kB\n",
1723                         n->node, n->mem_total, n->mem_free);
1724
1725                 fprintf(fp, "# node%u cpu list : ", n->node);
1726                 cpu_map__fprintf(n->map, fp);
1727         }
1728 }
1729
1730 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1731 {
1732         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1733 }
1734
1735 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1736 {
1737         fprintf(fp, "# contains samples with branch stack\n");
1738 }
1739
1740 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1741 {
1742         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1743 }
1744
1745 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1746 {
1747         fprintf(fp, "# contains stat data\n");
1748 }
1749
1750 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1751 {
1752         int i;
1753
1754         fprintf(fp, "# CPU cache info:\n");
1755         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1756                 fprintf(fp, "#  ");
1757                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1758         }
1759 }
1760
1761 static void print_compressed(struct feat_fd *ff, FILE *fp)
1762 {
1763         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1764                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1765                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1766 }
1767
1768 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1769 {
1770         const char *delimiter = "# pmu mappings: ";
1771         char *str, *tmp;
1772         u32 pmu_num;
1773         u32 type;
1774
1775         pmu_num = ff->ph->env.nr_pmu_mappings;
1776         if (!pmu_num) {
1777                 fprintf(fp, "# pmu mappings: not available\n");
1778                 return;
1779         }
1780
1781         str = ff->ph->env.pmu_mappings;
1782
1783         while (pmu_num) {
1784                 type = strtoul(str, &tmp, 0);
1785                 if (*tmp != ':')
1786                         goto error;
1787
1788                 str = tmp + 1;
1789                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1790
1791                 delimiter = ", ";
1792                 str += strlen(str) + 1;
1793                 pmu_num--;
1794         }
1795
1796         fprintf(fp, "\n");
1797
1798         if (!pmu_num)
1799                 return;
1800 error:
1801         fprintf(fp, "# pmu mappings: unable to read\n");
1802 }
1803
1804 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1805 {
1806         struct perf_session *session;
1807         struct perf_evsel *evsel;
1808         u32 nr = 0;
1809
1810         session = container_of(ff->ph, struct perf_session, header);
1811
1812         evlist__for_each_entry(session->evlist, evsel) {
1813                 if (perf_evsel__is_group_leader(evsel) &&
1814                     evsel->nr_members > 1) {
1815                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1816                                 perf_evsel__name(evsel));
1817
1818                         nr = evsel->nr_members - 1;
1819                 } else if (nr) {
1820                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1821
1822                         if (--nr == 0)
1823                                 fprintf(fp, "}\n");
1824                 }
1825         }
1826 }
1827
1828 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1829 {
1830         struct perf_session *session;
1831         char time_buf[32];
1832         double d;
1833
1834         session = container_of(ff->ph, struct perf_session, header);
1835
1836         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1837                                   time_buf, sizeof(time_buf));
1838         fprintf(fp, "# time of first sample : %s\n", time_buf);
1839
1840         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1841                                   time_buf, sizeof(time_buf));
1842         fprintf(fp, "# time of last sample : %s\n", time_buf);
1843
1844         d = (double)(session->evlist->last_sample_time -
1845                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1846
1847         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1848 }
1849
1850 static void memory_node__fprintf(struct memory_node *n,
1851                                  unsigned long long bsize, FILE *fp)
1852 {
1853         char buf_map[100], buf_size[50];
1854         unsigned long long size;
1855
1856         size = bsize * bitmap_weight(n->set, n->size);
1857         unit_number__scnprintf(buf_size, 50, size);
1858
1859         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1860         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1861 }
1862
1863 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1864 {
1865         struct memory_node *nodes;
1866         int i, nr;
1867
1868         nodes = ff->ph->env.memory_nodes;
1869         nr    = ff->ph->env.nr_memory_nodes;
1870
1871         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1872                 nr, ff->ph->env.memory_bsize);
1873
1874         for (i = 0; i < nr; i++) {
1875                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1876         }
1877 }
1878
1879 static int __event_process_build_id(struct build_id_event *bev,
1880                                     char *filename,
1881                                     struct perf_session *session)
1882 {
1883         int err = -1;
1884         struct machine *machine;
1885         u16 cpumode;
1886         struct dso *dso;
1887         enum dso_kernel_type dso_type;
1888
1889         machine = perf_session__findnew_machine(session, bev->pid);
1890         if (!machine)
1891                 goto out;
1892
1893         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1894
1895         switch (cpumode) {
1896         case PERF_RECORD_MISC_KERNEL:
1897                 dso_type = DSO_TYPE_KERNEL;
1898                 break;
1899         case PERF_RECORD_MISC_GUEST_KERNEL:
1900                 dso_type = DSO_TYPE_GUEST_KERNEL;
1901                 break;
1902         case PERF_RECORD_MISC_USER:
1903         case PERF_RECORD_MISC_GUEST_USER:
1904                 dso_type = DSO_TYPE_USER;
1905                 break;
1906         default:
1907                 goto out;
1908         }
1909
1910         dso = machine__findnew_dso(machine, filename);
1911         if (dso != NULL) {
1912                 char sbuild_id[SBUILD_ID_SIZE];
1913
1914                 dso__set_build_id(dso, &bev->build_id);
1915
1916                 if (dso_type != DSO_TYPE_USER) {
1917                         struct kmod_path m = { .name = NULL, };
1918
1919                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1920                                 dso__set_module_info(dso, &m, machine);
1921                         else
1922                                 dso->kernel = dso_type;
1923
1924                         free(m.name);
1925                 }
1926
1927                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1928                                   sbuild_id);
1929                 pr_debug("build id event received for %s: %s\n",
1930                          dso->long_name, sbuild_id);
1931                 dso__put(dso);
1932         }
1933
1934         err = 0;
1935 out:
1936         return err;
1937 }
1938
1939 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1940                                                  int input, u64 offset, u64 size)
1941 {
1942         struct perf_session *session = container_of(header, struct perf_session, header);
1943         struct {
1944                 struct perf_event_header   header;
1945                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1946                 char                       filename[0];
1947         } old_bev;
1948         struct build_id_event bev;
1949         char filename[PATH_MAX];
1950         u64 limit = offset + size;
1951
1952         while (offset < limit) {
1953                 ssize_t len;
1954
1955                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1956                         return -1;
1957
1958                 if (header->needs_swap)
1959                         perf_event_header__bswap(&old_bev.header);
1960
1961                 len = old_bev.header.size - sizeof(old_bev);
1962                 if (readn(input, filename, len) != len)
1963                         return -1;
1964
1965                 bev.header = old_bev.header;
1966
1967                 /*
1968                  * As the pid is the missing value, we need to fill
1969                  * it properly. The header.misc value give us nice hint.
1970                  */
1971                 bev.pid = HOST_KERNEL_ID;
1972                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1973                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1974                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1975
1976                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1977                 __event_process_build_id(&bev, filename, session);
1978
1979                 offset += bev.header.size;
1980         }
1981
1982         return 0;
1983 }
1984
1985 static int perf_header__read_build_ids(struct perf_header *header,
1986                                        int input, u64 offset, u64 size)
1987 {
1988         struct perf_session *session = container_of(header, struct perf_session, header);
1989         struct build_id_event bev;
1990         char filename[PATH_MAX];
1991         u64 limit = offset + size, orig_offset = offset;
1992         int err = -1;
1993
1994         while (offset < limit) {
1995                 ssize_t len;
1996
1997                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1998                         goto out;
1999
2000                 if (header->needs_swap)
2001                         perf_event_header__bswap(&bev.header);
2002
2003                 len = bev.header.size - sizeof(bev);
2004                 if (readn(input, filename, len) != len)
2005                         goto out;
2006                 /*
2007                  * The a1645ce1 changeset:
2008                  *
2009                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2010                  *
2011                  * Added a field to struct build_id_event that broke the file
2012                  * format.
2013                  *
2014                  * Since the kernel build-id is the first entry, process the
2015                  * table using the old format if the well known
2016                  * '[kernel.kallsyms]' string for the kernel build-id has the
2017                  * first 4 characters chopped off (where the pid_t sits).
2018                  */
2019                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2020                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2021                                 return -1;
2022                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2023                 }
2024
2025                 __event_process_build_id(&bev, filename, session);
2026
2027                 offset += bev.header.size;
2028         }
2029         err = 0;
2030 out:
2031         return err;
2032 }
2033
2034 /* Macro for features that simply need to read and store a string. */
2035 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2036 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2037 {\
2038         ff->ph->env.__feat_env = do_read_string(ff); \
2039         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2040 }
2041
2042 FEAT_PROCESS_STR_FUN(hostname, hostname);
2043 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2044 FEAT_PROCESS_STR_FUN(version, version);
2045 FEAT_PROCESS_STR_FUN(arch, arch);
2046 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2047 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2048
2049 static int process_tracing_data(struct feat_fd *ff, void *data)
2050 {
2051         ssize_t ret = trace_report(ff->fd, data, false);
2052
2053         return ret < 0 ? -1 : 0;
2054 }
2055
2056 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2057 {
2058         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2059                 pr_debug("Failed to read buildids, continuing...\n");
2060         return 0;
2061 }
2062
2063 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2064 {
2065         int ret;
2066         u32 nr_cpus_avail, nr_cpus_online;
2067
2068         ret = do_read_u32(ff, &nr_cpus_avail);
2069         if (ret)
2070                 return ret;
2071
2072         ret = do_read_u32(ff, &nr_cpus_online);
2073         if (ret)
2074                 return ret;
2075         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2076         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2077         return 0;
2078 }
2079
2080 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2081 {
2082         u64 total_mem;
2083         int ret;
2084
2085         ret = do_read_u64(ff, &total_mem);
2086         if (ret)
2087                 return -1;
2088         ff->ph->env.total_mem = (unsigned long long)total_mem;
2089         return 0;
2090 }
2091
2092 static struct perf_evsel *
2093 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2094 {
2095         struct perf_evsel *evsel;
2096
2097         evlist__for_each_entry(evlist, evsel) {
2098                 if (evsel->idx == idx)
2099                         return evsel;
2100         }
2101
2102         return NULL;
2103 }
2104
2105 static void
2106 perf_evlist__set_event_name(struct perf_evlist *evlist,
2107                             struct perf_evsel *event)
2108 {
2109         struct perf_evsel *evsel;
2110
2111         if (!event->name)
2112                 return;
2113
2114         evsel = perf_evlist__find_by_index(evlist, event->idx);
2115         if (!evsel)
2116                 return;
2117
2118         if (evsel->name)
2119                 return;
2120
2121         evsel->name = strdup(event->name);
2122 }
2123
2124 static int
2125 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2126 {
2127         struct perf_session *session;
2128         struct perf_evsel *evsel, *events = read_event_desc(ff);
2129
2130         if (!events)
2131                 return 0;
2132
2133         session = container_of(ff->ph, struct perf_session, header);
2134
2135         if (session->data->is_pipe) {
2136                 /* Save events for reading later by print_event_desc,
2137                  * since they can't be read again in pipe mode. */
2138                 ff->events = events;
2139         }
2140
2141         for (evsel = events; evsel->attr.size; evsel++)
2142                 perf_evlist__set_event_name(session->evlist, evsel);
2143
2144         if (!session->data->is_pipe)
2145                 free_event_desc(events);
2146
2147         return 0;
2148 }
2149
2150 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2151 {
2152         char *str, *cmdline = NULL, **argv = NULL;
2153         u32 nr, i, len = 0;
2154
2155         if (do_read_u32(ff, &nr))
2156                 return -1;
2157
2158         ff->ph->env.nr_cmdline = nr;
2159
2160         cmdline = zalloc(ff->size + nr + 1);
2161         if (!cmdline)
2162                 return -1;
2163
2164         argv = zalloc(sizeof(char *) * (nr + 1));
2165         if (!argv)
2166                 goto error;
2167
2168         for (i = 0; i < nr; i++) {
2169                 str = do_read_string(ff);
2170                 if (!str)
2171                         goto error;
2172
2173                 argv[i] = cmdline + len;
2174                 memcpy(argv[i], str, strlen(str) + 1);
2175                 len += strlen(str) + 1;
2176                 free(str);
2177         }
2178         ff->ph->env.cmdline = cmdline;
2179         ff->ph->env.cmdline_argv = (const char **) argv;
2180         return 0;
2181
2182 error:
2183         free(argv);
2184         free(cmdline);
2185         return -1;
2186 }
2187
2188 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2189 {
2190         u32 nr, i;
2191         char *str;
2192         struct strbuf sb;
2193         int cpu_nr = ff->ph->env.nr_cpus_avail;
2194         u64 size = 0;
2195         struct perf_header *ph = ff->ph;
2196         bool do_core_id_test = true;
2197
2198         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2199         if (!ph->env.cpu)
2200                 return -1;
2201
2202         if (do_read_u32(ff, &nr))
2203                 goto free_cpu;
2204
2205         ph->env.nr_sibling_cores = nr;
2206         size += sizeof(u32);
2207         if (strbuf_init(&sb, 128) < 0)
2208                 goto free_cpu;
2209
2210         for (i = 0; i < nr; i++) {
2211                 str = do_read_string(ff);
2212                 if (!str)
2213                         goto error;
2214
2215                 /* include a NULL character at the end */
2216                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2217                         goto error;
2218                 size += string_size(str);
2219                 free(str);
2220         }
2221         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2222
2223         if (do_read_u32(ff, &nr))
2224                 return -1;
2225
2226         ph->env.nr_sibling_threads = nr;
2227         size += sizeof(u32);
2228
2229         for (i = 0; i < nr; i++) {
2230                 str = do_read_string(ff);
2231                 if (!str)
2232                         goto error;
2233
2234                 /* include a NULL character at the end */
2235                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2236                         goto error;
2237                 size += string_size(str);
2238                 free(str);
2239         }
2240         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2241
2242         /*
2243          * The header may be from old perf,
2244          * which doesn't include core id and socket id information.
2245          */
2246         if (ff->size <= size) {
2247                 zfree(&ph->env.cpu);
2248                 return 0;
2249         }
2250
2251         /* On s390 the socket_id number is not related to the numbers of cpus.
2252          * The socket_id number might be higher than the numbers of cpus.
2253          * This depends on the configuration.
2254          */
2255         if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2256                 do_core_id_test = false;
2257
2258         for (i = 0; i < (u32)cpu_nr; i++) {
2259                 if (do_read_u32(ff, &nr))
2260                         goto free_cpu;
2261
2262                 ph->env.cpu[i].core_id = nr;
2263                 size += sizeof(u32);
2264
2265                 if (do_read_u32(ff, &nr))
2266                         goto free_cpu;
2267
2268                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2269                         pr_debug("socket_id number is too big."
2270                                  "You may need to upgrade the perf tool.\n");
2271                         goto free_cpu;
2272                 }
2273
2274                 ph->env.cpu[i].socket_id = nr;
2275                 size += sizeof(u32);
2276         }
2277
2278         /*
2279          * The header may be from old perf,
2280          * which doesn't include die information.
2281          */
2282         if (ff->size <= size)
2283                 return 0;
2284
2285         if (do_read_u32(ff, &nr))
2286                 return -1;
2287
2288         ph->env.nr_sibling_dies = nr;
2289         size += sizeof(u32);
2290
2291         for (i = 0; i < nr; i++) {
2292                 str = do_read_string(ff);
2293                 if (!str)
2294                         goto error;
2295
2296                 /* include a NULL character at the end */
2297                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2298                         goto error;
2299                 size += string_size(str);
2300                 free(str);
2301         }
2302         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2303
2304         for (i = 0; i < (u32)cpu_nr; i++) {
2305                 if (do_read_u32(ff, &nr))
2306                         goto free_cpu;
2307
2308                 ph->env.cpu[i].die_id = nr;
2309         }
2310
2311         return 0;
2312
2313 error:
2314         strbuf_release(&sb);
2315 free_cpu:
2316         zfree(&ph->env.cpu);
2317         return -1;
2318 }
2319
2320 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2321 {
2322         struct numa_node *nodes, *n;
2323         u32 nr, i;
2324         char *str;
2325
2326         /* nr nodes */
2327         if (do_read_u32(ff, &nr))
2328                 return -1;
2329
2330         nodes = zalloc(sizeof(*nodes) * nr);
2331         if (!nodes)
2332                 return -ENOMEM;
2333
2334         for (i = 0; i < nr; i++) {
2335                 n = &nodes[i];
2336
2337                 /* node number */
2338                 if (do_read_u32(ff, &n->node))
2339                         goto error;
2340
2341                 if (do_read_u64(ff, &n->mem_total))
2342                         goto error;
2343
2344                 if (do_read_u64(ff, &n->mem_free))
2345                         goto error;
2346
2347                 str = do_read_string(ff);
2348                 if (!str)
2349                         goto error;
2350
2351                 n->map = cpu_map__new(str);
2352                 if (!n->map)
2353                         goto error;
2354
2355                 free(str);
2356         }
2357         ff->ph->env.nr_numa_nodes = nr;
2358         ff->ph->env.numa_nodes = nodes;
2359         return 0;
2360
2361 error:
2362         free(nodes);
2363         return -1;
2364 }
2365
2366 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2367 {
2368         char *name;
2369         u32 pmu_num;
2370         u32 type;
2371         struct strbuf sb;
2372
2373         if (do_read_u32(ff, &pmu_num))
2374                 return -1;
2375
2376         if (!pmu_num) {
2377                 pr_debug("pmu mappings not available\n");
2378                 return 0;
2379         }
2380
2381         ff->ph->env.nr_pmu_mappings = pmu_num;
2382         if (strbuf_init(&sb, 128) < 0)
2383                 return -1;
2384
2385         while (pmu_num) {
2386                 if (do_read_u32(ff, &type))
2387                         goto error;
2388
2389                 name = do_read_string(ff);
2390                 if (!name)
2391                         goto error;
2392
2393                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2394                         goto error;
2395                 /* include a NULL character at the end */
2396                 if (strbuf_add(&sb, "", 1) < 0)
2397                         goto error;
2398
2399                 if (!strcmp(name, "msr"))
2400                         ff->ph->env.msr_pmu_type = type;
2401
2402                 free(name);
2403                 pmu_num--;
2404         }
2405         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2406         return 0;
2407
2408 error:
2409         strbuf_release(&sb);
2410         return -1;
2411 }
2412
2413 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2414 {
2415         size_t ret = -1;
2416         u32 i, nr, nr_groups;
2417         struct perf_session *session;
2418         struct perf_evsel *evsel, *leader = NULL;
2419         struct group_desc {
2420                 char *name;
2421                 u32 leader_idx;
2422                 u32 nr_members;
2423         } *desc;
2424
2425         if (do_read_u32(ff, &nr_groups))
2426                 return -1;
2427
2428         ff->ph->env.nr_groups = nr_groups;
2429         if (!nr_groups) {
2430                 pr_debug("group desc not available\n");
2431                 return 0;
2432         }
2433
2434         desc = calloc(nr_groups, sizeof(*desc));
2435         if (!desc)
2436                 return -1;
2437
2438         for (i = 0; i < nr_groups; i++) {
2439                 desc[i].name = do_read_string(ff);
2440                 if (!desc[i].name)
2441                         goto out_free;
2442
2443                 if (do_read_u32(ff, &desc[i].leader_idx))
2444                         goto out_free;
2445
2446                 if (do_read_u32(ff, &desc[i].nr_members))
2447                         goto out_free;
2448         }
2449
2450         /*
2451          * Rebuild group relationship based on the group_desc
2452          */
2453         session = container_of(ff->ph, struct perf_session, header);
2454         session->evlist->nr_groups = nr_groups;
2455
2456         i = nr = 0;
2457         evlist__for_each_entry(session->evlist, evsel) {
2458                 if (evsel->idx == (int) desc[i].leader_idx) {
2459                         evsel->leader = evsel;
2460                         /* {anon_group} is a dummy name */
2461                         if (strcmp(desc[i].name, "{anon_group}")) {
2462                                 evsel->group_name = desc[i].name;
2463                                 desc[i].name = NULL;
2464                         }
2465                         evsel->nr_members = desc[i].nr_members;
2466
2467                         if (i >= nr_groups || nr > 0) {
2468                                 pr_debug("invalid group desc\n");
2469                                 goto out_free;
2470                         }
2471
2472                         leader = evsel;
2473                         nr = evsel->nr_members - 1;
2474                         i++;
2475                 } else if (nr) {
2476                         /* This is a group member */
2477                         evsel->leader = leader;
2478
2479                         nr--;
2480                 }
2481         }
2482
2483         if (i != nr_groups || nr != 0) {
2484                 pr_debug("invalid group desc\n");
2485                 goto out_free;
2486         }
2487
2488         ret = 0;
2489 out_free:
2490         for (i = 0; i < nr_groups; i++)
2491                 zfree(&desc[i].name);
2492         free(desc);
2493
2494         return ret;
2495 }
2496
2497 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2498 {
2499         struct perf_session *session;
2500         int err;
2501
2502         session = container_of(ff->ph, struct perf_session, header);
2503
2504         err = auxtrace_index__process(ff->fd, ff->size, session,
2505                                       ff->ph->needs_swap);
2506         if (err < 0)
2507                 pr_err("Failed to process auxtrace index\n");
2508         return err;
2509 }
2510
2511 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2512 {
2513         struct cpu_cache_level *caches;
2514         u32 cnt, i, version;
2515
2516         if (do_read_u32(ff, &version))
2517                 return -1;
2518
2519         if (version != 1)
2520                 return -1;
2521
2522         if (do_read_u32(ff, &cnt))
2523                 return -1;
2524
2525         caches = zalloc(sizeof(*caches) * cnt);
2526         if (!caches)
2527                 return -1;
2528
2529         for (i = 0; i < cnt; i++) {
2530                 struct cpu_cache_level c;
2531
2532                 #define _R(v)                                           \
2533                         if (do_read_u32(ff, &c.v))\
2534                                 goto out_free_caches;                   \
2535
2536                 _R(level)
2537                 _R(line_size)
2538                 _R(sets)
2539                 _R(ways)
2540                 #undef _R
2541
2542                 #define _R(v)                                   \
2543                         c.v = do_read_string(ff);               \
2544                         if (!c.v)                               \
2545                                 goto out_free_caches;
2546
2547                 _R(type)
2548                 _R(size)
2549                 _R(map)
2550                 #undef _R
2551
2552                 caches[i] = c;
2553         }
2554
2555         ff->ph->env.caches = caches;
2556         ff->ph->env.caches_cnt = cnt;
2557         return 0;
2558 out_free_caches:
2559         free(caches);
2560         return -1;
2561 }
2562
2563 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2564 {
2565         struct perf_session *session;
2566         u64 first_sample_time, last_sample_time;
2567         int ret;
2568
2569         session = container_of(ff->ph, struct perf_session, header);
2570
2571         ret = do_read_u64(ff, &first_sample_time);
2572         if (ret)
2573                 return -1;
2574
2575         ret = do_read_u64(ff, &last_sample_time);
2576         if (ret)
2577                 return -1;
2578
2579         session->evlist->first_sample_time = first_sample_time;
2580         session->evlist->last_sample_time = last_sample_time;
2581         return 0;
2582 }
2583
2584 static int process_mem_topology(struct feat_fd *ff,
2585                                 void *data __maybe_unused)
2586 {
2587         struct memory_node *nodes;
2588         u64 version, i, nr, bsize;
2589         int ret = -1;
2590
2591         if (do_read_u64(ff, &version))
2592                 return -1;
2593
2594         if (version != 1)
2595                 return -1;
2596
2597         if (do_read_u64(ff, &bsize))
2598                 return -1;
2599
2600         if (do_read_u64(ff, &nr))
2601                 return -1;
2602
2603         nodes = zalloc(sizeof(*nodes) * nr);
2604         if (!nodes)
2605                 return -1;
2606
2607         for (i = 0; i < nr; i++) {
2608                 struct memory_node n;
2609
2610                 #define _R(v)                           \
2611                         if (do_read_u64(ff, &n.v))      \
2612                                 goto out;               \
2613
2614                 _R(node)
2615                 _R(size)
2616
2617                 #undef _R
2618
2619                 if (do_read_bitmap(ff, &n.set, &n.size))
2620                         goto out;
2621
2622                 nodes[i] = n;
2623         }
2624
2625         ff->ph->env.memory_bsize    = bsize;
2626         ff->ph->env.memory_nodes    = nodes;
2627         ff->ph->env.nr_memory_nodes = nr;
2628         ret = 0;
2629
2630 out:
2631         if (ret)
2632                 free(nodes);
2633         return ret;
2634 }
2635
2636 static int process_clockid(struct feat_fd *ff,
2637                            void *data __maybe_unused)
2638 {
2639         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2640                 return -1;
2641
2642         return 0;
2643 }
2644
2645 static int process_dir_format(struct feat_fd *ff,
2646                               void *_data __maybe_unused)
2647 {
2648         struct perf_session *session;
2649         struct perf_data *data;
2650
2651         session = container_of(ff->ph, struct perf_session, header);
2652         data = session->data;
2653
2654         if (WARN_ON(!perf_data__is_dir(data)))
2655                 return -1;
2656
2657         return do_read_u64(ff, &data->dir.version);
2658 }
2659
2660 #ifdef HAVE_LIBBPF_SUPPORT
2661 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2662 {
2663         struct bpf_prog_info_linear *info_linear;
2664         struct bpf_prog_info_node *info_node;
2665         struct perf_env *env = &ff->ph->env;
2666         u32 count, i;
2667         int err = -1;
2668
2669         if (ff->ph->needs_swap) {
2670                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2671                 return 0;
2672         }
2673
2674         if (do_read_u32(ff, &count))
2675                 return -1;
2676
2677         down_write(&env->bpf_progs.lock);
2678
2679         for (i = 0; i < count; ++i) {
2680                 u32 info_len, data_len;
2681
2682                 info_linear = NULL;
2683                 info_node = NULL;
2684                 if (do_read_u32(ff, &info_len))
2685                         goto out;
2686                 if (do_read_u32(ff, &data_len))
2687                         goto out;
2688
2689                 if (info_len > sizeof(struct bpf_prog_info)) {
2690                         pr_warning("detected invalid bpf_prog_info\n");
2691                         goto out;
2692                 }
2693
2694                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2695                                      data_len);
2696                 if (!info_linear)
2697                         goto out;
2698                 info_linear->info_len = sizeof(struct bpf_prog_info);
2699                 info_linear->data_len = data_len;
2700                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2701                         goto out;
2702                 if (__do_read(ff, &info_linear->info, info_len))
2703                         goto out;
2704                 if (info_len < sizeof(struct bpf_prog_info))
2705                         memset(((void *)(&info_linear->info)) + info_len, 0,
2706                                sizeof(struct bpf_prog_info) - info_len);
2707
2708                 if (__do_read(ff, info_linear->data, data_len))
2709                         goto out;
2710
2711                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2712                 if (!info_node)
2713                         goto out;
2714
2715                 /* after reading from file, translate offset to address */
2716                 bpf_program__bpil_offs_to_addr(info_linear);
2717                 info_node->info_linear = info_linear;
2718                 perf_env__insert_bpf_prog_info(env, info_node);
2719         }
2720
2721         up_write(&env->bpf_progs.lock);
2722         return 0;
2723 out:
2724         free(info_linear);
2725         free(info_node);
2726         up_write(&env->bpf_progs.lock);
2727         return err;
2728 }
2729 #else // HAVE_LIBBPF_SUPPORT
2730 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2731 {
2732         return 0;
2733 }
2734 #endif // HAVE_LIBBPF_SUPPORT
2735
2736 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2737 {
2738         struct perf_env *env = &ff->ph->env;
2739         struct btf_node *node = NULL;
2740         u32 count, i;
2741         int err = -1;
2742
2743         if (ff->ph->needs_swap) {
2744                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2745                 return 0;
2746         }
2747
2748         if (do_read_u32(ff, &count))
2749                 return -1;
2750
2751         down_write(&env->bpf_progs.lock);
2752
2753         for (i = 0; i < count; ++i) {
2754                 u32 id, data_size;
2755
2756                 if (do_read_u32(ff, &id))
2757                         goto out;
2758                 if (do_read_u32(ff, &data_size))
2759                         goto out;
2760
2761                 node = malloc(sizeof(struct btf_node) + data_size);
2762                 if (!node)
2763                         goto out;
2764
2765                 node->id = id;
2766                 node->data_size = data_size;
2767
2768                 if (__do_read(ff, node->data, data_size))
2769                         goto out;
2770
2771                 perf_env__insert_btf(env, node);
2772                 node = NULL;
2773         }
2774
2775         err = 0;
2776 out:
2777         up_write(&env->bpf_progs.lock);
2778         free(node);
2779         return err;
2780 }
2781
2782 static int process_compressed(struct feat_fd *ff,
2783                               void *data __maybe_unused)
2784 {
2785         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2786                 return -1;
2787
2788         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2789                 return -1;
2790
2791         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2792                 return -1;
2793
2794         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2795                 return -1;
2796
2797         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2798                 return -1;
2799
2800         return 0;
2801 }
2802
2803 struct feature_ops {
2804         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2805         void (*print)(struct feat_fd *ff, FILE *fp);
2806         int (*process)(struct feat_fd *ff, void *data);
2807         const char *name;
2808         bool full_only;
2809         bool synthesize;
2810 };
2811
2812 #define FEAT_OPR(n, func, __full_only) \
2813         [HEADER_##n] = {                                        \
2814                 .name       = __stringify(n),                   \
2815                 .write      = write_##func,                     \
2816                 .print      = print_##func,                     \
2817                 .full_only  = __full_only,                      \
2818                 .process    = process_##func,                   \
2819                 .synthesize = true                              \
2820         }
2821
2822 #define FEAT_OPN(n, func, __full_only) \
2823         [HEADER_##n] = {                                        \
2824                 .name       = __stringify(n),                   \
2825                 .write      = write_##func,                     \
2826                 .print      = print_##func,                     \
2827                 .full_only  = __full_only,                      \
2828                 .process    = process_##func                    \
2829         }
2830
2831 /* feature_ops not implemented: */
2832 #define print_tracing_data      NULL
2833 #define print_build_id          NULL
2834
2835 #define process_branch_stack    NULL
2836 #define process_stat            NULL
2837
2838
2839 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2840         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2841         FEAT_OPN(BUILD_ID,      build_id,       false),
2842         FEAT_OPR(HOSTNAME,      hostname,       false),
2843         FEAT_OPR(OSRELEASE,     osrelease,      false),
2844         FEAT_OPR(VERSION,       version,        false),
2845         FEAT_OPR(ARCH,          arch,           false),
2846         FEAT_OPR(NRCPUS,        nrcpus,         false),
2847         FEAT_OPR(CPUDESC,       cpudesc,        false),
2848         FEAT_OPR(CPUID,         cpuid,          false),
2849         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2850         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2851         FEAT_OPR(CMDLINE,       cmdline,        false),
2852         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2853         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2854         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2855         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2856         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2857         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2858         FEAT_OPN(STAT,          stat,           false),
2859         FEAT_OPN(CACHE,         cache,          true),
2860         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2861         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2862         FEAT_OPR(CLOCKID,       clockid,        false),
2863         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2864         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2865         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2866         FEAT_OPR(COMPRESSED,    compressed,     false),
2867 };
2868
2869 struct header_print_data {
2870         FILE *fp;
2871         bool full; /* extended list of headers */
2872 };
2873
2874 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2875                                            struct perf_header *ph,
2876                                            int feat, int fd, void *data)
2877 {
2878         struct header_print_data *hd = data;
2879         struct feat_fd ff;
2880
2881         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2882                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2883                                 "%d, continuing...\n", section->offset, feat);
2884                 return 0;
2885         }
2886         if (feat >= HEADER_LAST_FEATURE) {
2887                 pr_warning("unknown feature %d\n", feat);
2888                 return 0;
2889         }
2890         if (!feat_ops[feat].print)
2891                 return 0;
2892
2893         ff = (struct  feat_fd) {
2894                 .fd = fd,
2895                 .ph = ph,
2896         };
2897
2898         if (!feat_ops[feat].full_only || hd->full)
2899                 feat_ops[feat].print(&ff, hd->fp);
2900         else
2901                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2902                         feat_ops[feat].name);
2903
2904         return 0;
2905 }
2906
2907 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2908 {
2909         struct header_print_data hd;
2910         struct perf_header *header = &session->header;
2911         int fd = perf_data__fd(session->data);
2912         struct stat st;
2913         time_t stctime;
2914         int ret, bit;
2915
2916         hd.fp = fp;
2917         hd.full = full;
2918
2919         ret = fstat(fd, &st);
2920         if (ret == -1)
2921                 return -1;
2922
2923         stctime = st.st_ctime;
2924         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2925
2926         fprintf(fp, "# header version : %u\n", header->version);
2927         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2928         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2929         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2930
2931         perf_header__process_sections(header, fd, &hd,
2932                                       perf_file_section__fprintf_info);
2933
2934         if (session->data->is_pipe)
2935                 return 0;
2936
2937         fprintf(fp, "# missing features: ");
2938         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2939                 if (bit)
2940                         fprintf(fp, "%s ", feat_ops[bit].name);
2941         }
2942
2943         fprintf(fp, "\n");
2944         return 0;
2945 }
2946
2947 static int do_write_feat(struct feat_fd *ff, int type,
2948                          struct perf_file_section **p,
2949                          struct perf_evlist *evlist)
2950 {
2951         int err;
2952         int ret = 0;
2953
2954         if (perf_header__has_feat(ff->ph, type)) {
2955                 if (!feat_ops[type].write)
2956                         return -1;
2957
2958                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2959                         return -1;
2960
2961                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2962
2963                 err = feat_ops[type].write(ff, evlist);
2964                 if (err < 0) {
2965                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2966
2967                         /* undo anything written */
2968                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2969
2970                         return -1;
2971                 }
2972                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2973                 (*p)++;
2974         }
2975         return ret;
2976 }
2977
2978 static int perf_header__adds_write(struct perf_header *header,
2979                                    struct perf_evlist *evlist, int fd)
2980 {
2981         int nr_sections;
2982         struct feat_fd ff;
2983         struct perf_file_section *feat_sec, *p;
2984         int sec_size;
2985         u64 sec_start;
2986         int feat;
2987         int err;
2988
2989         ff = (struct feat_fd){
2990                 .fd  = fd,
2991                 .ph = header,
2992         };
2993
2994         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2995         if (!nr_sections)
2996                 return 0;
2997
2998         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2999         if (feat_sec == NULL)
3000                 return -ENOMEM;
3001
3002         sec_size = sizeof(*feat_sec) * nr_sections;
3003
3004         sec_start = header->feat_offset;
3005         lseek(fd, sec_start + sec_size, SEEK_SET);
3006
3007         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3008                 if (do_write_feat(&ff, feat, &p, evlist))
3009                         perf_header__clear_feat(header, feat);
3010         }
3011
3012         lseek(fd, sec_start, SEEK_SET);
3013         /*
3014          * may write more than needed due to dropped feature, but
3015          * this is okay, reader will skip the missing entries
3016          */
3017         err = do_write(&ff, feat_sec, sec_size);
3018         if (err < 0)
3019                 pr_debug("failed to write feature section\n");
3020         free(feat_sec);
3021         return err;
3022 }
3023
3024 int perf_header__write_pipe(int fd)
3025 {
3026         struct perf_pipe_file_header f_header;
3027         struct feat_fd ff;
3028         int err;
3029
3030         ff = (struct feat_fd){ .fd = fd };
3031
3032         f_header = (struct perf_pipe_file_header){
3033                 .magic     = PERF_MAGIC,
3034                 .size      = sizeof(f_header),
3035         };
3036
3037         err = do_write(&ff, &f_header, sizeof(f_header));
3038         if (err < 0) {
3039                 pr_debug("failed to write perf pipe header\n");
3040                 return err;
3041         }
3042
3043         return 0;
3044 }
3045
3046 int perf_session__write_header(struct perf_session *session,
3047                                struct perf_evlist *evlist,
3048                                int fd, bool at_exit)
3049 {
3050         struct perf_file_header f_header;
3051         struct perf_file_attr   f_attr;
3052         struct perf_header *header = &session->header;
3053         struct perf_evsel *evsel;
3054         struct feat_fd ff;
3055         u64 attr_offset;
3056         int err;
3057
3058         ff = (struct feat_fd){ .fd = fd};
3059         lseek(fd, sizeof(f_header), SEEK_SET);
3060
3061         evlist__for_each_entry(session->evlist, evsel) {
3062                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3063                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3064                 if (err < 0) {
3065                         pr_debug("failed to write perf header\n");
3066                         return err;
3067                 }
3068         }
3069
3070         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3071
3072         evlist__for_each_entry(evlist, evsel) {
3073                 f_attr = (struct perf_file_attr){
3074                         .attr = evsel->attr,
3075                         .ids  = {
3076                                 .offset = evsel->id_offset,
3077                                 .size   = evsel->ids * sizeof(u64),
3078                         }
3079                 };
3080                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3081                 if (err < 0) {
3082                         pr_debug("failed to write perf header attribute\n");
3083                         return err;
3084                 }
3085         }
3086
3087         if (!header->data_offset)
3088                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3089         header->feat_offset = header->data_offset + header->data_size;
3090
3091         if (at_exit) {
3092                 err = perf_header__adds_write(header, evlist, fd);
3093                 if (err < 0)
3094                         return err;
3095         }
3096
3097         f_header = (struct perf_file_header){
3098                 .magic     = PERF_MAGIC,
3099                 .size      = sizeof(f_header),
3100                 .attr_size = sizeof(f_attr),
3101                 .attrs = {
3102                         .offset = attr_offset,
3103                         .size   = evlist->nr_entries * sizeof(f_attr),
3104                 },
3105                 .data = {
3106                         .offset = header->data_offset,
3107                         .size   = header->data_size,
3108                 },
3109                 /* event_types is ignored, store zeros */
3110         };
3111
3112         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3113
3114         lseek(fd, 0, SEEK_SET);
3115         err = do_write(&ff, &f_header, sizeof(f_header));
3116         if (err < 0) {
3117                 pr_debug("failed to write perf header\n");
3118                 return err;
3119         }
3120         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3121
3122         return 0;
3123 }
3124
3125 static int perf_header__getbuffer64(struct perf_header *header,
3126                                     int fd, void *buf, size_t size)
3127 {
3128         if (readn(fd, buf, size) <= 0)
3129                 return -1;
3130
3131         if (header->needs_swap)
3132                 mem_bswap_64(buf, size);
3133
3134         return 0;
3135 }
3136
3137 int perf_header__process_sections(struct perf_header *header, int fd,
3138                                   void *data,
3139                                   int (*process)(struct perf_file_section *section,
3140                                                  struct perf_header *ph,
3141                                                  int feat, int fd, void *data))
3142 {
3143         struct perf_file_section *feat_sec, *sec;
3144         int nr_sections;
3145         int sec_size;
3146         int feat;
3147         int err;
3148
3149         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3150         if (!nr_sections)
3151                 return 0;
3152
3153         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3154         if (!feat_sec)
3155                 return -1;
3156
3157         sec_size = sizeof(*feat_sec) * nr_sections;
3158
3159         lseek(fd, header->feat_offset, SEEK_SET);
3160
3161         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3162         if (err < 0)
3163                 goto out_free;
3164
3165         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3166                 err = process(sec++, header, feat, fd, data);
3167                 if (err < 0)
3168                         goto out_free;
3169         }
3170         err = 0;
3171 out_free:
3172         free(feat_sec);
3173         return err;
3174 }
3175
3176 static const int attr_file_abi_sizes[] = {
3177         [0] = PERF_ATTR_SIZE_VER0,
3178         [1] = PERF_ATTR_SIZE_VER1,
3179         [2] = PERF_ATTR_SIZE_VER2,
3180         [3] = PERF_ATTR_SIZE_VER3,
3181         [4] = PERF_ATTR_SIZE_VER4,
3182         0,
3183 };
3184
3185 /*
3186  * In the legacy file format, the magic number is not used to encode endianness.
3187  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3188  * on ABI revisions, we need to try all combinations for all endianness to
3189  * detect the endianness.
3190  */
3191 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3192 {
3193         uint64_t ref_size, attr_size;
3194         int i;
3195
3196         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3197                 ref_size = attr_file_abi_sizes[i]
3198                          + sizeof(struct perf_file_section);
3199                 if (hdr_sz != ref_size) {
3200                         attr_size = bswap_64(hdr_sz);
3201                         if (attr_size != ref_size)
3202                                 continue;
3203
3204                         ph->needs_swap = true;
3205                 }
3206                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3207                          i,
3208                          ph->needs_swap);
3209                 return 0;
3210         }
3211         /* could not determine endianness */
3212         return -1;
3213 }
3214
3215 #define PERF_PIPE_HDR_VER0      16
3216
3217 static const size_t attr_pipe_abi_sizes[] = {
3218         [0] = PERF_PIPE_HDR_VER0,
3219         0,
3220 };
3221
3222 /*
3223  * In the legacy pipe format, there is an implicit assumption that endiannesss
3224  * between host recording the samples, and host parsing the samples is the
3225  * same. This is not always the case given that the pipe output may always be
3226  * redirected into a file and analyzed on a different machine with possibly a
3227  * different endianness and perf_event ABI revsions in the perf tool itself.
3228  */
3229 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3230 {
3231         u64 attr_size;
3232         int i;
3233
3234         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3235                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3236                         attr_size = bswap_64(hdr_sz);
3237                         if (attr_size != hdr_sz)
3238                                 continue;
3239
3240                         ph->needs_swap = true;
3241                 }
3242                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3243                 return 0;
3244         }
3245         return -1;
3246 }
3247
3248 bool is_perf_magic(u64 magic)
3249 {
3250         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3251                 || magic == __perf_magic2
3252                 || magic == __perf_magic2_sw)
3253                 return true;
3254
3255         return false;
3256 }
3257
3258 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3259                               bool is_pipe, struct perf_header *ph)
3260 {
3261         int ret;
3262
3263         /* check for legacy format */
3264         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3265         if (ret == 0) {
3266                 ph->version = PERF_HEADER_VERSION_1;
3267                 pr_debug("legacy perf.data format\n");
3268                 if (is_pipe)
3269                         return try_all_pipe_abis(hdr_sz, ph);
3270
3271                 return try_all_file_abis(hdr_sz, ph);
3272         }
3273         /*
3274          * the new magic number serves two purposes:
3275          * - unique number to identify actual perf.data files
3276          * - encode endianness of file
3277          */
3278         ph->version = PERF_HEADER_VERSION_2;
3279
3280         /* check magic number with one endianness */
3281         if (magic == __perf_magic2)
3282                 return 0;
3283
3284         /* check magic number with opposite endianness */
3285         if (magic != __perf_magic2_sw)
3286                 return -1;
3287
3288         ph->needs_swap = true;
3289
3290         return 0;
3291 }
3292
3293 int perf_file_header__read(struct perf_file_header *header,
3294                            struct perf_header *ph, int fd)
3295 {
3296         ssize_t ret;
3297
3298         lseek(fd, 0, SEEK_SET);
3299
3300         ret = readn(fd, header, sizeof(*header));
3301         if (ret <= 0)
3302                 return -1;
3303
3304         if (check_magic_endian(header->magic,
3305                                header->attr_size, false, ph) < 0) {
3306                 pr_debug("magic/endian check failed\n");
3307                 return -1;
3308         }
3309
3310         if (ph->needs_swap) {
3311                 mem_bswap_64(header, offsetof(struct perf_file_header,
3312                              adds_features));
3313         }
3314
3315         if (header->size != sizeof(*header)) {
3316                 /* Support the previous format */
3317                 if (header->size == offsetof(typeof(*header), adds_features))
3318                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3319                 else
3320                         return -1;
3321         } else if (ph->needs_swap) {
3322                 /*
3323                  * feature bitmap is declared as an array of unsigned longs --
3324                  * not good since its size can differ between the host that
3325                  * generated the data file and the host analyzing the file.
3326                  *
3327                  * We need to handle endianness, but we don't know the size of
3328                  * the unsigned long where the file was generated. Take a best
3329                  * guess at determining it: try 64-bit swap first (ie., file
3330                  * created on a 64-bit host), and check if the hostname feature
3331                  * bit is set (this feature bit is forced on as of fbe96f2).
3332                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3333                  * swap. If the hostname bit is still not set (e.g., older data
3334                  * file), punt and fallback to the original behavior --
3335                  * clearing all feature bits and setting buildid.
3336                  */
3337                 mem_bswap_64(&header->adds_features,
3338                             BITS_TO_U64(HEADER_FEAT_BITS));
3339
3340                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3341                         /* unswap as u64 */
3342                         mem_bswap_64(&header->adds_features,
3343                                     BITS_TO_U64(HEADER_FEAT_BITS));
3344
3345                         /* unswap as u32 */
3346                         mem_bswap_32(&header->adds_features,
3347                                     BITS_TO_U32(HEADER_FEAT_BITS));
3348                 }
3349
3350                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3351                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3352                         set_bit(HEADER_BUILD_ID, header->adds_features);
3353                 }
3354         }
3355
3356         memcpy(&ph->adds_features, &header->adds_features,
3357                sizeof(ph->adds_features));
3358
3359         ph->data_offset  = header->data.offset;
3360         ph->data_size    = header->data.size;
3361         ph->feat_offset  = header->data.offset + header->data.size;
3362         return 0;
3363 }
3364
3365 static int perf_file_section__process(struct perf_file_section *section,
3366                                       struct perf_header *ph,
3367                                       int feat, int fd, void *data)
3368 {
3369         struct feat_fd fdd = {
3370                 .fd     = fd,
3371                 .ph     = ph,
3372                 .size   = section->size,
3373                 .offset = section->offset,
3374         };
3375
3376         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3377                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3378                           "%d, continuing...\n", section->offset, feat);
3379                 return 0;
3380         }
3381
3382         if (feat >= HEADER_LAST_FEATURE) {
3383                 pr_debug("unknown feature %d, continuing...\n", feat);
3384                 return 0;
3385         }
3386
3387         if (!feat_ops[feat].process)
3388                 return 0;
3389
3390         return feat_ops[feat].process(&fdd, data);
3391 }
3392
3393 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3394                                        struct perf_header *ph, int fd,
3395                                        bool repipe)
3396 {
3397         struct feat_fd ff = {
3398                 .fd = STDOUT_FILENO,
3399                 .ph = ph,
3400         };
3401         ssize_t ret;
3402
3403         ret = readn(fd, header, sizeof(*header));
3404         if (ret <= 0)
3405                 return -1;
3406
3407         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3408                 pr_debug("endian/magic failed\n");
3409                 return -1;
3410         }
3411
3412         if (ph->needs_swap)
3413                 header->size = bswap_64(header->size);
3414
3415         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3416                 return -1;
3417
3418         return 0;
3419 }
3420
3421 static int perf_header__read_pipe(struct perf_session *session)
3422 {
3423         struct perf_header *header = &session->header;
3424         struct perf_pipe_file_header f_header;
3425
3426         if (perf_file_header__read_pipe(&f_header, header,
3427                                         perf_data__fd(session->data),
3428                                         session->repipe) < 0) {
3429                 pr_debug("incompatible file format\n");
3430                 return -EINVAL;
3431         }
3432
3433         return 0;
3434 }
3435
3436 static int read_attr(int fd, struct perf_header *ph,
3437                      struct perf_file_attr *f_attr)
3438 {
3439         struct perf_event_attr *attr = &f_attr->attr;
3440         size_t sz, left;
3441         size_t our_sz = sizeof(f_attr->attr);
3442         ssize_t ret;
3443
3444         memset(f_attr, 0, sizeof(*f_attr));
3445
3446         /* read minimal guaranteed structure */
3447         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3448         if (ret <= 0) {
3449                 pr_debug("cannot read %d bytes of header attr\n",
3450                          PERF_ATTR_SIZE_VER0);
3451                 return -1;
3452         }
3453
3454         /* on file perf_event_attr size */
3455         sz = attr->size;
3456
3457         if (ph->needs_swap)
3458                 sz = bswap_32(sz);
3459
3460         if (sz == 0) {
3461                 /* assume ABI0 */
3462                 sz =  PERF_ATTR_SIZE_VER0;
3463         } else if (sz > our_sz) {
3464                 pr_debug("file uses a more recent and unsupported ABI"
3465                          " (%zu bytes extra)\n", sz - our_sz);
3466                 return -1;
3467         }
3468         /* what we have not yet read and that we know about */
3469         left = sz - PERF_ATTR_SIZE_VER0;
3470         if (left) {
3471                 void *ptr = attr;
3472                 ptr += PERF_ATTR_SIZE_VER0;
3473
3474                 ret = readn(fd, ptr, left);
3475         }
3476         /* read perf_file_section, ids are read in caller */
3477         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3478
3479         return ret <= 0 ? -1 : 0;
3480 }
3481
3482 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3483                                                 struct tep_handle *pevent)
3484 {
3485         struct tep_event *event;
3486         char bf[128];
3487
3488         /* already prepared */
3489         if (evsel->tp_format)
3490                 return 0;
3491
3492         if (pevent == NULL) {
3493                 pr_debug("broken or missing trace data\n");
3494                 return -1;
3495         }
3496
3497         event = tep_find_event(pevent, evsel->attr.config);
3498         if (event == NULL) {
3499                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3500                 return -1;
3501         }
3502
3503         if (!evsel->name) {
3504                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3505                 evsel->name = strdup(bf);
3506                 if (evsel->name == NULL)
3507                         return -1;
3508         }
3509
3510         evsel->tp_format = event;
3511         return 0;
3512 }
3513
3514 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3515                                                   struct tep_handle *pevent)
3516 {
3517         struct perf_evsel *pos;
3518
3519         evlist__for_each_entry(evlist, pos) {
3520                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3521                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3522                         return -1;
3523         }
3524
3525         return 0;
3526 }
3527
3528 int perf_session__read_header(struct perf_session *session)
3529 {
3530         struct perf_data *data = session->data;
3531         struct perf_header *header = &session->header;
3532         struct perf_file_header f_header;
3533         struct perf_file_attr   f_attr;
3534         u64                     f_id;
3535         int nr_attrs, nr_ids, i, j;
3536         int fd = perf_data__fd(data);
3537
3538         session->evlist = perf_evlist__new();
3539         if (session->evlist == NULL)
3540                 return -ENOMEM;
3541
3542         session->evlist->env = &header->env;
3543         session->machines.host.env = &header->env;
3544         if (perf_data__is_pipe(data))
3545                 return perf_header__read_pipe(session);
3546
3547         if (perf_file_header__read(&f_header, header, fd) < 0)
3548                 return -EINVAL;
3549
3550         /*
3551          * Sanity check that perf.data was written cleanly; data size is
3552          * initialized to 0 and updated only if the on_exit function is run.
3553          * If data size is still 0 then the file contains only partial
3554          * information.  Just warn user and process it as much as it can.
3555          */
3556         if (f_header.data.size == 0) {
3557                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3558                            "Was the 'perf record' command properly terminated?\n",
3559                            data->file.path);
3560         }
3561
3562         nr_attrs = f_header.attrs.size / f_header.attr_size;
3563         lseek(fd, f_header.attrs.offset, SEEK_SET);
3564
3565         for (i = 0; i < nr_attrs; i++) {
3566                 struct perf_evsel *evsel;
3567                 off_t tmp;
3568
3569                 if (read_attr(fd, header, &f_attr) < 0)
3570                         goto out_errno;
3571
3572                 if (header->needs_swap) {
3573                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3574                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3575                         perf_event__attr_swap(&f_attr.attr);
3576                 }
3577
3578                 tmp = lseek(fd, 0, SEEK_CUR);
3579                 evsel = perf_evsel__new(&f_attr.attr);
3580
3581                 if (evsel == NULL)
3582                         goto out_delete_evlist;
3583
3584                 evsel->needs_swap = header->needs_swap;
3585                 /*
3586                  * Do it before so that if perf_evsel__alloc_id fails, this
3587                  * entry gets purged too at perf_evlist__delete().
3588                  */
3589                 perf_evlist__add(session->evlist, evsel);
3590
3591                 nr_ids = f_attr.ids.size / sizeof(u64);
3592                 /*
3593                  * We don't have the cpu and thread maps on the header, so
3594                  * for allocating the perf_sample_id table we fake 1 cpu and
3595                  * hattr->ids threads.
3596                  */
3597                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3598                         goto out_delete_evlist;
3599
3600                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3601
3602                 for (j = 0; j < nr_ids; j++) {
3603                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3604                                 goto out_errno;
3605
3606                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3607                 }
3608
3609                 lseek(fd, tmp, SEEK_SET);
3610         }
3611
3612         perf_header__process_sections(header, fd, &session->tevent,
3613                                       perf_file_section__process);
3614
3615         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3616                                                    session->tevent.pevent))
3617                 goto out_delete_evlist;
3618
3619         return 0;
3620 out_errno:
3621         return -errno;
3622
3623 out_delete_evlist:
3624         perf_evlist__delete(session->evlist);
3625         session->evlist = NULL;
3626         return -ENOMEM;
3627 }
3628
3629 int perf_event__synthesize_attr(struct perf_tool *tool,
3630                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3631                                 perf_event__handler_t process)
3632 {
3633         union perf_event *ev;
3634         size_t size;
3635         int err;
3636
3637         size = sizeof(struct perf_event_attr);
3638         size = PERF_ALIGN(size, sizeof(u64));
3639         size += sizeof(struct perf_event_header);
3640         size += ids * sizeof(u64);
3641
3642         ev = malloc(size);
3643
3644         if (ev == NULL)
3645                 return -ENOMEM;
3646
3647         ev->attr.attr = *attr;
3648         memcpy(ev->attr.id, id, ids * sizeof(u64));
3649
3650         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3651         ev->attr.header.size = (u16)size;
3652
3653         if (ev->attr.header.size == size)
3654                 err = process(tool, ev, NULL, NULL);
3655         else
3656                 err = -E2BIG;
3657
3658         free(ev);
3659
3660         return err;
3661 }
3662
3663 int perf_event__synthesize_features(struct perf_tool *tool,
3664                                     struct perf_session *session,
3665                                     struct perf_evlist *evlist,
3666                                     perf_event__handler_t process)
3667 {
3668         struct perf_header *header = &session->header;
3669         struct feat_fd ff;
3670         struct feature_event *fe;
3671         size_t sz, sz_hdr;
3672         int feat, ret;
3673
3674         sz_hdr = sizeof(fe->header);
3675         sz = sizeof(union perf_event);
3676         /* get a nice alignment */
3677         sz = PERF_ALIGN(sz, page_size);
3678
3679         memset(&ff, 0, sizeof(ff));
3680
3681         ff.buf = malloc(sz);
3682         if (!ff.buf)
3683                 return -ENOMEM;
3684
3685         ff.size = sz - sz_hdr;
3686         ff.ph = &session->header;
3687
3688         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3689                 if (!feat_ops[feat].synthesize) {
3690                         pr_debug("No record header feature for header :%d\n", feat);
3691                         continue;
3692                 }
3693
3694                 ff.offset = sizeof(*fe);
3695
3696                 ret = feat_ops[feat].write(&ff, evlist);
3697                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3698                         pr_debug("Error writing feature\n");
3699                         continue;
3700                 }
3701                 /* ff.buf may have changed due to realloc in do_write() */
3702                 fe = ff.buf;
3703                 memset(fe, 0, sizeof(*fe));
3704
3705                 fe->feat_id = feat;
3706                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3707                 fe->header.size = ff.offset;
3708
3709                 ret = process(tool, ff.buf, NULL, NULL);
3710                 if (ret) {
3711                         free(ff.buf);
3712                         return ret;
3713                 }
3714         }
3715
3716         /* Send HEADER_LAST_FEATURE mark. */
3717         fe = ff.buf;
3718         fe->feat_id     = HEADER_LAST_FEATURE;
3719         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3720         fe->header.size = sizeof(*fe);
3721
3722         ret = process(tool, ff.buf, NULL, NULL);
3723
3724         free(ff.buf);
3725         return ret;
3726 }
3727
3728 int perf_event__process_feature(struct perf_session *session,
3729                                 union perf_event *event)
3730 {
3731         struct perf_tool *tool = session->tool;
3732         struct feat_fd ff = { .fd = 0 };
3733         struct feature_event *fe = (struct feature_event *)event;
3734         int type = fe->header.type;
3735         u64 feat = fe->feat_id;
3736
3737         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3738                 pr_warning("invalid record type %d in pipe-mode\n", type);
3739                 return 0;
3740         }
3741         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3742                 pr_warning("invalid record type %d in pipe-mode\n", type);
3743                 return -1;
3744         }
3745
3746         if (!feat_ops[feat].process)
3747                 return 0;
3748
3749         ff.buf  = (void *)fe->data;
3750         ff.size = event->header.size - sizeof(event->header);
3751         ff.ph = &session->header;
3752
3753         if (feat_ops[feat].process(&ff, NULL))
3754                 return -1;
3755
3756         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3757                 return 0;
3758
3759         if (!feat_ops[feat].full_only ||
3760             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3761                 feat_ops[feat].print(&ff, stdout);
3762         } else {
3763                 fprintf(stdout, "# %s info available, use -I to display\n",
3764                         feat_ops[feat].name);
3765         }
3766
3767         return 0;
3768 }
3769
3770 static struct event_update_event *
3771 event_update_event__new(size_t size, u64 type, u64 id)
3772 {
3773         struct event_update_event *ev;
3774
3775         size += sizeof(*ev);
3776         size  = PERF_ALIGN(size, sizeof(u64));
3777
3778         ev = zalloc(size);
3779         if (ev) {
3780                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3781                 ev->header.size = (u16)size;
3782                 ev->type = type;
3783                 ev->id = id;
3784         }
3785         return ev;
3786 }
3787
3788 int
3789 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3790                                          struct perf_evsel *evsel,
3791                                          perf_event__handler_t process)
3792 {
3793         struct event_update_event *ev;
3794         size_t size = strlen(evsel->unit);
3795         int err;
3796
3797         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3798         if (ev == NULL)
3799                 return -ENOMEM;
3800
3801         strlcpy(ev->data, evsel->unit, size + 1);
3802         err = process(tool, (union perf_event *)ev, NULL, NULL);
3803         free(ev);
3804         return err;
3805 }
3806
3807 int
3808 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3809                                           struct perf_evsel *evsel,
3810                                           perf_event__handler_t process)
3811 {
3812         struct event_update_event *ev;
3813         struct event_update_event_scale *ev_data;
3814         int err;
3815
3816         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3817         if (ev == NULL)
3818                 return -ENOMEM;
3819
3820         ev_data = (struct event_update_event_scale *) ev->data;
3821         ev_data->scale = evsel->scale;
3822         err = process(tool, (union perf_event*) ev, NULL, NULL);
3823         free(ev);
3824         return err;
3825 }
3826
3827 int
3828 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3829                                          struct perf_evsel *evsel,
3830                                          perf_event__handler_t process)
3831 {
3832         struct event_update_event *ev;
3833         size_t len = strlen(evsel->name);
3834         int err;
3835
3836         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3837         if (ev == NULL)
3838                 return -ENOMEM;
3839
3840         strlcpy(ev->data, evsel->name, len + 1);
3841         err = process(tool, (union perf_event*) ev, NULL, NULL);
3842         free(ev);
3843         return err;
3844 }
3845
3846 int
3847 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3848                                         struct perf_evsel *evsel,
3849                                         perf_event__handler_t process)
3850 {
3851         size_t size = sizeof(struct event_update_event);
3852         struct event_update_event *ev;
3853         int max, err;
3854         u16 type;
3855
3856         if (!evsel->own_cpus)
3857                 return 0;
3858
3859         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3860         if (!ev)
3861                 return -ENOMEM;
3862
3863         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3864         ev->header.size = (u16)size;
3865         ev->type = PERF_EVENT_UPDATE__CPUS;
3866         ev->id   = evsel->id[0];
3867
3868         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3869                                  evsel->own_cpus,
3870                                  type, max);
3871
3872         err = process(tool, (union perf_event*) ev, NULL, NULL);
3873         free(ev);
3874         return err;
3875 }
3876
3877 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3878 {
3879         struct event_update_event *ev = &event->event_update;
3880         struct event_update_event_scale *ev_scale;
3881         struct event_update_event_cpus *ev_cpus;
3882         struct cpu_map *map;
3883         size_t ret;
3884
3885         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3886
3887         switch (ev->type) {
3888         case PERF_EVENT_UPDATE__SCALE:
3889                 ev_scale = (struct event_update_event_scale *) ev->data;
3890                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3891                 break;
3892         case PERF_EVENT_UPDATE__UNIT:
3893                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3894                 break;
3895         case PERF_EVENT_UPDATE__NAME:
3896                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3897                 break;
3898         case PERF_EVENT_UPDATE__CPUS:
3899                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3900                 ret += fprintf(fp, "... ");
3901
3902                 map = cpu_map__new_data(&ev_cpus->cpus);
3903                 if (map)
3904                         ret += cpu_map__fprintf(map, fp);
3905                 else
3906                         ret += fprintf(fp, "failed to get cpus\n");
3907                 break;
3908         default:
3909                 ret += fprintf(fp, "... unknown type\n");
3910                 break;
3911         }
3912
3913         return ret;
3914 }
3915
3916 int perf_event__synthesize_attrs(struct perf_tool *tool,
3917                                  struct perf_evlist *evlist,
3918                                  perf_event__handler_t process)
3919 {
3920         struct perf_evsel *evsel;
3921         int err = 0;
3922
3923         evlist__for_each_entry(evlist, evsel) {
3924                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3925                                                   evsel->id, process);
3926                 if (err) {
3927                         pr_debug("failed to create perf header attribute\n");
3928                         return err;
3929                 }
3930         }
3931
3932         return err;
3933 }
3934
3935 static bool has_unit(struct perf_evsel *counter)
3936 {
3937         return counter->unit && *counter->unit;
3938 }
3939
3940 static bool has_scale(struct perf_evsel *counter)
3941 {
3942         return counter->scale != 1;
3943 }
3944
3945 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3946                                       struct perf_evlist *evsel_list,
3947                                       perf_event__handler_t process,
3948                                       bool is_pipe)
3949 {
3950         struct perf_evsel *counter;
3951         int err;
3952
3953         /*
3954          * Synthesize other events stuff not carried within
3955          * attr event - unit, scale, name
3956          */
3957         evlist__for_each_entry(evsel_list, counter) {
3958                 if (!counter->supported)
3959                         continue;
3960
3961                 /*
3962                  * Synthesize unit and scale only if it's defined.
3963                  */
3964                 if (has_unit(counter)) {
3965                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3966                         if (err < 0) {
3967                                 pr_err("Couldn't synthesize evsel unit.\n");
3968                                 return err;
3969                         }
3970                 }
3971
3972                 if (has_scale(counter)) {
3973                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3974                         if (err < 0) {
3975                                 pr_err("Couldn't synthesize evsel counter.\n");
3976                                 return err;
3977                         }
3978                 }
3979
3980                 if (counter->own_cpus) {
3981                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3982                         if (err < 0) {
3983                                 pr_err("Couldn't synthesize evsel cpus.\n");
3984                                 return err;
3985                         }
3986                 }
3987
3988                 /*
3989                  * Name is needed only for pipe output,
3990                  * perf.data carries event names.
3991                  */
3992                 if (is_pipe) {
3993                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3994                         if (err < 0) {
3995                                 pr_err("Couldn't synthesize evsel name.\n");
3996                                 return err;
3997                         }
3998                 }
3999         }
4000         return 0;
4001 }
4002
4003 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4004                              union perf_event *event,
4005                              struct perf_evlist **pevlist)
4006 {
4007         u32 i, ids, n_ids;
4008         struct perf_evsel *evsel;
4009         struct perf_evlist *evlist = *pevlist;
4010
4011         if (evlist == NULL) {
4012                 *pevlist = evlist = perf_evlist__new();
4013                 if (evlist == NULL)
4014                         return -ENOMEM;
4015         }
4016
4017         evsel = perf_evsel__new(&event->attr.attr);
4018         if (evsel == NULL)
4019                 return -ENOMEM;
4020
4021         perf_evlist__add(evlist, evsel);
4022
4023         ids = event->header.size;
4024         ids -= (void *)&event->attr.id - (void *)event;
4025         n_ids = ids / sizeof(u64);
4026         /*
4027          * We don't have the cpu and thread maps on the header, so
4028          * for allocating the perf_sample_id table we fake 1 cpu and
4029          * hattr->ids threads.
4030          */
4031         if (perf_evsel__alloc_id(evsel, 1, n_ids))
4032                 return -ENOMEM;
4033
4034         for (i = 0; i < n_ids; i++) {
4035                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4036         }
4037
4038         return 0;
4039 }
4040
4041 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4042                                      union perf_event *event,
4043                                      struct perf_evlist **pevlist)
4044 {
4045         struct event_update_event *ev = &event->event_update;
4046         struct event_update_event_scale *ev_scale;
4047         struct event_update_event_cpus *ev_cpus;
4048         struct perf_evlist *evlist;
4049         struct perf_evsel *evsel;
4050         struct cpu_map *map;
4051
4052         if (!pevlist || *pevlist == NULL)
4053                 return -EINVAL;
4054
4055         evlist = *pevlist;
4056
4057         evsel = perf_evlist__id2evsel(evlist, ev->id);
4058         if (evsel == NULL)
4059                 return -EINVAL;
4060
4061         switch (ev->type) {
4062         case PERF_EVENT_UPDATE__UNIT:
4063                 evsel->unit = strdup(ev->data);
4064                 break;
4065         case PERF_EVENT_UPDATE__NAME:
4066                 evsel->name = strdup(ev->data);
4067                 break;
4068         case PERF_EVENT_UPDATE__SCALE:
4069                 ev_scale = (struct event_update_event_scale *) ev->data;
4070                 evsel->scale = ev_scale->scale;
4071                 break;
4072         case PERF_EVENT_UPDATE__CPUS:
4073                 ev_cpus = (struct event_update_event_cpus *) ev->data;
4074
4075                 map = cpu_map__new_data(&ev_cpus->cpus);
4076                 if (map)
4077                         evsel->own_cpus = map;
4078                 else
4079                         pr_err("failed to get event_update cpus\n");
4080         default:
4081                 break;
4082         }
4083
4084         return 0;
4085 }
4086
4087 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4088                                         struct perf_evlist *evlist,
4089                                         perf_event__handler_t process)
4090 {
4091         union perf_event ev;
4092         struct tracing_data *tdata;
4093         ssize_t size = 0, aligned_size = 0, padding;
4094         struct feat_fd ff;
4095         int err __maybe_unused = 0;
4096
4097         /*
4098          * We are going to store the size of the data followed
4099          * by the data contents. Since the fd descriptor is a pipe,
4100          * we cannot seek back to store the size of the data once
4101          * we know it. Instead we:
4102          *
4103          * - write the tracing data to the temp file
4104          * - get/write the data size to pipe
4105          * - write the tracing data from the temp file
4106          *   to the pipe
4107          */
4108         tdata = tracing_data_get(&evlist->entries, fd, true);
4109         if (!tdata)
4110                 return -1;
4111
4112         memset(&ev, 0, sizeof(ev));
4113
4114         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4115         size = tdata->size;
4116         aligned_size = PERF_ALIGN(size, sizeof(u64));
4117         padding = aligned_size - size;
4118         ev.tracing_data.header.size = sizeof(ev.tracing_data);
4119         ev.tracing_data.size = aligned_size;
4120
4121         process(tool, &ev, NULL, NULL);
4122
4123         /*
4124          * The put function will copy all the tracing data
4125          * stored in temp file to the pipe.
4126          */
4127         tracing_data_put(tdata);
4128
4129         ff = (struct feat_fd){ .fd = fd };
4130         if (write_padded(&ff, NULL, 0, padding))
4131                 return -1;
4132
4133         return aligned_size;
4134 }
4135
4136 int perf_event__process_tracing_data(struct perf_session *session,
4137                                      union perf_event *event)
4138 {
4139         ssize_t size_read, padding, size = event->tracing_data.size;
4140         int fd = perf_data__fd(session->data);
4141         off_t offset = lseek(fd, 0, SEEK_CUR);
4142         char buf[BUFSIZ];
4143
4144         /* setup for reading amidst mmap */
4145         lseek(fd, offset + sizeof(struct tracing_data_event),
4146               SEEK_SET);
4147
4148         size_read = trace_report(fd, &session->tevent,
4149                                  session->repipe);
4150         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4151
4152         if (readn(fd, buf, padding) < 0) {
4153                 pr_err("%s: reading input file", __func__);
4154                 return -1;
4155         }
4156         if (session->repipe) {
4157                 int retw = write(STDOUT_FILENO, buf, padding);
4158                 if (retw <= 0 || retw != padding) {
4159                         pr_err("%s: repiping tracing data padding", __func__);
4160                         return -1;
4161                 }
4162         }
4163
4164         if (size_read + padding != size) {
4165                 pr_err("%s: tracing data size mismatch", __func__);
4166                 return -1;
4167         }
4168
4169         perf_evlist__prepare_tracepoint_events(session->evlist,
4170                                                session->tevent.pevent);
4171
4172         return size_read + padding;
4173 }
4174
4175 int perf_event__synthesize_build_id(struct perf_tool *tool,
4176                                     struct dso *pos, u16 misc,
4177                                     perf_event__handler_t process,
4178                                     struct machine *machine)
4179 {
4180         union perf_event ev;
4181         size_t len;
4182         int err = 0;
4183
4184         if (!pos->hit)
4185                 return err;
4186
4187         memset(&ev, 0, sizeof(ev));
4188
4189         len = pos->long_name_len + 1;
4190         len = PERF_ALIGN(len, NAME_ALIGN);
4191         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4192         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4193         ev.build_id.header.misc = misc;
4194         ev.build_id.pid = machine->pid;
4195         ev.build_id.header.size = sizeof(ev.build_id) + len;
4196         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4197
4198         err = process(tool, &ev, NULL, machine);
4199
4200         return err;
4201 }
4202
4203 int perf_event__process_build_id(struct perf_session *session,
4204                                  union perf_event *event)
4205 {
4206         __event_process_build_id(&event->build_id,
4207                                  event->build_id.filename,
4208                                  session);
4209         return 0;
4210 }