Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[sfrench/cifs-2.6.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14
15 #include <stdlib.h>
16
17 #include "auxtrace.h"
18 #include "color.h"
19 #include "cs-etm.h"
20 #include "cs-etm-decoder/cs-etm-decoder.h"
21 #include "debug.h"
22 #include "evlist.h"
23 #include "intlist.h"
24 #include "machine.h"
25 #include "map.h"
26 #include "perf.h"
27 #include "thread.h"
28 #include "thread_map.h"
29 #include "thread-stack.h"
30 #include "util.h"
31
32 #define MAX_TIMESTAMP (~0ULL)
33
34 /*
35  * A64 instructions are always 4 bytes
36  *
37  * Only A64 is supported, so can use this constant for converting between
38  * addresses and instruction counts, calculting offsets etc
39  */
40 #define A64_INSTR_SIZE 4
41
42 struct cs_etm_auxtrace {
43         struct auxtrace auxtrace;
44         struct auxtrace_queues queues;
45         struct auxtrace_heap heap;
46         struct itrace_synth_opts synth_opts;
47         struct perf_session *session;
48         struct machine *machine;
49         struct thread *unknown_thread;
50
51         u8 timeless_decoding;
52         u8 snapshot_mode;
53         u8 data_queued;
54         u8 sample_branches;
55         u8 sample_instructions;
56
57         int num_cpu;
58         u32 auxtrace_type;
59         u64 branches_sample_type;
60         u64 branches_id;
61         u64 instructions_sample_type;
62         u64 instructions_sample_period;
63         u64 instructions_id;
64         u64 **metadata;
65         u64 kernel_start;
66         unsigned int pmu_type;
67 };
68
69 struct cs_etm_queue {
70         struct cs_etm_auxtrace *etm;
71         struct thread *thread;
72         struct cs_etm_decoder *decoder;
73         struct auxtrace_buffer *buffer;
74         const struct cs_etm_state *state;
75         union perf_event *event_buf;
76         unsigned int queue_nr;
77         pid_t pid, tid;
78         int cpu;
79         u64 time;
80         u64 timestamp;
81         u64 offset;
82         u64 period_instructions;
83         struct branch_stack *last_branch;
84         struct branch_stack *last_branch_rb;
85         size_t last_branch_pos;
86         struct cs_etm_packet *prev_packet;
87         struct cs_etm_packet *packet;
88 };
89
90 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
91 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
92                                            pid_t tid, u64 time_);
93
94 static void cs_etm__packet_dump(const char *pkt_string)
95 {
96         const char *color = PERF_COLOR_BLUE;
97         int len = strlen(pkt_string);
98
99         if (len && (pkt_string[len-1] == '\n'))
100                 color_fprintf(stdout, color, "  %s", pkt_string);
101         else
102                 color_fprintf(stdout, color, "  %s\n", pkt_string);
103
104         fflush(stdout);
105 }
106
107 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
108                                struct auxtrace_buffer *buffer)
109 {
110         int i, ret;
111         const char *color = PERF_COLOR_BLUE;
112         struct cs_etm_decoder_params d_params;
113         struct cs_etm_trace_params *t_params;
114         struct cs_etm_decoder *decoder;
115         size_t buffer_used = 0;
116
117         fprintf(stdout, "\n");
118         color_fprintf(stdout, color,
119                      ". ... CoreSight ETM Trace data: size %zu bytes\n",
120                      buffer->size);
121
122         /* Use metadata to fill in trace parameters for trace decoder */
123         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
124         for (i = 0; i < etm->num_cpu; i++) {
125                 t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
126                 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
127                 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
128                 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
129                 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
130                 t_params[i].etmv4.reg_configr =
131                                         etm->metadata[i][CS_ETMV4_TRCCONFIGR];
132                 t_params[i].etmv4.reg_traceidr =
133                                         etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
134         }
135
136         /* Set decoder parameters to simply print the trace packets */
137         d_params.packet_printer = cs_etm__packet_dump;
138         d_params.operation = CS_ETM_OPERATION_PRINT;
139         d_params.formatted = true;
140         d_params.fsyncs = false;
141         d_params.hsyncs = false;
142         d_params.frame_aligned = true;
143
144         decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
145
146         zfree(&t_params);
147
148         if (!decoder)
149                 return;
150         do {
151                 size_t consumed;
152
153                 ret = cs_etm_decoder__process_data_block(
154                                 decoder, buffer->offset,
155                                 &((u8 *)buffer->data)[buffer_used],
156                                 buffer->size - buffer_used, &consumed);
157                 if (ret)
158                         break;
159
160                 buffer_used += consumed;
161         } while (buffer_used < buffer->size);
162
163         cs_etm_decoder__free(decoder);
164 }
165
166 static int cs_etm__flush_events(struct perf_session *session,
167                                 struct perf_tool *tool)
168 {
169         int ret;
170         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
171                                                    struct cs_etm_auxtrace,
172                                                    auxtrace);
173         if (dump_trace)
174                 return 0;
175
176         if (!tool->ordered_events)
177                 return -EINVAL;
178
179         if (!etm->timeless_decoding)
180                 return -EINVAL;
181
182         ret = cs_etm__update_queues(etm);
183
184         if (ret < 0)
185                 return ret;
186
187         return cs_etm__process_timeless_queues(etm, -1, MAX_TIMESTAMP - 1);
188 }
189
190 static void cs_etm__free_queue(void *priv)
191 {
192         struct cs_etm_queue *etmq = priv;
193
194         if (!etmq)
195                 return;
196
197         thread__zput(etmq->thread);
198         cs_etm_decoder__free(etmq->decoder);
199         zfree(&etmq->event_buf);
200         zfree(&etmq->last_branch);
201         zfree(&etmq->last_branch_rb);
202         zfree(&etmq->prev_packet);
203         zfree(&etmq->packet);
204         free(etmq);
205 }
206
207 static void cs_etm__free_events(struct perf_session *session)
208 {
209         unsigned int i;
210         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
211                                                    struct cs_etm_auxtrace,
212                                                    auxtrace);
213         struct auxtrace_queues *queues = &aux->queues;
214
215         for (i = 0; i < queues->nr_queues; i++) {
216                 cs_etm__free_queue(queues->queue_array[i].priv);
217                 queues->queue_array[i].priv = NULL;
218         }
219
220         auxtrace_queues__free(queues);
221 }
222
223 static void cs_etm__free(struct perf_session *session)
224 {
225         int i;
226         struct int_node *inode, *tmp;
227         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
228                                                    struct cs_etm_auxtrace,
229                                                    auxtrace);
230         cs_etm__free_events(session);
231         session->auxtrace = NULL;
232
233         /* First remove all traceID/CPU# nodes for the RB tree */
234         intlist__for_each_entry_safe(inode, tmp, traceid_list)
235                 intlist__remove(traceid_list, inode);
236         /* Then the RB tree itself */
237         intlist__delete(traceid_list);
238
239         for (i = 0; i < aux->num_cpu; i++)
240                 zfree(&aux->metadata[i]);
241
242         thread__zput(aux->unknown_thread);
243         zfree(&aux->metadata);
244         zfree(&aux);
245 }
246
247 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u64 address,
248                               size_t size, u8 *buffer)
249 {
250         u8  cpumode;
251         u64 offset;
252         int len;
253         struct   thread *thread;
254         struct   machine *machine;
255         struct   addr_location al;
256
257         if (!etmq)
258                 return -1;
259
260         machine = etmq->etm->machine;
261         if (address >= etmq->etm->kernel_start)
262                 cpumode = PERF_RECORD_MISC_KERNEL;
263         else
264                 cpumode = PERF_RECORD_MISC_USER;
265
266         thread = etmq->thread;
267         if (!thread) {
268                 if (cpumode != PERF_RECORD_MISC_KERNEL)
269                         return -EINVAL;
270                 thread = etmq->etm->unknown_thread;
271         }
272
273         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
274                 return 0;
275
276         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
277             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
278                 return 0;
279
280         offset = al.map->map_ip(al.map, address);
281
282         map__load(al.map);
283
284         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
285
286         if (len <= 0)
287                 return 0;
288
289         return len;
290 }
291
292 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
293                                                 unsigned int queue_nr)
294 {
295         int i;
296         struct cs_etm_decoder_params d_params;
297         struct cs_etm_trace_params  *t_params;
298         struct cs_etm_queue *etmq;
299         size_t szp = sizeof(struct cs_etm_packet);
300
301         etmq = zalloc(sizeof(*etmq));
302         if (!etmq)
303                 return NULL;
304
305         etmq->packet = zalloc(szp);
306         if (!etmq->packet)
307                 goto out_free;
308
309         if (etm->synth_opts.last_branch || etm->sample_branches) {
310                 etmq->prev_packet = zalloc(szp);
311                 if (!etmq->prev_packet)
312                         goto out_free;
313         }
314
315         if (etm->synth_opts.last_branch) {
316                 size_t sz = sizeof(struct branch_stack);
317
318                 sz += etm->synth_opts.last_branch_sz *
319                       sizeof(struct branch_entry);
320                 etmq->last_branch = zalloc(sz);
321                 if (!etmq->last_branch)
322                         goto out_free;
323                 etmq->last_branch_rb = zalloc(sz);
324                 if (!etmq->last_branch_rb)
325                         goto out_free;
326         }
327
328         etmq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
329         if (!etmq->event_buf)
330                 goto out_free;
331
332         etmq->etm = etm;
333         etmq->queue_nr = queue_nr;
334         etmq->pid = -1;
335         etmq->tid = -1;
336         etmq->cpu = -1;
337
338         /* Use metadata to fill in trace parameters for trace decoder */
339         t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
340
341         if (!t_params)
342                 goto out_free;
343
344         for (i = 0; i < etm->num_cpu; i++) {
345                 t_params[i].protocol = CS_ETM_PROTO_ETMV4i;
346                 t_params[i].etmv4.reg_idr0 = etm->metadata[i][CS_ETMV4_TRCIDR0];
347                 t_params[i].etmv4.reg_idr1 = etm->metadata[i][CS_ETMV4_TRCIDR1];
348                 t_params[i].etmv4.reg_idr2 = etm->metadata[i][CS_ETMV4_TRCIDR2];
349                 t_params[i].etmv4.reg_idr8 = etm->metadata[i][CS_ETMV4_TRCIDR8];
350                 t_params[i].etmv4.reg_configr =
351                                         etm->metadata[i][CS_ETMV4_TRCCONFIGR];
352                 t_params[i].etmv4.reg_traceidr =
353                                         etm->metadata[i][CS_ETMV4_TRCTRACEIDR];
354         }
355
356         /* Set decoder parameters to simply print the trace packets */
357         d_params.packet_printer = cs_etm__packet_dump;
358         d_params.operation = CS_ETM_OPERATION_DECODE;
359         d_params.formatted = true;
360         d_params.fsyncs = false;
361         d_params.hsyncs = false;
362         d_params.frame_aligned = true;
363         d_params.data = etmq;
364
365         etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
366
367         zfree(&t_params);
368
369         if (!etmq->decoder)
370                 goto out_free;
371
372         /*
373          * Register a function to handle all memory accesses required by
374          * the trace decoder library.
375          */
376         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
377                                               0x0L, ((u64) -1L),
378                                               cs_etm__mem_access))
379                 goto out_free_decoder;
380
381         etmq->offset = 0;
382         etmq->period_instructions = 0;
383
384         return etmq;
385
386 out_free_decoder:
387         cs_etm_decoder__free(etmq->decoder);
388 out_free:
389         zfree(&etmq->event_buf);
390         zfree(&etmq->last_branch);
391         zfree(&etmq->last_branch_rb);
392         zfree(&etmq->prev_packet);
393         zfree(&etmq->packet);
394         free(etmq);
395
396         return NULL;
397 }
398
399 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
400                                struct auxtrace_queue *queue,
401                                unsigned int queue_nr)
402 {
403         struct cs_etm_queue *etmq = queue->priv;
404
405         if (list_empty(&queue->head) || etmq)
406                 return 0;
407
408         etmq = cs_etm__alloc_queue(etm, queue_nr);
409
410         if (!etmq)
411                 return -ENOMEM;
412
413         queue->priv = etmq;
414
415         if (queue->cpu != -1)
416                 etmq->cpu = queue->cpu;
417
418         etmq->tid = queue->tid;
419
420         return 0;
421 }
422
423 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
424 {
425         unsigned int i;
426         int ret;
427
428         for (i = 0; i < etm->queues.nr_queues; i++) {
429                 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
430                 if (ret)
431                         return ret;
432         }
433
434         return 0;
435 }
436
437 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
438 {
439         if (etm->queues.new_data) {
440                 etm->queues.new_data = false;
441                 return cs_etm__setup_queues(etm);
442         }
443
444         return 0;
445 }
446
447 static inline void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq)
448 {
449         struct branch_stack *bs_src = etmq->last_branch_rb;
450         struct branch_stack *bs_dst = etmq->last_branch;
451         size_t nr = 0;
452
453         /*
454          * Set the number of records before early exit: ->nr is used to
455          * determine how many branches to copy from ->entries.
456          */
457         bs_dst->nr = bs_src->nr;
458
459         /*
460          * Early exit when there is nothing to copy.
461          */
462         if (!bs_src->nr)
463                 return;
464
465         /*
466          * As bs_src->entries is a circular buffer, we need to copy from it in
467          * two steps.  First, copy the branches from the most recently inserted
468          * branch ->last_branch_pos until the end of bs_src->entries buffer.
469          */
470         nr = etmq->etm->synth_opts.last_branch_sz - etmq->last_branch_pos;
471         memcpy(&bs_dst->entries[0],
472                &bs_src->entries[etmq->last_branch_pos],
473                sizeof(struct branch_entry) * nr);
474
475         /*
476          * If we wrapped around at least once, the branches from the beginning
477          * of the bs_src->entries buffer and until the ->last_branch_pos element
478          * are older valid branches: copy them over.  The total number of
479          * branches copied over will be equal to the number of branches asked by
480          * the user in last_branch_sz.
481          */
482         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
483                 memcpy(&bs_dst->entries[nr],
484                        &bs_src->entries[0],
485                        sizeof(struct branch_entry) * etmq->last_branch_pos);
486         }
487 }
488
489 static inline void cs_etm__reset_last_branch_rb(struct cs_etm_queue *etmq)
490 {
491         etmq->last_branch_pos = 0;
492         etmq->last_branch_rb->nr = 0;
493 }
494
495 static inline u64 cs_etm__last_executed_instr(struct cs_etm_packet *packet)
496 {
497         /*
498          * The packet records the execution range with an exclusive end address
499          *
500          * A64 instructions are constant size, so the last executed
501          * instruction is A64_INSTR_SIZE before the end address
502          * Will need to do instruction level decode for T32 instructions as
503          * they can be variable size (not yet supported).
504          */
505         return packet->end_addr - A64_INSTR_SIZE;
506 }
507
508 static inline u64 cs_etm__instr_count(const struct cs_etm_packet *packet)
509 {
510         /*
511          * Only A64 instructions are currently supported, so can get
512          * instruction count by dividing.
513          * Will need to do instruction level decode for T32 instructions as
514          * they can be variable size (not yet supported).
515          */
516         return (packet->end_addr - packet->start_addr) / A64_INSTR_SIZE;
517 }
518
519 static inline u64 cs_etm__instr_addr(const struct cs_etm_packet *packet,
520                                      u64 offset)
521 {
522         /*
523          * Only A64 instructions are currently supported, so can get
524          * instruction address by muliplying.
525          * Will need to do instruction level decode for T32 instructions as
526          * they can be variable size (not yet supported).
527          */
528         return packet->start_addr + offset * A64_INSTR_SIZE;
529 }
530
531 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq)
532 {
533         struct branch_stack *bs = etmq->last_branch_rb;
534         struct branch_entry *be;
535
536         /*
537          * The branches are recorded in a circular buffer in reverse
538          * chronological order: we start recording from the last element of the
539          * buffer down.  After writing the first element of the stack, move the
540          * insert position back to the end of the buffer.
541          */
542         if (!etmq->last_branch_pos)
543                 etmq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
544
545         etmq->last_branch_pos -= 1;
546
547         be       = &bs->entries[etmq->last_branch_pos];
548         be->from = cs_etm__last_executed_instr(etmq->prev_packet);
549         be->to   = etmq->packet->start_addr;
550         /* No support for mispredict */
551         be->flags.mispred = 0;
552         be->flags.predicted = 1;
553
554         /*
555          * Increment bs->nr until reaching the number of last branches asked by
556          * the user on the command line.
557          */
558         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
559                 bs->nr += 1;
560 }
561
562 static int cs_etm__inject_event(union perf_event *event,
563                                struct perf_sample *sample, u64 type)
564 {
565         event->header.size = perf_event__sample_event_size(sample, type, 0);
566         return perf_event__synthesize_sample(event, type, 0, sample);
567 }
568
569
570 static int
571 cs_etm__get_trace(struct cs_etm_buffer *buff, struct cs_etm_queue *etmq)
572 {
573         struct auxtrace_buffer *aux_buffer = etmq->buffer;
574         struct auxtrace_buffer *old_buffer = aux_buffer;
575         struct auxtrace_queue *queue;
576
577         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
578
579         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
580
581         /* If no more data, drop the previous auxtrace_buffer and return */
582         if (!aux_buffer) {
583                 if (old_buffer)
584                         auxtrace_buffer__drop_data(old_buffer);
585                 buff->len = 0;
586                 return 0;
587         }
588
589         etmq->buffer = aux_buffer;
590
591         /* If the aux_buffer doesn't have data associated, try to load it */
592         if (!aux_buffer->data) {
593                 /* get the file desc associated with the perf data file */
594                 int fd = perf_data__fd(etmq->etm->session->data);
595
596                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
597                 if (!aux_buffer->data)
598                         return -ENOMEM;
599         }
600
601         /* If valid, drop the previous buffer */
602         if (old_buffer)
603                 auxtrace_buffer__drop_data(old_buffer);
604
605         buff->offset = aux_buffer->offset;
606         buff->len = aux_buffer->size;
607         buff->buf = aux_buffer->data;
608
609         buff->ref_timestamp = aux_buffer->reference;
610
611         return buff->len;
612 }
613
614 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
615                                     struct auxtrace_queue *queue)
616 {
617         struct cs_etm_queue *etmq = queue->priv;
618
619         /* CPU-wide tracing isn't supported yet */
620         if (queue->tid == -1)
621                 return;
622
623         if ((!etmq->thread) && (etmq->tid != -1))
624                 etmq->thread = machine__find_thread(etm->machine, -1,
625                                                     etmq->tid);
626
627         if (etmq->thread) {
628                 etmq->pid = etmq->thread->pid_;
629                 if (queue->cpu == -1)
630                         etmq->cpu = etmq->thread->cpu;
631         }
632 }
633
634 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
635                                             u64 addr, u64 period)
636 {
637         int ret = 0;
638         struct cs_etm_auxtrace *etm = etmq->etm;
639         union perf_event *event = etmq->event_buf;
640         struct perf_sample sample = {.ip = 0,};
641
642         event->sample.header.type = PERF_RECORD_SAMPLE;
643         event->sample.header.misc = PERF_RECORD_MISC_USER;
644         event->sample.header.size = sizeof(struct perf_event_header);
645
646         sample.ip = addr;
647         sample.pid = etmq->pid;
648         sample.tid = etmq->tid;
649         sample.id = etmq->etm->instructions_id;
650         sample.stream_id = etmq->etm->instructions_id;
651         sample.period = period;
652         sample.cpu = etmq->packet->cpu;
653         sample.flags = 0;
654         sample.insn_len = 1;
655         sample.cpumode = event->header.misc;
656
657         if (etm->synth_opts.last_branch) {
658                 cs_etm__copy_last_branch_rb(etmq);
659                 sample.branch_stack = etmq->last_branch;
660         }
661
662         if (etm->synth_opts.inject) {
663                 ret = cs_etm__inject_event(event, &sample,
664                                            etm->instructions_sample_type);
665                 if (ret)
666                         return ret;
667         }
668
669         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
670
671         if (ret)
672                 pr_err(
673                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
674                         ret);
675
676         if (etm->synth_opts.last_branch)
677                 cs_etm__reset_last_branch_rb(etmq);
678
679         return ret;
680 }
681
682 /*
683  * The cs etm packet encodes an instruction range between a branch target
684  * and the next taken branch. Generate sample accordingly.
685  */
686 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq)
687 {
688         int ret = 0;
689         struct cs_etm_auxtrace *etm = etmq->etm;
690         struct perf_sample sample = {.ip = 0,};
691         union perf_event *event = etmq->event_buf;
692         struct dummy_branch_stack {
693                 u64                     nr;
694                 struct branch_entry     entries;
695         } dummy_bs;
696
697         event->sample.header.type = PERF_RECORD_SAMPLE;
698         event->sample.header.misc = PERF_RECORD_MISC_USER;
699         event->sample.header.size = sizeof(struct perf_event_header);
700
701         sample.ip = cs_etm__last_executed_instr(etmq->prev_packet);
702         sample.pid = etmq->pid;
703         sample.tid = etmq->tid;
704         sample.addr = etmq->packet->start_addr;
705         sample.id = etmq->etm->branches_id;
706         sample.stream_id = etmq->etm->branches_id;
707         sample.period = 1;
708         sample.cpu = etmq->packet->cpu;
709         sample.flags = 0;
710         sample.cpumode = PERF_RECORD_MISC_USER;
711
712         /*
713          * perf report cannot handle events without a branch stack
714          */
715         if (etm->synth_opts.last_branch) {
716                 dummy_bs = (struct dummy_branch_stack){
717                         .nr = 1,
718                         .entries = {
719                                 .from = sample.ip,
720                                 .to = sample.addr,
721                         },
722                 };
723                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
724         }
725
726         if (etm->synth_opts.inject) {
727                 ret = cs_etm__inject_event(event, &sample,
728                                            etm->branches_sample_type);
729                 if (ret)
730                         return ret;
731         }
732
733         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
734
735         if (ret)
736                 pr_err(
737                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
738                 ret);
739
740         return ret;
741 }
742
743 struct cs_etm_synth {
744         struct perf_tool dummy_tool;
745         struct perf_session *session;
746 };
747
748 static int cs_etm__event_synth(struct perf_tool *tool,
749                                union perf_event *event,
750                                struct perf_sample *sample __maybe_unused,
751                                struct machine *machine __maybe_unused)
752 {
753         struct cs_etm_synth *cs_etm_synth =
754                       container_of(tool, struct cs_etm_synth, dummy_tool);
755
756         return perf_session__deliver_synth_event(cs_etm_synth->session,
757                                                  event, NULL);
758 }
759
760 static int cs_etm__synth_event(struct perf_session *session,
761                                struct perf_event_attr *attr, u64 id)
762 {
763         struct cs_etm_synth cs_etm_synth;
764
765         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
766         cs_etm_synth.session = session;
767
768         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
769                                            &id, cs_etm__event_synth);
770 }
771
772 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
773                                 struct perf_session *session)
774 {
775         struct perf_evlist *evlist = session->evlist;
776         struct perf_evsel *evsel;
777         struct perf_event_attr attr;
778         bool found = false;
779         u64 id;
780         int err;
781
782         evlist__for_each_entry(evlist, evsel) {
783                 if (evsel->attr.type == etm->pmu_type) {
784                         found = true;
785                         break;
786                 }
787         }
788
789         if (!found) {
790                 pr_debug("No selected events with CoreSight Trace data\n");
791                 return 0;
792         }
793
794         memset(&attr, 0, sizeof(struct perf_event_attr));
795         attr.size = sizeof(struct perf_event_attr);
796         attr.type = PERF_TYPE_HARDWARE;
797         attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
798         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
799                             PERF_SAMPLE_PERIOD;
800         if (etm->timeless_decoding)
801                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
802         else
803                 attr.sample_type |= PERF_SAMPLE_TIME;
804
805         attr.exclude_user = evsel->attr.exclude_user;
806         attr.exclude_kernel = evsel->attr.exclude_kernel;
807         attr.exclude_hv = evsel->attr.exclude_hv;
808         attr.exclude_host = evsel->attr.exclude_host;
809         attr.exclude_guest = evsel->attr.exclude_guest;
810         attr.sample_id_all = evsel->attr.sample_id_all;
811         attr.read_format = evsel->attr.read_format;
812
813         /* create new id val to be a fixed offset from evsel id */
814         id = evsel->id[0] + 1000000000;
815
816         if (!id)
817                 id = 1;
818
819         if (etm->synth_opts.branches) {
820                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
821                 attr.sample_period = 1;
822                 attr.sample_type |= PERF_SAMPLE_ADDR;
823                 err = cs_etm__synth_event(session, &attr, id);
824                 if (err)
825                         return err;
826                 etm->sample_branches = true;
827                 etm->branches_sample_type = attr.sample_type;
828                 etm->branches_id = id;
829                 id += 1;
830                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
831         }
832
833         if (etm->synth_opts.last_branch)
834                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
835
836         if (etm->synth_opts.instructions) {
837                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
838                 attr.sample_period = etm->synth_opts.period;
839                 etm->instructions_sample_period = attr.sample_period;
840                 err = cs_etm__synth_event(session, &attr, id);
841                 if (err)
842                         return err;
843                 etm->sample_instructions = true;
844                 etm->instructions_sample_type = attr.sample_type;
845                 etm->instructions_id = id;
846                 id += 1;
847         }
848
849         return 0;
850 }
851
852 static int cs_etm__sample(struct cs_etm_queue *etmq)
853 {
854         struct cs_etm_auxtrace *etm = etmq->etm;
855         struct cs_etm_packet *tmp;
856         int ret;
857         u64 instrs_executed;
858
859         instrs_executed = cs_etm__instr_count(etmq->packet);
860         etmq->period_instructions += instrs_executed;
861
862         /*
863          * Record a branch when the last instruction in
864          * PREV_PACKET is a branch.
865          */
866         if (etm->synth_opts.last_branch &&
867             etmq->prev_packet &&
868             etmq->prev_packet->sample_type == CS_ETM_RANGE &&
869             etmq->prev_packet->last_instr_taken_branch)
870                 cs_etm__update_last_branch_rb(etmq);
871
872         if (etm->sample_instructions &&
873             etmq->period_instructions >= etm->instructions_sample_period) {
874                 /*
875                  * Emit instruction sample periodically
876                  * TODO: allow period to be defined in cycles and clock time
877                  */
878
879                 /* Get number of instructions executed after the sample point */
880                 u64 instrs_over = etmq->period_instructions -
881                         etm->instructions_sample_period;
882
883                 /*
884                  * Calculate the address of the sampled instruction (-1 as
885                  * sample is reported as though instruction has just been
886                  * executed, but PC has not advanced to next instruction)
887                  */
888                 u64 offset = (instrs_executed - instrs_over - 1);
889                 u64 addr = cs_etm__instr_addr(etmq->packet, offset);
890
891                 ret = cs_etm__synth_instruction_sample(
892                         etmq, addr, etm->instructions_sample_period);
893                 if (ret)
894                         return ret;
895
896                 /* Carry remaining instructions into next sample period */
897                 etmq->period_instructions = instrs_over;
898         }
899
900         if (etm->sample_branches &&
901             etmq->prev_packet &&
902             etmq->prev_packet->sample_type == CS_ETM_RANGE &&
903             etmq->prev_packet->last_instr_taken_branch) {
904                 ret = cs_etm__synth_branch_sample(etmq);
905                 if (ret)
906                         return ret;
907         }
908
909         if (etm->sample_branches || etm->synth_opts.last_branch) {
910                 /*
911                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
912                  * the next incoming packet.
913                  */
914                 tmp = etmq->packet;
915                 etmq->packet = etmq->prev_packet;
916                 etmq->prev_packet = tmp;
917         }
918
919         return 0;
920 }
921
922 static int cs_etm__flush(struct cs_etm_queue *etmq)
923 {
924         int err = 0;
925         struct cs_etm_packet *tmp;
926
927         if (etmq->etm->synth_opts.last_branch &&
928             etmq->prev_packet &&
929             etmq->prev_packet->sample_type == CS_ETM_RANGE) {
930                 /*
931                  * Generate a last branch event for the branches left in the
932                  * circular buffer at the end of the trace.
933                  *
934                  * Use the address of the end of the last reported execution
935                  * range
936                  */
937                 u64 addr = cs_etm__last_executed_instr(etmq->prev_packet);
938
939                 err = cs_etm__synth_instruction_sample(
940                         etmq, addr,
941                         etmq->period_instructions);
942                 etmq->period_instructions = 0;
943
944                 /*
945                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
946                  * the next incoming packet.
947                  */
948                 tmp = etmq->packet;
949                 etmq->packet = etmq->prev_packet;
950                 etmq->prev_packet = tmp;
951         }
952
953         return err;
954 }
955
956 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
957 {
958         struct cs_etm_auxtrace *etm = etmq->etm;
959         struct cs_etm_buffer buffer;
960         size_t buffer_used, processed;
961         int err = 0;
962
963         if (!etm->kernel_start)
964                 etm->kernel_start = machine__kernel_start(etm->machine);
965
966         /* Go through each buffer in the queue and decode them one by one */
967         while (1) {
968                 buffer_used = 0;
969                 memset(&buffer, 0, sizeof(buffer));
970                 err = cs_etm__get_trace(&buffer, etmq);
971                 if (err <= 0)
972                         return err;
973                 /*
974                  * We cannot assume consecutive blocks in the data file are
975                  * contiguous, reset the decoder to force re-sync.
976                  */
977                 err = cs_etm_decoder__reset(etmq->decoder);
978                 if (err != 0)
979                         return err;
980
981                 /* Run trace decoder until buffer consumed or end of trace */
982                 do {
983                         processed = 0;
984                         err = cs_etm_decoder__process_data_block(
985                                 etmq->decoder,
986                                 etmq->offset,
987                                 &buffer.buf[buffer_used],
988                                 buffer.len - buffer_used,
989                                 &processed);
990                         if (err)
991                                 return err;
992
993                         etmq->offset += processed;
994                         buffer_used += processed;
995
996                         /* Process each packet in this chunk */
997                         while (1) {
998                                 err = cs_etm_decoder__get_packet(etmq->decoder,
999                                                                  etmq->packet);
1000                                 if (err <= 0)
1001                                         /*
1002                                          * Stop processing this chunk on
1003                                          * end of data or error
1004                                          */
1005                                         break;
1006
1007                                 switch (etmq->packet->sample_type) {
1008                                 case CS_ETM_RANGE:
1009                                         /*
1010                                          * If the packet contains an instruction
1011                                          * range, generate instruction sequence
1012                                          * events.
1013                                          */
1014                                         cs_etm__sample(etmq);
1015                                         break;
1016                                 case CS_ETM_TRACE_ON:
1017                                         /*
1018                                          * Discontinuity in trace, flush
1019                                          * previous branch stack
1020                                          */
1021                                         cs_etm__flush(etmq);
1022                                         break;
1023                                 default:
1024                                         break;
1025                                 }
1026                         }
1027                 } while (buffer.len > buffer_used);
1028
1029                 if (err == 0)
1030                         /* Flush any remaining branch stack entries */
1031                         err = cs_etm__flush(etmq);
1032         }
1033
1034         return err;
1035 }
1036
1037 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
1038                                            pid_t tid, u64 time_)
1039 {
1040         unsigned int i;
1041         struct auxtrace_queues *queues = &etm->queues;
1042
1043         for (i = 0; i < queues->nr_queues; i++) {
1044                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
1045                 struct cs_etm_queue *etmq = queue->priv;
1046
1047                 if (etmq && ((tid == -1) || (etmq->tid == tid))) {
1048                         etmq->time = time_;
1049                         cs_etm__set_pid_tid_cpu(etm, queue);
1050                         cs_etm__run_decoder(etmq);
1051                 }
1052         }
1053
1054         return 0;
1055 }
1056
1057 static int cs_etm__process_event(struct perf_session *session,
1058                                  union perf_event *event,
1059                                  struct perf_sample *sample,
1060                                  struct perf_tool *tool)
1061 {
1062         int err = 0;
1063         u64 timestamp;
1064         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1065                                                    struct cs_etm_auxtrace,
1066                                                    auxtrace);
1067
1068         if (dump_trace)
1069                 return 0;
1070
1071         if (!tool->ordered_events) {
1072                 pr_err("CoreSight ETM Trace requires ordered events\n");
1073                 return -EINVAL;
1074         }
1075
1076         if (!etm->timeless_decoding)
1077                 return -EINVAL;
1078
1079         if (sample->time && (sample->time != (u64) -1))
1080                 timestamp = sample->time;
1081         else
1082                 timestamp = 0;
1083
1084         if (timestamp || etm->timeless_decoding) {
1085                 err = cs_etm__update_queues(etm);
1086                 if (err)
1087                         return err;
1088         }
1089
1090         if (event->header.type == PERF_RECORD_EXIT)
1091                 return cs_etm__process_timeless_queues(etm,
1092                                                        event->fork.tid,
1093                                                        sample->time);
1094
1095         return 0;
1096 }
1097
1098 static int cs_etm__process_auxtrace_event(struct perf_session *session,
1099                                           union perf_event *event,
1100                                           struct perf_tool *tool __maybe_unused)
1101 {
1102         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
1103                                                    struct cs_etm_auxtrace,
1104                                                    auxtrace);
1105         if (!etm->data_queued) {
1106                 struct auxtrace_buffer *buffer;
1107                 off_t  data_offset;
1108                 int fd = perf_data__fd(session->data);
1109                 bool is_pipe = perf_data__is_pipe(session->data);
1110                 int err;
1111
1112                 if (is_pipe)
1113                         data_offset = 0;
1114                 else {
1115                         data_offset = lseek(fd, 0, SEEK_CUR);
1116                         if (data_offset == -1)
1117                                 return -errno;
1118                 }
1119
1120                 err = auxtrace_queues__add_event(&etm->queues, session,
1121                                                  event, data_offset, &buffer);
1122                 if (err)
1123                         return err;
1124
1125                 if (dump_trace)
1126                         if (auxtrace_buffer__get_data(buffer, fd)) {
1127                                 cs_etm__dump_event(etm, buffer);
1128                                 auxtrace_buffer__put_data(buffer);
1129                         }
1130         }
1131
1132         return 0;
1133 }
1134
1135 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
1136 {
1137         struct perf_evsel *evsel;
1138         struct perf_evlist *evlist = etm->session->evlist;
1139         bool timeless_decoding = true;
1140
1141         /*
1142          * Circle through the list of event and complain if we find one
1143          * with the time bit set.
1144          */
1145         evlist__for_each_entry(evlist, evsel) {
1146                 if ((evsel->attr.sample_type & PERF_SAMPLE_TIME))
1147                         timeless_decoding = false;
1148         }
1149
1150         return timeless_decoding;
1151 }
1152
1153 static const char * const cs_etm_global_header_fmts[] = {
1154         [CS_HEADER_VERSION_0]   = "     Header version                 %llx\n",
1155         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
1156         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
1157 };
1158
1159 static const char * const cs_etm_priv_fmts[] = {
1160         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
1161         [CS_ETM_CPU]            = "     CPU                            %lld\n",
1162         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
1163         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
1164         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
1165         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
1166 };
1167
1168 static const char * const cs_etmv4_priv_fmts[] = {
1169         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
1170         [CS_ETM_CPU]            = "     CPU                            %lld\n",
1171         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
1172         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
1173         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
1174         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
1175         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
1176         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
1177         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
1178 };
1179
1180 static void cs_etm__print_auxtrace_info(u64 *val, int num)
1181 {
1182         int i, j, cpu = 0;
1183
1184         for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1185                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
1186
1187         for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
1188                 if (val[i] == __perf_cs_etmv3_magic)
1189                         for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
1190                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
1191                 else if (val[i] == __perf_cs_etmv4_magic)
1192                         for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
1193                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
1194                 else
1195                         /* failure.. return */
1196                         return;
1197         }
1198 }
1199
1200 int cs_etm__process_auxtrace_info(union perf_event *event,
1201                                   struct perf_session *session)
1202 {
1203         struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
1204         struct cs_etm_auxtrace *etm = NULL;
1205         struct int_node *inode;
1206         unsigned int pmu_type;
1207         int event_header_size = sizeof(struct perf_event_header);
1208         int info_header_size;
1209         int total_size = auxtrace_info->header.size;
1210         int priv_size = 0;
1211         int num_cpu;
1212         int err = 0, idx = -1;
1213         int i, j, k;
1214         u64 *ptr, *hdr = NULL;
1215         u64 **metadata = NULL;
1216
1217         /*
1218          * sizeof(auxtrace_info_event::type) +
1219          * sizeof(auxtrace_info_event::reserved) == 8
1220          */
1221         info_header_size = 8;
1222
1223         if (total_size < (event_header_size + info_header_size))
1224                 return -EINVAL;
1225
1226         priv_size = total_size - event_header_size - info_header_size;
1227
1228         /* First the global part */
1229         ptr = (u64 *) auxtrace_info->priv;
1230
1231         /* Look for version '0' of the header */
1232         if (ptr[0] != 0)
1233                 return -EINVAL;
1234
1235         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
1236         if (!hdr)
1237                 return -ENOMEM;
1238
1239         /* Extract header information - see cs-etm.h for format */
1240         for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
1241                 hdr[i] = ptr[i];
1242         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
1243         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
1244                                     0xffffffff);
1245
1246         /*
1247          * Create an RB tree for traceID-CPU# tuple. Since the conversion has
1248          * to be made for each packet that gets decoded, optimizing access in
1249          * anything other than a sequential array is worth doing.
1250          */
1251         traceid_list = intlist__new(NULL);
1252         if (!traceid_list) {
1253                 err = -ENOMEM;
1254                 goto err_free_hdr;
1255         }
1256
1257         metadata = zalloc(sizeof(*metadata) * num_cpu);
1258         if (!metadata) {
1259                 err = -ENOMEM;
1260                 goto err_free_traceid_list;
1261         }
1262
1263         /*
1264          * The metadata is stored in the auxtrace_info section and encodes
1265          * the configuration of the ARM embedded trace macrocell which is
1266          * required by the trace decoder to properly decode the trace due
1267          * to its highly compressed nature.
1268          */
1269         for (j = 0; j < num_cpu; j++) {
1270                 if (ptr[i] == __perf_cs_etmv3_magic) {
1271                         metadata[j] = zalloc(sizeof(*metadata[j]) *
1272                                              CS_ETM_PRIV_MAX);
1273                         if (!metadata[j]) {
1274                                 err = -ENOMEM;
1275                                 goto err_free_metadata;
1276                         }
1277                         for (k = 0; k < CS_ETM_PRIV_MAX; k++)
1278                                 metadata[j][k] = ptr[i + k];
1279
1280                         /* The traceID is our handle */
1281                         idx = metadata[j][CS_ETM_ETMTRACEIDR];
1282                         i += CS_ETM_PRIV_MAX;
1283                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
1284                         metadata[j] = zalloc(sizeof(*metadata[j]) *
1285                                              CS_ETMV4_PRIV_MAX);
1286                         if (!metadata[j]) {
1287                                 err = -ENOMEM;
1288                                 goto err_free_metadata;
1289                         }
1290                         for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
1291                                 metadata[j][k] = ptr[i + k];
1292
1293                         /* The traceID is our handle */
1294                         idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
1295                         i += CS_ETMV4_PRIV_MAX;
1296                 }
1297
1298                 /* Get an RB node for this CPU */
1299                 inode = intlist__findnew(traceid_list, idx);
1300
1301                 /* Something went wrong, no need to continue */
1302                 if (!inode) {
1303                         err = PTR_ERR(inode);
1304                         goto err_free_metadata;
1305                 }
1306
1307                 /*
1308                  * The node for that CPU should not be taken.
1309                  * Back out if that's the case.
1310                  */
1311                 if (inode->priv) {
1312                         err = -EINVAL;
1313                         goto err_free_metadata;
1314                 }
1315                 /* All good, associate the traceID with the CPU# */
1316                 inode->priv = &metadata[j][CS_ETM_CPU];
1317         }
1318
1319         /*
1320          * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
1321          * CS_ETMV4_PRIV_MAX mark how many double words are in the
1322          * global metadata, and each cpu's metadata respectively.
1323          * The following tests if the correct number of double words was
1324          * present in the auxtrace info section.
1325          */
1326         if (i * 8 != priv_size) {
1327                 err = -EINVAL;
1328                 goto err_free_metadata;
1329         }
1330
1331         etm = zalloc(sizeof(*etm));
1332
1333         if (!etm) {
1334                 err = -ENOMEM;
1335                 goto err_free_metadata;
1336         }
1337
1338         err = auxtrace_queues__init(&etm->queues);
1339         if (err)
1340                 goto err_free_etm;
1341
1342         etm->session = session;
1343         etm->machine = &session->machines.host;
1344
1345         etm->num_cpu = num_cpu;
1346         etm->pmu_type = pmu_type;
1347         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
1348         etm->metadata = metadata;
1349         etm->auxtrace_type = auxtrace_info->type;
1350         etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
1351
1352         etm->auxtrace.process_event = cs_etm__process_event;
1353         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
1354         etm->auxtrace.flush_events = cs_etm__flush_events;
1355         etm->auxtrace.free_events = cs_etm__free_events;
1356         etm->auxtrace.free = cs_etm__free;
1357         session->auxtrace = &etm->auxtrace;
1358
1359         etm->unknown_thread = thread__new(999999999, 999999999);
1360         if (!etm->unknown_thread)
1361                 goto err_free_queues;
1362
1363         /*
1364          * Initialize list node so that at thread__zput() we can avoid
1365          * segmentation fault at list_del_init().
1366          */
1367         INIT_LIST_HEAD(&etm->unknown_thread->node);
1368
1369         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
1370         if (err)
1371                 goto err_delete_thread;
1372
1373         if (thread__init_map_groups(etm->unknown_thread, etm->machine))
1374                 goto err_delete_thread;
1375
1376         if (dump_trace) {
1377                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
1378                 return 0;
1379         }
1380
1381         if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
1382                 etm->synth_opts = *session->itrace_synth_opts;
1383         } else {
1384                 itrace_synth_opts__set_default(&etm->synth_opts);
1385                 etm->synth_opts.callchain = false;
1386         }
1387
1388         err = cs_etm__synth_events(etm, session);
1389         if (err)
1390                 goto err_delete_thread;
1391
1392         err = auxtrace_queues__process_index(&etm->queues, session);
1393         if (err)
1394                 goto err_delete_thread;
1395
1396         etm->data_queued = etm->queues.populated;
1397
1398         return 0;
1399
1400 err_delete_thread:
1401         thread__zput(etm->unknown_thread);
1402 err_free_queues:
1403         auxtrace_queues__free(&etm->queues);
1404         session->auxtrace = NULL;
1405 err_free_etm:
1406         zfree(&etm);
1407 err_free_metadata:
1408         /* No need to check @metadata[j], free(NULL) is supported */
1409         for (j = 0; j < num_cpu; j++)
1410                 free(metadata[j]);
1411         zfree(&metadata);
1412 err_free_traceid_list:
1413         intlist__delete(traceid_list);
1414 err_free_hdr:
1415         zfree(&hdr);
1416
1417         return -EINVAL;
1418 }