Merge tag 'sound-5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "../perf.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "cpumap.h"
36 #include "symbol.h"
37 #include "thread_map.h"
38 #include "asm/bug.h"
39 #include "auxtrace.h"
40
41 #include <linux/hash.h>
42
43 #include "event.h"
44 #include "session.h"
45 #include "debug.h"
46 #include <subcmd/parse-options.h>
47
48 #include "cs-etm.h"
49 #include "intel-pt.h"
50 #include "intel-bts.h"
51 #include "arm-spe.h"
52 #include "s390-cpumsf.h"
53
54 #include <linux/ctype.h>
55 #include "symbol/kallsyms.h"
56
57 static bool auxtrace__dont_decode(struct perf_session *session)
58 {
59         return !session->itrace_synth_opts ||
60                session->itrace_synth_opts->dont_decode;
61 }
62
63 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
64                         struct auxtrace_mmap_params *mp,
65                         void *userpg, int fd)
66 {
67         struct perf_event_mmap_page *pc = userpg;
68
69         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
70
71         mm->userpg = userpg;
72         mm->mask = mp->mask;
73         mm->len = mp->len;
74         mm->prev = 0;
75         mm->idx = mp->idx;
76         mm->tid = mp->tid;
77         mm->cpu = mp->cpu;
78
79         if (!mp->len) {
80                 mm->base = NULL;
81                 return 0;
82         }
83
84 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
85         pr_err("Cannot use AUX area tracing mmaps\n");
86         return -1;
87 #endif
88
89         pc->aux_offset = mp->offset;
90         pc->aux_size = mp->len;
91
92         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
93         if (mm->base == MAP_FAILED) {
94                 pr_debug2("failed to mmap AUX area\n");
95                 mm->base = NULL;
96                 return -1;
97         }
98
99         return 0;
100 }
101
102 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
103 {
104         if (mm->base) {
105                 munmap(mm->base, mm->len);
106                 mm->base = NULL;
107         }
108 }
109
110 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
111                                 off_t auxtrace_offset,
112                                 unsigned int auxtrace_pages,
113                                 bool auxtrace_overwrite)
114 {
115         if (auxtrace_pages) {
116                 mp->offset = auxtrace_offset;
117                 mp->len = auxtrace_pages * (size_t)page_size;
118                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
119                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
120                 pr_debug2("AUX area mmap length %zu\n", mp->len);
121         } else {
122                 mp->len = 0;
123         }
124 }
125
126 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
127                                    struct perf_evlist *evlist, int idx,
128                                    bool per_cpu)
129 {
130         mp->idx = idx;
131
132         if (per_cpu) {
133                 mp->cpu = evlist->cpus->map[idx];
134                 if (evlist->threads)
135                         mp->tid = thread_map__pid(evlist->threads, 0);
136                 else
137                         mp->tid = -1;
138         } else {
139                 mp->cpu = -1;
140                 mp->tid = thread_map__pid(evlist->threads, idx);
141         }
142 }
143
144 #define AUXTRACE_INIT_NR_QUEUES 32
145
146 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
147 {
148         struct auxtrace_queue *queue_array;
149         unsigned int max_nr_queues, i;
150
151         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
152         if (nr_queues > max_nr_queues)
153                 return NULL;
154
155         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
156         if (!queue_array)
157                 return NULL;
158
159         for (i = 0; i < nr_queues; i++) {
160                 INIT_LIST_HEAD(&queue_array[i].head);
161                 queue_array[i].priv = NULL;
162         }
163
164         return queue_array;
165 }
166
167 int auxtrace_queues__init(struct auxtrace_queues *queues)
168 {
169         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
170         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
171         if (!queues->queue_array)
172                 return -ENOMEM;
173         return 0;
174 }
175
176 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
177                                  unsigned int new_nr_queues)
178 {
179         unsigned int nr_queues = queues->nr_queues;
180         struct auxtrace_queue *queue_array;
181         unsigned int i;
182
183         if (!nr_queues)
184                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
185
186         while (nr_queues && nr_queues < new_nr_queues)
187                 nr_queues <<= 1;
188
189         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
190                 return -EINVAL;
191
192         queue_array = auxtrace_alloc_queue_array(nr_queues);
193         if (!queue_array)
194                 return -ENOMEM;
195
196         for (i = 0; i < queues->nr_queues; i++) {
197                 list_splice_tail(&queues->queue_array[i].head,
198                                  &queue_array[i].head);
199                 queue_array[i].tid = queues->queue_array[i].tid;
200                 queue_array[i].cpu = queues->queue_array[i].cpu;
201                 queue_array[i].set = queues->queue_array[i].set;
202                 queue_array[i].priv = queues->queue_array[i].priv;
203         }
204
205         queues->nr_queues = nr_queues;
206         queues->queue_array = queue_array;
207
208         return 0;
209 }
210
211 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
212 {
213         int fd = perf_data__fd(session->data);
214         void *p;
215         ssize_t ret;
216
217         if (size > SSIZE_MAX)
218                 return NULL;
219
220         p = malloc(size);
221         if (!p)
222                 return NULL;
223
224         ret = readn(fd, p, size);
225         if (ret != (ssize_t)size) {
226                 free(p);
227                 return NULL;
228         }
229
230         return p;
231 }
232
233 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
234                                          unsigned int idx,
235                                          struct auxtrace_buffer *buffer)
236 {
237         struct auxtrace_queue *queue;
238         int err;
239
240         if (idx >= queues->nr_queues) {
241                 err = auxtrace_queues__grow(queues, idx + 1);
242                 if (err)
243                         return err;
244         }
245
246         queue = &queues->queue_array[idx];
247
248         if (!queue->set) {
249                 queue->set = true;
250                 queue->tid = buffer->tid;
251                 queue->cpu = buffer->cpu;
252         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
253                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
254                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
255                 return -EINVAL;
256         }
257
258         buffer->buffer_nr = queues->next_buffer_nr++;
259
260         list_add_tail(&buffer->list, &queue->head);
261
262         queues->new_data = true;
263         queues->populated = true;
264
265         return 0;
266 }
267
268 /* Limit buffers to 32MiB on 32-bit */
269 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
270
271 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
272                                          unsigned int idx,
273                                          struct auxtrace_buffer *buffer)
274 {
275         u64 sz = buffer->size;
276         bool consecutive = false;
277         struct auxtrace_buffer *b;
278         int err;
279
280         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
281                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
282                 if (!b)
283                         return -ENOMEM;
284                 b->size = BUFFER_LIMIT_FOR_32_BIT;
285                 b->consecutive = consecutive;
286                 err = auxtrace_queues__queue_buffer(queues, idx, b);
287                 if (err) {
288                         auxtrace_buffer__free(b);
289                         return err;
290                 }
291                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
292                 sz -= BUFFER_LIMIT_FOR_32_BIT;
293                 consecutive = true;
294         }
295
296         buffer->size = sz;
297         buffer->consecutive = consecutive;
298
299         return 0;
300 }
301
302 static bool filter_cpu(struct perf_session *session, int cpu)
303 {
304         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
305
306         return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
307 }
308
309 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
310                                        struct perf_session *session,
311                                        unsigned int idx,
312                                        struct auxtrace_buffer *buffer,
313                                        struct auxtrace_buffer **buffer_ptr)
314 {
315         int err = -ENOMEM;
316
317         if (filter_cpu(session, buffer->cpu))
318                 return 0;
319
320         buffer = memdup(buffer, sizeof(*buffer));
321         if (!buffer)
322                 return -ENOMEM;
323
324         if (session->one_mmap) {
325                 buffer->data = buffer->data_offset - session->one_mmap_offset +
326                                session->one_mmap_addr;
327         } else if (perf_data__is_pipe(session->data)) {
328                 buffer->data = auxtrace_copy_data(buffer->size, session);
329                 if (!buffer->data)
330                         goto out_free;
331                 buffer->data_needs_freeing = true;
332         } else if (BITS_PER_LONG == 32 &&
333                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
334                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
335                 if (err)
336                         goto out_free;
337         }
338
339         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
340         if (err)
341                 goto out_free;
342
343         /* FIXME: Doesn't work for split buffer */
344         if (buffer_ptr)
345                 *buffer_ptr = buffer;
346
347         return 0;
348
349 out_free:
350         auxtrace_buffer__free(buffer);
351         return err;
352 }
353
354 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
355                                struct perf_session *session,
356                                union perf_event *event, off_t data_offset,
357                                struct auxtrace_buffer **buffer_ptr)
358 {
359         struct auxtrace_buffer buffer = {
360                 .pid = -1,
361                 .tid = event->auxtrace.tid,
362                 .cpu = event->auxtrace.cpu,
363                 .data_offset = data_offset,
364                 .offset = event->auxtrace.offset,
365                 .reference = event->auxtrace.reference,
366                 .size = event->auxtrace.size,
367         };
368         unsigned int idx = event->auxtrace.idx;
369
370         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
371                                            buffer_ptr);
372 }
373
374 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
375                                               struct perf_session *session,
376                                               off_t file_offset, size_t sz)
377 {
378         union perf_event *event;
379         int err;
380         char buf[PERF_SAMPLE_MAX_SIZE];
381
382         err = perf_session__peek_event(session, file_offset, buf,
383                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
384         if (err)
385                 return err;
386
387         if (event->header.type == PERF_RECORD_AUXTRACE) {
388                 if (event->header.size < sizeof(struct auxtrace_event) ||
389                     event->header.size != sz) {
390                         err = -EINVAL;
391                         goto out;
392                 }
393                 file_offset += event->header.size;
394                 err = auxtrace_queues__add_event(queues, session, event,
395                                                  file_offset, NULL);
396         }
397 out:
398         return err;
399 }
400
401 void auxtrace_queues__free(struct auxtrace_queues *queues)
402 {
403         unsigned int i;
404
405         for (i = 0; i < queues->nr_queues; i++) {
406                 while (!list_empty(&queues->queue_array[i].head)) {
407                         struct auxtrace_buffer *buffer;
408
409                         buffer = list_entry(queues->queue_array[i].head.next,
410                                             struct auxtrace_buffer, list);
411                         list_del_init(&buffer->list);
412                         auxtrace_buffer__free(buffer);
413                 }
414         }
415
416         zfree(&queues->queue_array);
417         queues->nr_queues = 0;
418 }
419
420 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
421                              unsigned int pos, unsigned int queue_nr,
422                              u64 ordinal)
423 {
424         unsigned int parent;
425
426         while (pos) {
427                 parent = (pos - 1) >> 1;
428                 if (heap_array[parent].ordinal <= ordinal)
429                         break;
430                 heap_array[pos] = heap_array[parent];
431                 pos = parent;
432         }
433         heap_array[pos].queue_nr = queue_nr;
434         heap_array[pos].ordinal = ordinal;
435 }
436
437 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
438                        u64 ordinal)
439 {
440         struct auxtrace_heap_item *heap_array;
441
442         if (queue_nr >= heap->heap_sz) {
443                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
444
445                 while (heap_sz <= queue_nr)
446                         heap_sz <<= 1;
447                 heap_array = realloc(heap->heap_array,
448                                      heap_sz * sizeof(struct auxtrace_heap_item));
449                 if (!heap_array)
450                         return -ENOMEM;
451                 heap->heap_array = heap_array;
452                 heap->heap_sz = heap_sz;
453         }
454
455         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
456
457         return 0;
458 }
459
460 void auxtrace_heap__free(struct auxtrace_heap *heap)
461 {
462         zfree(&heap->heap_array);
463         heap->heap_cnt = 0;
464         heap->heap_sz = 0;
465 }
466
467 void auxtrace_heap__pop(struct auxtrace_heap *heap)
468 {
469         unsigned int pos, last, heap_cnt = heap->heap_cnt;
470         struct auxtrace_heap_item *heap_array;
471
472         if (!heap_cnt)
473                 return;
474
475         heap->heap_cnt -= 1;
476
477         heap_array = heap->heap_array;
478
479         pos = 0;
480         while (1) {
481                 unsigned int left, right;
482
483                 left = (pos << 1) + 1;
484                 if (left >= heap_cnt)
485                         break;
486                 right = left + 1;
487                 if (right >= heap_cnt) {
488                         heap_array[pos] = heap_array[left];
489                         return;
490                 }
491                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
492                         heap_array[pos] = heap_array[left];
493                         pos = left;
494                 } else {
495                         heap_array[pos] = heap_array[right];
496                         pos = right;
497                 }
498         }
499
500         last = heap_cnt - 1;
501         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
502                          heap_array[last].ordinal);
503 }
504
505 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
506                                        struct perf_evlist *evlist)
507 {
508         if (itr)
509                 return itr->info_priv_size(itr, evlist);
510         return 0;
511 }
512
513 static int auxtrace_not_supported(void)
514 {
515         pr_err("AUX area tracing is not supported on this architecture\n");
516         return -EINVAL;
517 }
518
519 int auxtrace_record__info_fill(struct auxtrace_record *itr,
520                                struct perf_session *session,
521                                struct auxtrace_info_event *auxtrace_info,
522                                size_t priv_size)
523 {
524         if (itr)
525                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
526         return auxtrace_not_supported();
527 }
528
529 void auxtrace_record__free(struct auxtrace_record *itr)
530 {
531         if (itr)
532                 itr->free(itr);
533 }
534
535 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
536 {
537         if (itr && itr->snapshot_start)
538                 return itr->snapshot_start(itr);
539         return 0;
540 }
541
542 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
543 {
544         if (itr && itr->snapshot_finish)
545                 return itr->snapshot_finish(itr);
546         return 0;
547 }
548
549 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
550                                    struct auxtrace_mmap *mm,
551                                    unsigned char *data, u64 *head, u64 *old)
552 {
553         if (itr && itr->find_snapshot)
554                 return itr->find_snapshot(itr, idx, mm, data, head, old);
555         return 0;
556 }
557
558 int auxtrace_record__options(struct auxtrace_record *itr,
559                              struct perf_evlist *evlist,
560                              struct record_opts *opts)
561 {
562         if (itr)
563                 return itr->recording_options(itr, evlist, opts);
564         return 0;
565 }
566
567 u64 auxtrace_record__reference(struct auxtrace_record *itr)
568 {
569         if (itr)
570                 return itr->reference(itr);
571         return 0;
572 }
573
574 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
575                                     struct record_opts *opts, const char *str)
576 {
577         if (!str)
578                 return 0;
579
580         if (itr)
581                 return itr->parse_snapshot_options(itr, opts, str);
582
583         pr_err("No AUX area tracing to snapshot\n");
584         return -EINVAL;
585 }
586
587 struct auxtrace_record *__weak
588 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
589 {
590         *err = 0;
591         return NULL;
592 }
593
594 static int auxtrace_index__alloc(struct list_head *head)
595 {
596         struct auxtrace_index *auxtrace_index;
597
598         auxtrace_index = malloc(sizeof(struct auxtrace_index));
599         if (!auxtrace_index)
600                 return -ENOMEM;
601
602         auxtrace_index->nr = 0;
603         INIT_LIST_HEAD(&auxtrace_index->list);
604
605         list_add_tail(&auxtrace_index->list, head);
606
607         return 0;
608 }
609
610 void auxtrace_index__free(struct list_head *head)
611 {
612         struct auxtrace_index *auxtrace_index, *n;
613
614         list_for_each_entry_safe(auxtrace_index, n, head, list) {
615                 list_del_init(&auxtrace_index->list);
616                 free(auxtrace_index);
617         }
618 }
619
620 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
621 {
622         struct auxtrace_index *auxtrace_index;
623         int err;
624
625         if (list_empty(head)) {
626                 err = auxtrace_index__alloc(head);
627                 if (err)
628                         return NULL;
629         }
630
631         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
632
633         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
634                 err = auxtrace_index__alloc(head);
635                 if (err)
636                         return NULL;
637                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
638                                             list);
639         }
640
641         return auxtrace_index;
642 }
643
644 int auxtrace_index__auxtrace_event(struct list_head *head,
645                                    union perf_event *event, off_t file_offset)
646 {
647         struct auxtrace_index *auxtrace_index;
648         size_t nr;
649
650         auxtrace_index = auxtrace_index__last(head);
651         if (!auxtrace_index)
652                 return -ENOMEM;
653
654         nr = auxtrace_index->nr;
655         auxtrace_index->entries[nr].file_offset = file_offset;
656         auxtrace_index->entries[nr].sz = event->header.size;
657         auxtrace_index->nr += 1;
658
659         return 0;
660 }
661
662 static int auxtrace_index__do_write(int fd,
663                                     struct auxtrace_index *auxtrace_index)
664 {
665         struct auxtrace_index_entry ent;
666         size_t i;
667
668         for (i = 0; i < auxtrace_index->nr; i++) {
669                 ent.file_offset = auxtrace_index->entries[i].file_offset;
670                 ent.sz = auxtrace_index->entries[i].sz;
671                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
672                         return -errno;
673         }
674         return 0;
675 }
676
677 int auxtrace_index__write(int fd, struct list_head *head)
678 {
679         struct auxtrace_index *auxtrace_index;
680         u64 total = 0;
681         int err;
682
683         list_for_each_entry(auxtrace_index, head, list)
684                 total += auxtrace_index->nr;
685
686         if (writen(fd, &total, sizeof(total)) != sizeof(total))
687                 return -errno;
688
689         list_for_each_entry(auxtrace_index, head, list) {
690                 err = auxtrace_index__do_write(fd, auxtrace_index);
691                 if (err)
692                         return err;
693         }
694
695         return 0;
696 }
697
698 static int auxtrace_index__process_entry(int fd, struct list_head *head,
699                                          bool needs_swap)
700 {
701         struct auxtrace_index *auxtrace_index;
702         struct auxtrace_index_entry ent;
703         size_t nr;
704
705         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
706                 return -1;
707
708         auxtrace_index = auxtrace_index__last(head);
709         if (!auxtrace_index)
710                 return -1;
711
712         nr = auxtrace_index->nr;
713         if (needs_swap) {
714                 auxtrace_index->entries[nr].file_offset =
715                                                 bswap_64(ent.file_offset);
716                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
717         } else {
718                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
719                 auxtrace_index->entries[nr].sz = ent.sz;
720         }
721
722         auxtrace_index->nr = nr + 1;
723
724         return 0;
725 }
726
727 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
728                             bool needs_swap)
729 {
730         struct list_head *head = &session->auxtrace_index;
731         u64 nr;
732
733         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
734                 return -1;
735
736         if (needs_swap)
737                 nr = bswap_64(nr);
738
739         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
740                 return -1;
741
742         while (nr--) {
743                 int err;
744
745                 err = auxtrace_index__process_entry(fd, head, needs_swap);
746                 if (err)
747                         return -1;
748         }
749
750         return 0;
751 }
752
753 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
754                                                 struct perf_session *session,
755                                                 struct auxtrace_index_entry *ent)
756 {
757         return auxtrace_queues__add_indexed_event(queues, session,
758                                                   ent->file_offset, ent->sz);
759 }
760
761 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
762                                    struct perf_session *session)
763 {
764         struct auxtrace_index *auxtrace_index;
765         struct auxtrace_index_entry *ent;
766         size_t i;
767         int err;
768
769         if (auxtrace__dont_decode(session))
770                 return 0;
771
772         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
773                 for (i = 0; i < auxtrace_index->nr; i++) {
774                         ent = &auxtrace_index->entries[i];
775                         err = auxtrace_queues__process_index_entry(queues,
776                                                                    session,
777                                                                    ent);
778                         if (err)
779                                 return err;
780                 }
781         }
782         return 0;
783 }
784
785 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
786                                               struct auxtrace_buffer *buffer)
787 {
788         if (buffer) {
789                 if (list_is_last(&buffer->list, &queue->head))
790                         return NULL;
791                 return list_entry(buffer->list.next, struct auxtrace_buffer,
792                                   list);
793         } else {
794                 if (list_empty(&queue->head))
795                         return NULL;
796                 return list_entry(queue->head.next, struct auxtrace_buffer,
797                                   list);
798         }
799 }
800
801 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
802 {
803         size_t adj = buffer->data_offset & (page_size - 1);
804         size_t size = buffer->size + adj;
805         off_t file_offset = buffer->data_offset - adj;
806         void *addr;
807
808         if (buffer->data)
809                 return buffer->data;
810
811         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
812         if (addr == MAP_FAILED)
813                 return NULL;
814
815         buffer->mmap_addr = addr;
816         buffer->mmap_size = size;
817
818         buffer->data = addr + adj;
819
820         return buffer->data;
821 }
822
823 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
824 {
825         if (!buffer->data || !buffer->mmap_addr)
826                 return;
827         munmap(buffer->mmap_addr, buffer->mmap_size);
828         buffer->mmap_addr = NULL;
829         buffer->mmap_size = 0;
830         buffer->data = NULL;
831         buffer->use_data = NULL;
832 }
833
834 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
835 {
836         auxtrace_buffer__put_data(buffer);
837         if (buffer->data_needs_freeing) {
838                 buffer->data_needs_freeing = false;
839                 zfree(&buffer->data);
840                 buffer->use_data = NULL;
841                 buffer->size = 0;
842         }
843 }
844
845 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
846 {
847         auxtrace_buffer__drop_data(buffer);
848         free(buffer);
849 }
850
851 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
852                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
853                           const char *msg, u64 timestamp)
854 {
855         size_t size;
856
857         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
858
859         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
860         auxtrace_error->type = type;
861         auxtrace_error->code = code;
862         auxtrace_error->cpu = cpu;
863         auxtrace_error->pid = pid;
864         auxtrace_error->tid = tid;
865         auxtrace_error->fmt = 1;
866         auxtrace_error->ip = ip;
867         auxtrace_error->time = timestamp;
868         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
869
870         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
871                strlen(auxtrace_error->msg) + 1;
872         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
873 }
874
875 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
876                                          struct perf_tool *tool,
877                                          struct perf_session *session,
878                                          perf_event__handler_t process)
879 {
880         union perf_event *ev;
881         size_t priv_size;
882         int err;
883
884         pr_debug2("Synthesizing auxtrace information\n");
885         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
886         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
887         if (!ev)
888                 return -ENOMEM;
889
890         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
891         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
892                                         priv_size;
893         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
894                                          priv_size);
895         if (err)
896                 goto out_free;
897
898         err = process(tool, ev, NULL, NULL);
899 out_free:
900         free(ev);
901         return err;
902 }
903
904 int perf_event__process_auxtrace_info(struct perf_session *session,
905                                       union perf_event *event)
906 {
907         enum auxtrace_type type = event->auxtrace_info.type;
908
909         if (dump_trace)
910                 fprintf(stdout, " type: %u\n", type);
911
912         switch (type) {
913         case PERF_AUXTRACE_INTEL_PT:
914                 return intel_pt_process_auxtrace_info(event, session);
915         case PERF_AUXTRACE_INTEL_BTS:
916                 return intel_bts_process_auxtrace_info(event, session);
917         case PERF_AUXTRACE_ARM_SPE:
918                 return arm_spe_process_auxtrace_info(event, session);
919         case PERF_AUXTRACE_CS_ETM:
920                 return cs_etm__process_auxtrace_info(event, session);
921         case PERF_AUXTRACE_S390_CPUMSF:
922                 return s390_cpumsf_process_auxtrace_info(event, session);
923         case PERF_AUXTRACE_UNKNOWN:
924         default:
925                 return -EINVAL;
926         }
927 }
928
929 s64 perf_event__process_auxtrace(struct perf_session *session,
930                                  union perf_event *event)
931 {
932         s64 err;
933
934         if (dump_trace)
935                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
936                         event->auxtrace.size, event->auxtrace.offset,
937                         event->auxtrace.reference, event->auxtrace.idx,
938                         event->auxtrace.tid, event->auxtrace.cpu);
939
940         if (auxtrace__dont_decode(session))
941                 return event->auxtrace.size;
942
943         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
944                 return -EINVAL;
945
946         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
947         if (err < 0)
948                 return err;
949
950         return event->auxtrace.size;
951 }
952
953 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
954 #define PERF_ITRACE_DEFAULT_PERIOD              100000
955 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
956 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
957 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
958 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
959
960 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
961                                     bool no_sample)
962 {
963         synth_opts->branches = true;
964         synth_opts->transactions = true;
965         synth_opts->ptwrites = true;
966         synth_opts->pwr_events = true;
967         synth_opts->errors = true;
968         if (no_sample) {
969                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
970                 synth_opts->period = 1;
971                 synth_opts->calls = true;
972         } else {
973                 synth_opts->instructions = true;
974                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
975                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
976         }
977         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
978         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
979         synth_opts->initial_skip = 0;
980 }
981
982 /*
983  * Please check tools/perf/Documentation/perf-script.txt for information
984  * about the options parsed here, which is introduced after this cset,
985  * when support in 'perf script' for these options is introduced.
986  */
987 int itrace_parse_synth_opts(const struct option *opt, const char *str,
988                             int unset)
989 {
990         struct itrace_synth_opts *synth_opts = opt->value;
991         const char *p;
992         char *endptr;
993         bool period_type_set = false;
994         bool period_set = false;
995
996         synth_opts->set = true;
997
998         if (unset) {
999                 synth_opts->dont_decode = true;
1000                 return 0;
1001         }
1002
1003         if (!str) {
1004                 itrace_synth_opts__set_default(synth_opts,
1005                                                synth_opts->default_no_sample);
1006                 return 0;
1007         }
1008
1009         for (p = str; *p;) {
1010                 switch (*p++) {
1011                 case 'i':
1012                         synth_opts->instructions = true;
1013                         while (*p == ' ' || *p == ',')
1014                                 p += 1;
1015                         if (isdigit(*p)) {
1016                                 synth_opts->period = strtoull(p, &endptr, 10);
1017                                 period_set = true;
1018                                 p = endptr;
1019                                 while (*p == ' ' || *p == ',')
1020                                         p += 1;
1021                                 switch (*p++) {
1022                                 case 'i':
1023                                         synth_opts->period_type =
1024                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1025                                         period_type_set = true;
1026                                         break;
1027                                 case 't':
1028                                         synth_opts->period_type =
1029                                                 PERF_ITRACE_PERIOD_TICKS;
1030                                         period_type_set = true;
1031                                         break;
1032                                 case 'm':
1033                                         synth_opts->period *= 1000;
1034                                         /* Fall through */
1035                                 case 'u':
1036                                         synth_opts->period *= 1000;
1037                                         /* Fall through */
1038                                 case 'n':
1039                                         if (*p++ != 's')
1040                                                 goto out_err;
1041                                         synth_opts->period_type =
1042                                                 PERF_ITRACE_PERIOD_NANOSECS;
1043                                         period_type_set = true;
1044                                         break;
1045                                 case '\0':
1046                                         goto out;
1047                                 default:
1048                                         goto out_err;
1049                                 }
1050                         }
1051                         break;
1052                 case 'b':
1053                         synth_opts->branches = true;
1054                         break;
1055                 case 'x':
1056                         synth_opts->transactions = true;
1057                         break;
1058                 case 'w':
1059                         synth_opts->ptwrites = true;
1060                         break;
1061                 case 'p':
1062                         synth_opts->pwr_events = true;
1063                         break;
1064                 case 'e':
1065                         synth_opts->errors = true;
1066                         break;
1067                 case 'd':
1068                         synth_opts->log = true;
1069                         break;
1070                 case 'c':
1071                         synth_opts->branches = true;
1072                         synth_opts->calls = true;
1073                         break;
1074                 case 'r':
1075                         synth_opts->branches = true;
1076                         synth_opts->returns = true;
1077                         break;
1078                 case 'g':
1079                         synth_opts->callchain = true;
1080                         synth_opts->callchain_sz =
1081                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1082                         while (*p == ' ' || *p == ',')
1083                                 p += 1;
1084                         if (isdigit(*p)) {
1085                                 unsigned int val;
1086
1087                                 val = strtoul(p, &endptr, 10);
1088                                 p = endptr;
1089                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1090                                         goto out_err;
1091                                 synth_opts->callchain_sz = val;
1092                         }
1093                         break;
1094                 case 'l':
1095                         synth_opts->last_branch = true;
1096                         synth_opts->last_branch_sz =
1097                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1098                         while (*p == ' ' || *p == ',')
1099                                 p += 1;
1100                         if (isdigit(*p)) {
1101                                 unsigned int val;
1102
1103                                 val = strtoul(p, &endptr, 10);
1104                                 p = endptr;
1105                                 if (!val ||
1106                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1107                                         goto out_err;
1108                                 synth_opts->last_branch_sz = val;
1109                         }
1110                         break;
1111                 case 's':
1112                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1113                         if (p == endptr)
1114                                 goto out_err;
1115                         p = endptr;
1116                         break;
1117                 case ' ':
1118                 case ',':
1119                         break;
1120                 default:
1121                         goto out_err;
1122                 }
1123         }
1124 out:
1125         if (synth_opts->instructions) {
1126                 if (!period_type_set)
1127                         synth_opts->period_type =
1128                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1129                 if (!period_set)
1130                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1131         }
1132
1133         return 0;
1134
1135 out_err:
1136         pr_err("Bad Instruction Tracing options '%s'\n", str);
1137         return -EINVAL;
1138 }
1139
1140 static const char * const auxtrace_error_type_name[] = {
1141         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1142 };
1143
1144 static const char *auxtrace_error_name(int type)
1145 {
1146         const char *error_type_name = NULL;
1147
1148         if (type < PERF_AUXTRACE_ERROR_MAX)
1149                 error_type_name = auxtrace_error_type_name[type];
1150         if (!error_type_name)
1151                 error_type_name = "unknown AUX";
1152         return error_type_name;
1153 }
1154
1155 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1156 {
1157         struct auxtrace_error_event *e = &event->auxtrace_error;
1158         unsigned long long nsecs = e->time;
1159         const char *msg = e->msg;
1160         int ret;
1161
1162         ret = fprintf(fp, " %s error type %u",
1163                       auxtrace_error_name(e->type), e->type);
1164
1165         if (e->fmt && nsecs) {
1166                 unsigned long secs = nsecs / NSEC_PER_SEC;
1167
1168                 nsecs -= secs * NSEC_PER_SEC;
1169                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1170         } else {
1171                 ret += fprintf(fp, " time 0");
1172         }
1173
1174         if (!e->fmt)
1175                 msg = (const char *)&e->time;
1176
1177         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1178                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1179         return ret;
1180 }
1181
1182 void perf_session__auxtrace_error_inc(struct perf_session *session,
1183                                       union perf_event *event)
1184 {
1185         struct auxtrace_error_event *e = &event->auxtrace_error;
1186
1187         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1188                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1189 }
1190
1191 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1192 {
1193         int i;
1194
1195         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1196                 if (!stats->nr_auxtrace_errors[i])
1197                         continue;
1198                 ui__warning("%u %s errors\n",
1199                             stats->nr_auxtrace_errors[i],
1200                             auxtrace_error_name(i));
1201         }
1202 }
1203
1204 int perf_event__process_auxtrace_error(struct perf_session *session,
1205                                        union perf_event *event)
1206 {
1207         if (auxtrace__dont_decode(session))
1208                 return 0;
1209
1210         perf_event__fprintf_auxtrace_error(event, stdout);
1211         return 0;
1212 }
1213
1214 static int __auxtrace_mmap__read(struct perf_mmap *map,
1215                                  struct auxtrace_record *itr,
1216                                  struct perf_tool *tool, process_auxtrace_t fn,
1217                                  bool snapshot, size_t snapshot_size)
1218 {
1219         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1220         u64 head, old = mm->prev, offset, ref;
1221         unsigned char *data = mm->base;
1222         size_t size, head_off, old_off, len1, len2, padding;
1223         union perf_event ev;
1224         void *data1, *data2;
1225
1226         if (snapshot) {
1227                 head = auxtrace_mmap__read_snapshot_head(mm);
1228                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1229                                                    &head, &old))
1230                         return -1;
1231         } else {
1232                 head = auxtrace_mmap__read_head(mm);
1233         }
1234
1235         if (old == head)
1236                 return 0;
1237
1238         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1239                   mm->idx, old, head, head - old);
1240
1241         if (mm->mask) {
1242                 head_off = head & mm->mask;
1243                 old_off = old & mm->mask;
1244         } else {
1245                 head_off = head % mm->len;
1246                 old_off = old % mm->len;
1247         }
1248
1249         if (head_off > old_off)
1250                 size = head_off - old_off;
1251         else
1252                 size = mm->len - (old_off - head_off);
1253
1254         if (snapshot && size > snapshot_size)
1255                 size = snapshot_size;
1256
1257         ref = auxtrace_record__reference(itr);
1258
1259         if (head > old || size <= head || mm->mask) {
1260                 offset = head - size;
1261         } else {
1262                 /*
1263                  * When the buffer size is not a power of 2, 'head' wraps at the
1264                  * highest multiple of the buffer size, so we have to subtract
1265                  * the remainder here.
1266                  */
1267                 u64 rem = (0ULL - mm->len) % mm->len;
1268
1269                 offset = head - size - rem;
1270         }
1271
1272         if (size > head_off) {
1273                 len1 = size - head_off;
1274                 data1 = &data[mm->len - len1];
1275                 len2 = head_off;
1276                 data2 = &data[0];
1277         } else {
1278                 len1 = size;
1279                 data1 = &data[head_off - len1];
1280                 len2 = 0;
1281                 data2 = NULL;
1282         }
1283
1284         if (itr->alignment) {
1285                 unsigned int unwanted = len1 % itr->alignment;
1286
1287                 len1 -= unwanted;
1288                 size -= unwanted;
1289         }
1290
1291         /* padding must be written by fn() e.g. record__process_auxtrace() */
1292         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1293         if (padding)
1294                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1295
1296         memset(&ev, 0, sizeof(ev));
1297         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1298         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1299         ev.auxtrace.size = size + padding;
1300         ev.auxtrace.offset = offset;
1301         ev.auxtrace.reference = ref;
1302         ev.auxtrace.idx = mm->idx;
1303         ev.auxtrace.tid = mm->tid;
1304         ev.auxtrace.cpu = mm->cpu;
1305
1306         if (fn(tool, map, &ev, data1, len1, data2, len2))
1307                 return -1;
1308
1309         mm->prev = head;
1310
1311         if (!snapshot) {
1312                 auxtrace_mmap__write_tail(mm, head);
1313                 if (itr->read_finish) {
1314                         int err;
1315
1316                         err = itr->read_finish(itr, mm->idx);
1317                         if (err < 0)
1318                                 return err;
1319                 }
1320         }
1321
1322         return 1;
1323 }
1324
1325 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr,
1326                         struct perf_tool *tool, process_auxtrace_t fn)
1327 {
1328         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1329 }
1330
1331 int auxtrace_mmap__read_snapshot(struct perf_mmap *map,
1332                                  struct auxtrace_record *itr,
1333                                  struct perf_tool *tool, process_auxtrace_t fn,
1334                                  size_t snapshot_size)
1335 {
1336         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1337 }
1338
1339 /**
1340  * struct auxtrace_cache - hash table to implement a cache
1341  * @hashtable: the hashtable
1342  * @sz: hashtable size (number of hlists)
1343  * @entry_size: size of an entry
1344  * @limit: limit the number of entries to this maximum, when reached the cache
1345  *         is dropped and caching begins again with an empty cache
1346  * @cnt: current number of entries
1347  * @bits: hashtable size (@sz = 2^@bits)
1348  */
1349 struct auxtrace_cache {
1350         struct hlist_head *hashtable;
1351         size_t sz;
1352         size_t entry_size;
1353         size_t limit;
1354         size_t cnt;
1355         unsigned int bits;
1356 };
1357
1358 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1359                                            unsigned int limit_percent)
1360 {
1361         struct auxtrace_cache *c;
1362         struct hlist_head *ht;
1363         size_t sz, i;
1364
1365         c = zalloc(sizeof(struct auxtrace_cache));
1366         if (!c)
1367                 return NULL;
1368
1369         sz = 1UL << bits;
1370
1371         ht = calloc(sz, sizeof(struct hlist_head));
1372         if (!ht)
1373                 goto out_free;
1374
1375         for (i = 0; i < sz; i++)
1376                 INIT_HLIST_HEAD(&ht[i]);
1377
1378         c->hashtable = ht;
1379         c->sz = sz;
1380         c->entry_size = entry_size;
1381         c->limit = (c->sz * limit_percent) / 100;
1382         c->bits = bits;
1383
1384         return c;
1385
1386 out_free:
1387         free(c);
1388         return NULL;
1389 }
1390
1391 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1392 {
1393         struct auxtrace_cache_entry *entry;
1394         struct hlist_node *tmp;
1395         size_t i;
1396
1397         if (!c)
1398                 return;
1399
1400         for (i = 0; i < c->sz; i++) {
1401                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1402                         hlist_del(&entry->hash);
1403                         auxtrace_cache__free_entry(c, entry);
1404                 }
1405         }
1406
1407         c->cnt = 0;
1408 }
1409
1410 void auxtrace_cache__free(struct auxtrace_cache *c)
1411 {
1412         if (!c)
1413                 return;
1414
1415         auxtrace_cache__drop(c);
1416         zfree(&c->hashtable);
1417         free(c);
1418 }
1419
1420 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1421 {
1422         return malloc(c->entry_size);
1423 }
1424
1425 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1426                                 void *entry)
1427 {
1428         free(entry);
1429 }
1430
1431 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1432                         struct auxtrace_cache_entry *entry)
1433 {
1434         if (c->limit && ++c->cnt > c->limit)
1435                 auxtrace_cache__drop(c);
1436
1437         entry->key = key;
1438         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1439
1440         return 0;
1441 }
1442
1443 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1444 {
1445         struct auxtrace_cache_entry *entry;
1446         struct hlist_head *hlist;
1447
1448         if (!c)
1449                 return NULL;
1450
1451         hlist = &c->hashtable[hash_32(key, c->bits)];
1452         hlist_for_each_entry(entry, hlist, hash) {
1453                 if (entry->key == key)
1454                         return entry;
1455         }
1456
1457         return NULL;
1458 }
1459
1460 static void addr_filter__free_str(struct addr_filter *filt)
1461 {
1462         zfree(&filt->str);
1463         filt->action   = NULL;
1464         filt->sym_from = NULL;
1465         filt->sym_to   = NULL;
1466         filt->filename = NULL;
1467 }
1468
1469 static struct addr_filter *addr_filter__new(void)
1470 {
1471         struct addr_filter *filt = zalloc(sizeof(*filt));
1472
1473         if (filt)
1474                 INIT_LIST_HEAD(&filt->list);
1475
1476         return filt;
1477 }
1478
1479 static void addr_filter__free(struct addr_filter *filt)
1480 {
1481         if (filt)
1482                 addr_filter__free_str(filt);
1483         free(filt);
1484 }
1485
1486 static void addr_filters__add(struct addr_filters *filts,
1487                               struct addr_filter *filt)
1488 {
1489         list_add_tail(&filt->list, &filts->head);
1490         filts->cnt += 1;
1491 }
1492
1493 static void addr_filters__del(struct addr_filters *filts,
1494                               struct addr_filter *filt)
1495 {
1496         list_del_init(&filt->list);
1497         filts->cnt -= 1;
1498 }
1499
1500 void addr_filters__init(struct addr_filters *filts)
1501 {
1502         INIT_LIST_HEAD(&filts->head);
1503         filts->cnt = 0;
1504 }
1505
1506 void addr_filters__exit(struct addr_filters *filts)
1507 {
1508         struct addr_filter *filt, *n;
1509
1510         list_for_each_entry_safe(filt, n, &filts->head, list) {
1511                 addr_filters__del(filts, filt);
1512                 addr_filter__free(filt);
1513         }
1514 }
1515
1516 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1517                             const char *str_delim)
1518 {
1519         *inp += strspn(*inp, " ");
1520
1521         if (isdigit(**inp)) {
1522                 char *endptr;
1523
1524                 if (!num)
1525                         return -EINVAL;
1526                 errno = 0;
1527                 *num = strtoull(*inp, &endptr, 0);
1528                 if (errno)
1529                         return -errno;
1530                 if (endptr == *inp)
1531                         return -EINVAL;
1532                 *inp = endptr;
1533         } else {
1534                 size_t n;
1535
1536                 if (!str)
1537                         return -EINVAL;
1538                 *inp += strspn(*inp, " ");
1539                 *str = *inp;
1540                 n = strcspn(*inp, str_delim);
1541                 if (!n)
1542                         return -EINVAL;
1543                 *inp += n;
1544                 if (**inp) {
1545                         **inp = '\0';
1546                         *inp += 1;
1547                 }
1548         }
1549         return 0;
1550 }
1551
1552 static int parse_action(struct addr_filter *filt)
1553 {
1554         if (!strcmp(filt->action, "filter")) {
1555                 filt->start = true;
1556                 filt->range = true;
1557         } else if (!strcmp(filt->action, "start")) {
1558                 filt->start = true;
1559         } else if (!strcmp(filt->action, "stop")) {
1560                 filt->start = false;
1561         } else if (!strcmp(filt->action, "tracestop")) {
1562                 filt->start = false;
1563                 filt->range = true;
1564                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1565         } else {
1566                 return -EINVAL;
1567         }
1568         return 0;
1569 }
1570
1571 static int parse_sym_idx(char **inp, int *idx)
1572 {
1573         *idx = -1;
1574
1575         *inp += strspn(*inp, " ");
1576
1577         if (**inp != '#')
1578                 return 0;
1579
1580         *inp += 1;
1581
1582         if (**inp == 'g' || **inp == 'G') {
1583                 *inp += 1;
1584                 *idx = 0;
1585         } else {
1586                 unsigned long num;
1587                 char *endptr;
1588
1589                 errno = 0;
1590                 num = strtoul(*inp, &endptr, 0);
1591                 if (errno)
1592                         return -errno;
1593                 if (endptr == *inp || num > INT_MAX)
1594                         return -EINVAL;
1595                 *inp = endptr;
1596                 *idx = num;
1597         }
1598
1599         return 0;
1600 }
1601
1602 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1603 {
1604         int err = parse_num_or_str(inp, num, str, " ");
1605
1606         if (!err && *str)
1607                 err = parse_sym_idx(inp, idx);
1608
1609         return err;
1610 }
1611
1612 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1613 {
1614         char *fstr;
1615         int err;
1616
1617         filt->str = fstr = strdup(*filter_inp);
1618         if (!fstr)
1619                 return -ENOMEM;
1620
1621         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1622         if (err)
1623                 goto out_err;
1624
1625         err = parse_action(filt);
1626         if (err)
1627                 goto out_err;
1628
1629         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1630                               &filt->sym_from_idx);
1631         if (err)
1632                 goto out_err;
1633
1634         fstr += strspn(fstr, " ");
1635
1636         if (*fstr == '/') {
1637                 fstr += 1;
1638                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1639                                       &filt->sym_to_idx);
1640                 if (err)
1641                         goto out_err;
1642                 filt->range = true;
1643         }
1644
1645         fstr += strspn(fstr, " ");
1646
1647         if (*fstr == '@') {
1648                 fstr += 1;
1649                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1650                 if (err)
1651                         goto out_err;
1652         }
1653
1654         fstr += strspn(fstr, " ,");
1655
1656         *filter_inp += fstr - filt->str;
1657
1658         return 0;
1659
1660 out_err:
1661         addr_filter__free_str(filt);
1662
1663         return err;
1664 }
1665
1666 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1667                                     const char *filter)
1668 {
1669         struct addr_filter *filt;
1670         const char *fstr = filter;
1671         int err;
1672
1673         while (*fstr) {
1674                 filt = addr_filter__new();
1675                 err = parse_one_filter(filt, &fstr);
1676                 if (err) {
1677                         addr_filter__free(filt);
1678                         addr_filters__exit(filts);
1679                         return err;
1680                 }
1681                 addr_filters__add(filts, filt);
1682         }
1683
1684         return 0;
1685 }
1686
1687 struct sym_args {
1688         const char      *name;
1689         u64             start;
1690         u64             size;
1691         int             idx;
1692         int             cnt;
1693         bool            started;
1694         bool            global;
1695         bool            selected;
1696         bool            duplicate;
1697         bool            near;
1698 };
1699
1700 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1701 {
1702         /* A function with the same name, and global or the n'th found or any */
1703         return kallsyms__is_function(type) &&
1704                !strcmp(name, args->name) &&
1705                ((args->global && isupper(type)) ||
1706                 (args->selected && ++(args->cnt) == args->idx) ||
1707                 (!args->global && !args->selected));
1708 }
1709
1710 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1711 {
1712         struct sym_args *args = arg;
1713
1714         if (args->started) {
1715                 if (!args->size)
1716                         args->size = start - args->start;
1717                 if (args->selected) {
1718                         if (args->size)
1719                                 return 1;
1720                 } else if (kern_sym_match(args, name, type)) {
1721                         args->duplicate = true;
1722                         return 1;
1723                 }
1724         } else if (kern_sym_match(args, name, type)) {
1725                 args->started = true;
1726                 args->start = start;
1727         }
1728
1729         return 0;
1730 }
1731
1732 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1733 {
1734         struct sym_args *args = arg;
1735
1736         if (kern_sym_match(args, name, type)) {
1737                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1738                        ++args->cnt, start, type, name);
1739                 args->near = true;
1740         } else if (args->near) {
1741                 args->near = false;
1742                 pr_err("\t\twhich is near\t\t%s\n", name);
1743         }
1744
1745         return 0;
1746 }
1747
1748 static int sym_not_found_error(const char *sym_name, int idx)
1749 {
1750         if (idx > 0) {
1751                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1752                        idx, sym_name);
1753         } else if (!idx) {
1754                 pr_err("Global symbol '%s' not found.\n", sym_name);
1755         } else {
1756                 pr_err("Symbol '%s' not found.\n", sym_name);
1757         }
1758         pr_err("Note that symbols must be functions.\n");
1759
1760         return -EINVAL;
1761 }
1762
1763 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1764 {
1765         struct sym_args args = {
1766                 .name = sym_name,
1767                 .idx = idx,
1768                 .global = !idx,
1769                 .selected = idx > 0,
1770         };
1771         int err;
1772
1773         *start = 0;
1774         *size = 0;
1775
1776         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1777         if (err < 0) {
1778                 pr_err("Failed to parse /proc/kallsyms\n");
1779                 return err;
1780         }
1781
1782         if (args.duplicate) {
1783                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1784                 args.cnt = 0;
1785                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1786                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1787                        sym_name);
1788                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1789                 return -EINVAL;
1790         }
1791
1792         if (!args.started) {
1793                 pr_err("Kernel symbol lookup: ");
1794                 return sym_not_found_error(sym_name, idx);
1795         }
1796
1797         *start = args.start;
1798         *size = args.size;
1799
1800         return 0;
1801 }
1802
1803 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1804                                char type, u64 start)
1805 {
1806         struct sym_args *args = arg;
1807
1808         if (!kallsyms__is_function(type))
1809                 return 0;
1810
1811         if (!args->started) {
1812                 args->started = true;
1813                 args->start = start;
1814         }
1815         /* Don't know exactly where the kernel ends, so we add a page */
1816         args->size = round_up(start, page_size) + page_size - args->start;
1817
1818         return 0;
1819 }
1820
1821 static int addr_filter__entire_kernel(struct addr_filter *filt)
1822 {
1823         struct sym_args args = { .started = false };
1824         int err;
1825
1826         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1827         if (err < 0 || !args.started) {
1828                 pr_err("Failed to parse /proc/kallsyms\n");
1829                 return err;
1830         }
1831
1832         filt->addr = args.start;
1833         filt->size = args.size;
1834
1835         return 0;
1836 }
1837
1838 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1839 {
1840         if (start + size >= filt->addr)
1841                 return 0;
1842
1843         if (filt->sym_from) {
1844                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1845                        filt->sym_to, start, filt->sym_from, filt->addr);
1846         } else {
1847                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1848                        filt->sym_to, start, filt->addr);
1849         }
1850
1851         return -EINVAL;
1852 }
1853
1854 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1855 {
1856         bool no_size = false;
1857         u64 start, size;
1858         int err;
1859
1860         if (symbol_conf.kptr_restrict) {
1861                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1862                 return -EINVAL;
1863         }
1864
1865         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1866                 return addr_filter__entire_kernel(filt);
1867
1868         if (filt->sym_from) {
1869                 err = find_kern_sym(filt->sym_from, &start, &size,
1870                                     filt->sym_from_idx);
1871                 if (err)
1872                         return err;
1873                 filt->addr = start;
1874                 if (filt->range && !filt->size && !filt->sym_to) {
1875                         filt->size = size;
1876                         no_size = !size;
1877                 }
1878         }
1879
1880         if (filt->sym_to) {
1881                 err = find_kern_sym(filt->sym_to, &start, &size,
1882                                     filt->sym_to_idx);
1883                 if (err)
1884                         return err;
1885
1886                 err = check_end_after_start(filt, start, size);
1887                 if (err)
1888                         return err;
1889                 filt->size = start + size - filt->addr;
1890                 no_size = !size;
1891         }
1892
1893         /* The very last symbol in kallsyms does not imply a particular size */
1894         if (no_size) {
1895                 pr_err("Cannot determine size of symbol '%s'\n",
1896                        filt->sym_to ? filt->sym_to : filt->sym_from);
1897                 return -EINVAL;
1898         }
1899
1900         return 0;
1901 }
1902
1903 static struct dso *load_dso(const char *name)
1904 {
1905         struct map *map;
1906         struct dso *dso;
1907
1908         map = dso__new_map(name);
1909         if (!map)
1910                 return NULL;
1911
1912         if (map__load(map) < 0)
1913                 pr_err("File '%s' not found or has no symbols.\n", name);
1914
1915         dso = dso__get(map->dso);
1916
1917         map__put(map);
1918
1919         return dso;
1920 }
1921
1922 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1923                           int idx)
1924 {
1925         /* Same name, and global or the n'th found or any */
1926         return !arch__compare_symbol_names(name, sym->name) &&
1927                ((!idx && sym->binding == STB_GLOBAL) ||
1928                 (idx > 0 && ++*cnt == idx) ||
1929                 idx < 0);
1930 }
1931
1932 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1933 {
1934         struct symbol *sym;
1935         bool near = false;
1936         int cnt = 0;
1937
1938         pr_err("Multiple symbols with name '%s'\n", sym_name);
1939
1940         sym = dso__first_symbol(dso);
1941         while (sym) {
1942                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1943                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1944                                ++cnt, sym->start,
1945                                sym->binding == STB_GLOBAL ? 'g' :
1946                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1947                                sym->name);
1948                         near = true;
1949                 } else if (near) {
1950                         near = false;
1951                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1952                 }
1953                 sym = dso__next_symbol(sym);
1954         }
1955
1956         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1957                sym_name);
1958         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1959 }
1960
1961 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1962                         u64 *size, int idx)
1963 {
1964         struct symbol *sym;
1965         int cnt = 0;
1966
1967         *start = 0;
1968         *size = 0;
1969
1970         sym = dso__first_symbol(dso);
1971         while (sym) {
1972                 if (*start) {
1973                         if (!*size)
1974                                 *size = sym->start - *start;
1975                         if (idx > 0) {
1976                                 if (*size)
1977                                         return 1;
1978                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1979                                 print_duplicate_syms(dso, sym_name);
1980                                 return -EINVAL;
1981                         }
1982                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1983                         *start = sym->start;
1984                         *size = sym->end - sym->start;
1985                 }
1986                 sym = dso__next_symbol(sym);
1987         }
1988
1989         if (!*start)
1990                 return sym_not_found_error(sym_name, idx);
1991
1992         return 0;
1993 }
1994
1995 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1996 {
1997         if (dso__data_file_size(dso, NULL)) {
1998                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
1999                        filt->filename);
2000                 return -EINVAL;
2001         }
2002
2003         filt->addr = 0;
2004         filt->size = dso->data.file_size;
2005
2006         return 0;
2007 }
2008
2009 static int addr_filter__resolve_syms(struct addr_filter *filt)
2010 {
2011         u64 start, size;
2012         struct dso *dso;
2013         int err = 0;
2014
2015         if (!filt->sym_from && !filt->sym_to)
2016                 return 0;
2017
2018         if (!filt->filename)
2019                 return addr_filter__resolve_kernel_syms(filt);
2020
2021         dso = load_dso(filt->filename);
2022         if (!dso) {
2023                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2024                 return -EINVAL;
2025         }
2026
2027         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2028                 err = addr_filter__entire_dso(filt, dso);
2029                 goto put_dso;
2030         }
2031
2032         if (filt->sym_from) {
2033                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2034                                    filt->sym_from_idx);
2035                 if (err)
2036                         goto put_dso;
2037                 filt->addr = start;
2038                 if (filt->range && !filt->size && !filt->sym_to)
2039                         filt->size = size;
2040         }
2041
2042         if (filt->sym_to) {
2043                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2044                                    filt->sym_to_idx);
2045                 if (err)
2046                         goto put_dso;
2047
2048                 err = check_end_after_start(filt, start, size);
2049                 if (err)
2050                         return err;
2051
2052                 filt->size = start + size - filt->addr;
2053         }
2054
2055 put_dso:
2056         dso__put(dso);
2057
2058         return err;
2059 }
2060
2061 static char *addr_filter__to_str(struct addr_filter *filt)
2062 {
2063         char filename_buf[PATH_MAX];
2064         const char *at = "";
2065         const char *fn = "";
2066         char *filter;
2067         int err;
2068
2069         if (filt->filename) {
2070                 at = "@";
2071                 fn = realpath(filt->filename, filename_buf);
2072                 if (!fn)
2073                         return NULL;
2074         }
2075
2076         if (filt->range) {
2077                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2078                                filt->action, filt->addr, filt->size, at, fn);
2079         } else {
2080                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2081                                filt->action, filt->addr, at, fn);
2082         }
2083
2084         return err < 0 ? NULL : filter;
2085 }
2086
2087 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2088                              int max_nr)
2089 {
2090         struct addr_filters filts;
2091         struct addr_filter *filt;
2092         int err;
2093
2094         addr_filters__init(&filts);
2095
2096         err = addr_filters__parse_bare_filter(&filts, filter);
2097         if (err)
2098                 goto out_exit;
2099
2100         if (filts.cnt > max_nr) {
2101                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2102                        filts.cnt, max_nr);
2103                 err = -EINVAL;
2104                 goto out_exit;
2105         }
2106
2107         list_for_each_entry(filt, &filts.head, list) {
2108                 char *new_filter;
2109
2110                 err = addr_filter__resolve_syms(filt);
2111                 if (err)
2112                         goto out_exit;
2113
2114                 new_filter = addr_filter__to_str(filt);
2115                 if (!new_filter) {
2116                         err = -ENOMEM;
2117                         goto out_exit;
2118                 }
2119
2120                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2121                         err = -ENOMEM;
2122                         goto out_exit;
2123                 }
2124         }
2125
2126 out_exit:
2127         addr_filters__exit(&filts);
2128
2129         if (err) {
2130                 pr_err("Failed to parse address filter: '%s'\n", filter);
2131                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2132                 pr_err("Where multiple filters are separated by space or comma.\n");
2133         }
2134
2135         return err;
2136 }
2137
2138 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2139 {
2140         struct perf_pmu *pmu = NULL;
2141
2142         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2143                 if (pmu->type == evsel->attr.type)
2144                         break;
2145         }
2146
2147         return pmu;
2148 }
2149
2150 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2151 {
2152         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2153         int nr_addr_filters = 0;
2154
2155         if (!pmu)
2156                 return 0;
2157
2158         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2159
2160         return nr_addr_filters;
2161 }
2162
2163 int auxtrace_parse_filters(struct perf_evlist *evlist)
2164 {
2165         struct perf_evsel *evsel;
2166         char *filter;
2167         int err, max_nr;
2168
2169         evlist__for_each_entry(evlist, evsel) {
2170                 filter = evsel->filter;
2171                 max_nr = perf_evsel__nr_addr_filter(evsel);
2172                 if (!filter || !max_nr)
2173                         continue;
2174                 evsel->filter = NULL;
2175                 err = parse_addr_filter(evsel, filter, max_nr);
2176                 free(filter);
2177                 if (err)
2178                         return err;
2179                 pr_debug("Address filter: %s\n", evsel->filter);
2180         }
2181
2182         return 0;
2183 }