Merge tag 'x86-boot-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / sound / firewire / amdtp-stream.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE         3072
20 #define CYCLES_PER_SECOND       8000
21 #define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_MAX_SECOND         8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT   16
33 #define TAG_NO_CIP_HEADER       0
34 #define TAG_CIP                 1
35
36 /* common isochronous packet header parameters */
37 #define CIP_EOH_SHIFT           31
38 #define CIP_EOH                 (1u << CIP_EOH_SHIFT)
39 #define CIP_EOH_MASK            0x80000000
40 #define CIP_SID_SHIFT           24
41 #define CIP_SID_MASK            0x3f000000
42 #define CIP_DBS_MASK            0x00ff0000
43 #define CIP_DBS_SHIFT           16
44 #define CIP_SPH_MASK            0x00000400
45 #define CIP_SPH_SHIFT           10
46 #define CIP_DBC_MASK            0x000000ff
47 #define CIP_FMT_SHIFT           24
48 #define CIP_FMT_MASK            0x3f000000
49 #define CIP_FDF_MASK            0x00ff0000
50 #define CIP_FDF_SHIFT           16
51 #define CIP_SYT_MASK            0x0000ffff
52 #define CIP_SYT_NO_INFO         0xffff
53
54 /* Audio and Music transfer protocol specific parameters */
55 #define CIP_FMT_AM              0x10
56 #define AMDTP_FDF_NO_DATA       0xff
57
58 // For iso header, tstamp and 2 CIP header.
59 #define IR_CTX_HEADER_SIZE_CIP          16
60 // For iso header and tstamp.
61 #define IR_CTX_HEADER_SIZE_NO_CIP       8
62 #define HEADER_TSTAMP_MASK      0x0000ffff
63
64 #define IT_PKT_HEADER_SIZE_CIP          8 // For 2 CIP header.
65 #define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
66
67 static void pcm_period_work(struct work_struct *work);
68
69 /**
70  * amdtp_stream_init - initialize an AMDTP stream structure
71  * @s: the AMDTP stream to initialize
72  * @unit: the target of the stream
73  * @dir: the direction of stream
74  * @flags: the packet transmission method to use
75  * @fmt: the value of fmt field in CIP header
76  * @process_ctx_payloads: callback handler to process payloads of isoc context
77  * @protocol_size: the size to allocate newly for protocol
78  */
79 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
80                       enum amdtp_stream_direction dir, enum cip_flags flags,
81                       unsigned int fmt,
82                       amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
83                       unsigned int protocol_size)
84 {
85         if (process_ctx_payloads == NULL)
86                 return -EINVAL;
87
88         s->protocol = kzalloc(protocol_size, GFP_KERNEL);
89         if (!s->protocol)
90                 return -ENOMEM;
91
92         s->unit = unit;
93         s->direction = dir;
94         s->flags = flags;
95         s->context = ERR_PTR(-1);
96         mutex_init(&s->mutex);
97         INIT_WORK(&s->period_work, pcm_period_work);
98         s->packet_index = 0;
99
100         init_waitqueue_head(&s->callback_wait);
101         s->callbacked = false;
102
103         s->fmt = fmt;
104         s->process_ctx_payloads = process_ctx_payloads;
105
106         if (dir == AMDTP_OUT_STREAM)
107                 s->ctx_data.rx.syt_override = -1;
108
109         return 0;
110 }
111 EXPORT_SYMBOL(amdtp_stream_init);
112
113 /**
114  * amdtp_stream_destroy - free stream resources
115  * @s: the AMDTP stream to destroy
116  */
117 void amdtp_stream_destroy(struct amdtp_stream *s)
118 {
119         /* Not initialized. */
120         if (s->protocol == NULL)
121                 return;
122
123         WARN_ON(amdtp_stream_running(s));
124         kfree(s->protocol);
125         mutex_destroy(&s->mutex);
126 }
127 EXPORT_SYMBOL(amdtp_stream_destroy);
128
129 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
130         [CIP_SFC_32000]  =  8,
131         [CIP_SFC_44100]  =  8,
132         [CIP_SFC_48000]  =  8,
133         [CIP_SFC_88200]  = 16,
134         [CIP_SFC_96000]  = 16,
135         [CIP_SFC_176400] = 32,
136         [CIP_SFC_192000] = 32,
137 };
138 EXPORT_SYMBOL(amdtp_syt_intervals);
139
140 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
141         [CIP_SFC_32000]  =  32000,
142         [CIP_SFC_44100]  =  44100,
143         [CIP_SFC_48000]  =  48000,
144         [CIP_SFC_88200]  =  88200,
145         [CIP_SFC_96000]  =  96000,
146         [CIP_SFC_176400] = 176400,
147         [CIP_SFC_192000] = 192000,
148 };
149 EXPORT_SYMBOL(amdtp_rate_table);
150
151 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
152                                     struct snd_pcm_hw_rule *rule)
153 {
154         struct snd_interval *s = hw_param_interval(params, rule->var);
155         const struct snd_interval *r =
156                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
157         struct snd_interval t = {0};
158         unsigned int step = 0;
159         int i;
160
161         for (i = 0; i < CIP_SFC_COUNT; ++i) {
162                 if (snd_interval_test(r, amdtp_rate_table[i]))
163                         step = max(step, amdtp_syt_intervals[i]);
164         }
165
166         t.min = roundup(s->min, step);
167         t.max = rounddown(s->max, step);
168         t.integer = 1;
169
170         return snd_interval_refine(s, &t);
171 }
172
173 /**
174  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
175  * @s:          the AMDTP stream, which must be initialized.
176  * @runtime:    the PCM substream runtime
177  */
178 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
179                                         struct snd_pcm_runtime *runtime)
180 {
181         struct snd_pcm_hardware *hw = &runtime->hw;
182         unsigned int ctx_header_size;
183         unsigned int maximum_usec_per_period;
184         int err;
185
186         hw->info = SNDRV_PCM_INFO_BATCH |
187                    SNDRV_PCM_INFO_BLOCK_TRANSFER |
188                    SNDRV_PCM_INFO_INTERLEAVED |
189                    SNDRV_PCM_INFO_JOINT_DUPLEX |
190                    SNDRV_PCM_INFO_MMAP |
191                    SNDRV_PCM_INFO_MMAP_VALID;
192
193         /* SNDRV_PCM_INFO_BATCH */
194         hw->periods_min = 2;
195         hw->periods_max = UINT_MAX;
196
197         /* bytes for a frame */
198         hw->period_bytes_min = 4 * hw->channels_max;
199
200         /* Just to prevent from allocating much pages. */
201         hw->period_bytes_max = hw->period_bytes_min * 2048;
202         hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
203
204         // Linux driver for 1394 OHCI controller voluntarily flushes isoc
205         // context when total size of accumulated context header reaches
206         // PAGE_SIZE. This kicks work for the isoc context and brings
207         // callback in the middle of scheduled interrupts.
208         // Although AMDTP streams in the same domain use the same events per
209         // IRQ, use the largest size of context header between IT/IR contexts.
210         // Here, use the value of context header in IR context is for both
211         // contexts.
212         if (!(s->flags & CIP_NO_HEADER))
213                 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
214         else
215                 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
216         maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
217                                   CYCLES_PER_SECOND / ctx_header_size;
218
219         // In IEC 61883-6, one isoc packet can transfer events up to the value
220         // of syt interval. This comes from the interval of isoc cycle. As 1394
221         // OHCI controller can generate hardware IRQ per isoc packet, the
222         // interval is 125 usec.
223         // However, there are two ways of transmission in IEC 61883-6; blocking
224         // and non-blocking modes. In blocking mode, the sequence of isoc packet
225         // includes 'empty' or 'NODATA' packets which include no event. In
226         // non-blocking mode, the number of events per packet is variable up to
227         // the syt interval.
228         // Due to the above protocol design, the minimum PCM frames per
229         // interrupt should be double of the value of syt interval, thus it is
230         // 250 usec.
231         err = snd_pcm_hw_constraint_minmax(runtime,
232                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
233                                            250, maximum_usec_per_period);
234         if (err < 0)
235                 goto end;
236
237         /* Non-Blocking stream has no more constraints */
238         if (!(s->flags & CIP_BLOCKING))
239                 goto end;
240
241         /*
242          * One AMDTP packet can include some frames. In blocking mode, the
243          * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
244          * depending on its sampling rate. For accurate period interrupt, it's
245          * preferrable to align period/buffer sizes to current SYT_INTERVAL.
246          */
247         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
248                                   apply_constraint_to_size, NULL,
249                                   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
250                                   SNDRV_PCM_HW_PARAM_RATE, -1);
251         if (err < 0)
252                 goto end;
253         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
254                                   apply_constraint_to_size, NULL,
255                                   SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
256                                   SNDRV_PCM_HW_PARAM_RATE, -1);
257         if (err < 0)
258                 goto end;
259 end:
260         return err;
261 }
262 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
263
264 /**
265  * amdtp_stream_set_parameters - set stream parameters
266  * @s: the AMDTP stream to configure
267  * @rate: the sample rate
268  * @data_block_quadlets: the size of a data block in quadlet unit
269  *
270  * The parameters must be set before the stream is started, and must not be
271  * changed while the stream is running.
272  */
273 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
274                                 unsigned int data_block_quadlets)
275 {
276         unsigned int sfc;
277
278         for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
279                 if (amdtp_rate_table[sfc] == rate)
280                         break;
281         }
282         if (sfc == ARRAY_SIZE(amdtp_rate_table))
283                 return -EINVAL;
284
285         s->sfc = sfc;
286         s->data_block_quadlets = data_block_quadlets;
287         s->syt_interval = amdtp_syt_intervals[sfc];
288
289         // default buffering in the device.
290         if (s->direction == AMDTP_OUT_STREAM) {
291                 s->ctx_data.rx.transfer_delay =
292                                         TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
293
294                 if (s->flags & CIP_BLOCKING) {
295                         // additional buffering needed to adjust for no-data
296                         // packets.
297                         s->ctx_data.rx.transfer_delay +=
298                                 TICKS_PER_SECOND * s->syt_interval / rate;
299                 }
300         }
301
302         return 0;
303 }
304 EXPORT_SYMBOL(amdtp_stream_set_parameters);
305
306 /**
307  * amdtp_stream_get_max_payload - get the stream's packet size
308  * @s: the AMDTP stream
309  *
310  * This function must not be called before the stream has been configured
311  * with amdtp_stream_set_parameters().
312  */
313 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
314 {
315         unsigned int multiplier = 1;
316         unsigned int cip_header_size = 0;
317
318         if (s->flags & CIP_JUMBO_PAYLOAD)
319                 multiplier = 5;
320         if (!(s->flags & CIP_NO_HEADER))
321                 cip_header_size = sizeof(__be32) * 2;
322
323         return cip_header_size +
324                 s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
325 }
326 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
327
328 /**
329  * amdtp_stream_pcm_prepare - prepare PCM device for running
330  * @s: the AMDTP stream
331  *
332  * This function should be called from the PCM device's .prepare callback.
333  */
334 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
335 {
336         cancel_work_sync(&s->period_work);
337         s->pcm_buffer_pointer = 0;
338         s->pcm_period_pointer = 0;
339 }
340 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
341
342 static unsigned int calculate_data_blocks(unsigned int *data_block_state,
343                                 bool is_blocking, bool is_no_info,
344                                 unsigned int syt_interval, enum cip_sfc sfc)
345 {
346         unsigned int data_blocks;
347
348         /* Blocking mode. */
349         if (is_blocking) {
350                 /* This module generate empty packet for 'no data'. */
351                 if (is_no_info)
352                         data_blocks = 0;
353                 else
354                         data_blocks = syt_interval;
355         /* Non-blocking mode. */
356         } else {
357                 if (!cip_sfc_is_base_44100(sfc)) {
358                         // Sample_rate / 8000 is an integer, and precomputed.
359                         data_blocks = *data_block_state;
360                 } else {
361                         unsigned int phase = *data_block_state;
362
363                 /*
364                  * This calculates the number of data blocks per packet so that
365                  * 1) the overall rate is correct and exactly synchronized to
366                  *    the bus clock, and
367                  * 2) packets with a rounded-up number of blocks occur as early
368                  *    as possible in the sequence (to prevent underruns of the
369                  *    device's buffer).
370                  */
371                         if (sfc == CIP_SFC_44100)
372                                 /* 6 6 5 6 5 6 5 ... */
373                                 data_blocks = 5 + ((phase & 1) ^
374                                                    (phase == 0 || phase >= 40));
375                         else
376                                 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
377                                 data_blocks = 11 * (sfc >> 1) + (phase == 0);
378                         if (++phase >= (80 >> (sfc >> 1)))
379                                 phase = 0;
380                         *data_block_state = phase;
381                 }
382         }
383
384         return data_blocks;
385 }
386
387 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
388                         unsigned int *syt_offset_state, enum cip_sfc sfc)
389 {
390         unsigned int syt_offset;
391
392         if (*last_syt_offset < TICKS_PER_CYCLE) {
393                 if (!cip_sfc_is_base_44100(sfc))
394                         syt_offset = *last_syt_offset + *syt_offset_state;
395                 else {
396                 /*
397                  * The time, in ticks, of the n'th SYT_INTERVAL sample is:
398                  *   n * SYT_INTERVAL * 24576000 / sample_rate
399                  * Modulo TICKS_PER_CYCLE, the difference between successive
400                  * elements is about 1386.23.  Rounding the results of this
401                  * formula to the SYT precision results in a sequence of
402                  * differences that begins with:
403                  *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
404                  * This code generates _exactly_ the same sequence.
405                  */
406                         unsigned int phase = *syt_offset_state;
407                         unsigned int index = phase % 13;
408
409                         syt_offset = *last_syt_offset;
410                         syt_offset += 1386 + ((index && !(index & 3)) ||
411                                               phase == 146);
412                         if (++phase >= 147)
413                                 phase = 0;
414                         *syt_offset_state = phase;
415                 }
416         } else
417                 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
418         *last_syt_offset = syt_offset;
419
420         if (syt_offset >= TICKS_PER_CYCLE)
421                 syt_offset = CIP_SYT_NO_INFO;
422
423         return syt_offset;
424 }
425
426 static void update_pcm_pointers(struct amdtp_stream *s,
427                                 struct snd_pcm_substream *pcm,
428                                 unsigned int frames)
429 {
430         unsigned int ptr;
431
432         ptr = s->pcm_buffer_pointer + frames;
433         if (ptr >= pcm->runtime->buffer_size)
434                 ptr -= pcm->runtime->buffer_size;
435         WRITE_ONCE(s->pcm_buffer_pointer, ptr);
436
437         s->pcm_period_pointer += frames;
438         if (s->pcm_period_pointer >= pcm->runtime->period_size) {
439                 s->pcm_period_pointer -= pcm->runtime->period_size;
440                 queue_work(system_highpri_wq, &s->period_work);
441         }
442 }
443
444 static void pcm_period_work(struct work_struct *work)
445 {
446         struct amdtp_stream *s = container_of(work, struct amdtp_stream,
447                                               period_work);
448         struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
449
450         if (pcm)
451                 snd_pcm_period_elapsed(pcm);
452 }
453
454 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
455                         bool sched_irq)
456 {
457         int err;
458
459         params->interrupt = sched_irq;
460         params->tag = s->tag;
461         params->sy = 0;
462
463         err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
464                                    s->buffer.packets[s->packet_index].offset);
465         if (err < 0) {
466                 dev_err(&s->unit->device, "queueing error: %d\n", err);
467                 goto end;
468         }
469
470         if (++s->packet_index >= s->queue_size)
471                 s->packet_index = 0;
472 end:
473         return err;
474 }
475
476 static inline int queue_out_packet(struct amdtp_stream *s,
477                                    struct fw_iso_packet *params, bool sched_irq)
478 {
479         params->skip =
480                 !!(params->header_length == 0 && params->payload_length == 0);
481         return queue_packet(s, params, sched_irq);
482 }
483
484 static inline int queue_in_packet(struct amdtp_stream *s,
485                                   struct fw_iso_packet *params)
486 {
487         // Queue one packet for IR context.
488         params->header_length = s->ctx_data.tx.ctx_header_size;
489         params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
490         params->skip = false;
491         return queue_packet(s, params, false);
492 }
493
494 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
495                         unsigned int data_block_counter, unsigned int syt)
496 {
497         cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
498                                 (s->data_block_quadlets << CIP_DBS_SHIFT) |
499                                 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
500                                 data_block_counter);
501         cip_header[1] = cpu_to_be32(CIP_EOH |
502                         ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
503                         ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
504                         (syt & CIP_SYT_MASK));
505 }
506
507 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
508                                 struct fw_iso_packet *params,
509                                 unsigned int data_blocks,
510                                 unsigned int data_block_counter,
511                                 unsigned int syt, unsigned int index)
512 {
513         unsigned int payload_length;
514         __be32 *cip_header;
515
516         payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
517         params->payload_length = payload_length;
518
519         if (!(s->flags & CIP_NO_HEADER)) {
520                 cip_header = (__be32 *)params->header;
521                 generate_cip_header(s, cip_header, data_block_counter, syt);
522                 params->header_length = 2 * sizeof(__be32);
523                 payload_length += params->header_length;
524         } else {
525                 cip_header = NULL;
526         }
527
528         trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
529                            data_block_counter, s->packet_index, index);
530 }
531
532 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
533                             unsigned int payload_length,
534                             unsigned int *data_blocks,
535                             unsigned int *data_block_counter, unsigned int *syt)
536 {
537         u32 cip_header[2];
538         unsigned int sph;
539         unsigned int fmt;
540         unsigned int fdf;
541         unsigned int dbc;
542         bool lost;
543
544         cip_header[0] = be32_to_cpu(buf[0]);
545         cip_header[1] = be32_to_cpu(buf[1]);
546
547         /*
548          * This module supports 'Two-quadlet CIP header with SYT field'.
549          * For convenience, also check FMT field is AM824 or not.
550          */
551         if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
552              ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
553             (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
554                 dev_info_ratelimited(&s->unit->device,
555                                 "Invalid CIP header for AMDTP: %08X:%08X\n",
556                                 cip_header[0], cip_header[1]);
557                 return -EAGAIN;
558         }
559
560         /* Check valid protocol or not. */
561         sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
562         fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
563         if (sph != s->sph || fmt != s->fmt) {
564                 dev_info_ratelimited(&s->unit->device,
565                                      "Detect unexpected protocol: %08x %08x\n",
566                                      cip_header[0], cip_header[1]);
567                 return -EAGAIN;
568         }
569
570         /* Calculate data blocks */
571         fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
572         if (payload_length < sizeof(__be32) * 2 ||
573             (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
574                 *data_blocks = 0;
575         } else {
576                 unsigned int data_block_quadlets =
577                                 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
578                 /* avoid division by zero */
579                 if (data_block_quadlets == 0) {
580                         dev_err(&s->unit->device,
581                                 "Detect invalid value in dbs field: %08X\n",
582                                 cip_header[0]);
583                         return -EPROTO;
584                 }
585                 if (s->flags & CIP_WRONG_DBS)
586                         data_block_quadlets = s->data_block_quadlets;
587
588                 *data_blocks = (payload_length / sizeof(__be32) - 2) /
589                                                         data_block_quadlets;
590         }
591
592         /* Check data block counter continuity */
593         dbc = cip_header[0] & CIP_DBC_MASK;
594         if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
595             *data_block_counter != UINT_MAX)
596                 dbc = *data_block_counter;
597
598         if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
599             *data_block_counter == UINT_MAX) {
600                 lost = false;
601         } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
602                 lost = dbc != *data_block_counter;
603         } else {
604                 unsigned int dbc_interval;
605
606                 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
607                         dbc_interval = s->ctx_data.tx.dbc_interval;
608                 else
609                         dbc_interval = *data_blocks;
610
611                 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
612         }
613
614         if (lost) {
615                 dev_err(&s->unit->device,
616                         "Detect discontinuity of CIP: %02X %02X\n",
617                         *data_block_counter, dbc);
618                 return -EIO;
619         }
620
621         *data_block_counter = dbc;
622
623         *syt = cip_header[1] & CIP_SYT_MASK;
624
625         return 0;
626 }
627
628 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
629                                const __be32 *ctx_header,
630                                unsigned int *payload_length,
631                                unsigned int *data_blocks,
632                                unsigned int *data_block_counter,
633                                unsigned int *syt, unsigned int packet_index, unsigned int index)
634 {
635         const __be32 *cip_header;
636         unsigned int cip_header_size;
637         int err;
638
639         *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
640
641         if (!(s->flags & CIP_NO_HEADER))
642                 cip_header_size = 8;
643         else
644                 cip_header_size = 0;
645
646         if (*payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
647                 dev_err(&s->unit->device,
648                         "Detect jumbo payload: %04x %04x\n",
649                         *payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
650                 return -EIO;
651         }
652
653         if (cip_header_size > 0) {
654                 cip_header = ctx_header + 2;
655                 err = check_cip_header(s, cip_header, *payload_length,
656                                        data_blocks, data_block_counter, syt);
657                 if (err < 0)
658                         return err;
659         } else {
660                 cip_header = NULL;
661                 err = 0;
662                 *data_blocks = *payload_length / sizeof(__be32) /
663                                s->data_block_quadlets;
664                 *syt = 0;
665
666                 if (*data_block_counter == UINT_MAX)
667                         *data_block_counter = 0;
668         }
669
670         trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
671                            *data_block_counter, packet_index, index);
672
673         return err;
674 }
675
676 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
677 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
678 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
679 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
680 {
681         u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
682         return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
683 }
684
685 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
686 {
687         cycle += addend;
688         if (cycle >= OHCI_MAX_SECOND * CYCLES_PER_SECOND)
689                 cycle -= OHCI_MAX_SECOND * CYCLES_PER_SECOND;
690         return cycle;
691 }
692
693 // Align to actual cycle count for the packet which is going to be scheduled.
694 // This module queued the same number of isochronous cycle as the size of queue
695 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
696 // the size of queue for scheduled cycle.
697 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
698                                    unsigned int queue_size)
699 {
700         u32 cycle = compute_cycle_count(ctx_header_tstamp);
701         return increment_cycle_count(cycle, queue_size);
702 }
703
704 static int generate_device_pkt_descs(struct amdtp_stream *s,
705                                      struct pkt_desc *descs,
706                                      const __be32 *ctx_header,
707                                      unsigned int packets)
708 {
709         unsigned int dbc = s->data_block_counter;
710         unsigned int packet_index = s->packet_index;
711         unsigned int queue_size = s->queue_size;
712         int i;
713         int err;
714
715         for (i = 0; i < packets; ++i) {
716                 struct pkt_desc *desc = descs + i;
717                 unsigned int cycle;
718                 unsigned int payload_length;
719                 unsigned int data_blocks;
720                 unsigned int syt;
721
722                 cycle = compute_cycle_count(ctx_header[1]);
723
724                 err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
725                                           &data_blocks, &dbc, &syt, packet_index, i);
726                 if (err < 0)
727                         return err;
728
729                 desc->cycle = cycle;
730                 desc->syt = syt;
731                 desc->data_blocks = data_blocks;
732                 desc->data_block_counter = dbc;
733                 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
734
735                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
736                         dbc = (dbc + desc->data_blocks) & 0xff;
737
738                 ctx_header +=
739                         s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
740
741                 packet_index = (packet_index + 1) % queue_size;
742         }
743
744         s->data_block_counter = dbc;
745
746         return 0;
747 }
748
749 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
750                                 unsigned int transfer_delay)
751 {
752         unsigned int syt;
753
754         syt_offset += transfer_delay;
755         syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
756               (syt_offset % TICKS_PER_CYCLE);
757         return syt & CIP_SYT_MASK;
758 }
759
760 static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs,
761                                const __be32 *ctx_header, unsigned int packets,
762                                const struct seq_desc *seq_descs,
763                                unsigned int seq_size)
764 {
765         unsigned int dbc = s->data_block_counter;
766         unsigned int seq_index = s->ctx_data.rx.seq_index;
767         int i;
768
769         for (i = 0; i < packets; ++i) {
770                 struct pkt_desc *desc = descs + i;
771                 unsigned int index = (s->packet_index + i) % s->queue_size;
772                 const struct seq_desc *seq = seq_descs + seq_index;
773                 unsigned int syt;
774
775                 desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
776
777                 syt = seq->syt_offset;
778                 if (syt != CIP_SYT_NO_INFO) {
779                         syt = compute_syt(syt, desc->cycle,
780                                           s->ctx_data.rx.transfer_delay);
781                 }
782                 desc->syt = syt;
783                 desc->data_blocks = seq->data_blocks;
784
785                 if (s->flags & CIP_DBC_IS_END_EVENT)
786                         dbc = (dbc + desc->data_blocks) & 0xff;
787
788                 desc->data_block_counter = dbc;
789
790                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
791                         dbc = (dbc + desc->data_blocks) & 0xff;
792
793                 desc->ctx_payload = s->buffer.packets[index].buffer;
794
795                 seq_index = (seq_index + 1) % seq_size;
796
797                 ++ctx_header;
798         }
799
800         s->data_block_counter = dbc;
801         s->ctx_data.rx.seq_index = seq_index;
802 }
803
804 static inline void cancel_stream(struct amdtp_stream *s)
805 {
806         s->packet_index = -1;
807         if (in_interrupt())
808                 amdtp_stream_pcm_abort(s);
809         WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
810 }
811
812 static void process_ctx_payloads(struct amdtp_stream *s,
813                                  const struct pkt_desc *descs,
814                                  unsigned int packets)
815 {
816         struct snd_pcm_substream *pcm;
817         unsigned int pcm_frames;
818
819         pcm = READ_ONCE(s->pcm);
820         pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
821         if (pcm)
822                 update_pcm_pointers(s, pcm, pcm_frames);
823 }
824
825 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
826                                 size_t header_length, void *header,
827                                 void *private_data)
828 {
829         struct amdtp_stream *s = private_data;
830         const struct amdtp_domain *d = s->domain;
831         const __be32 *ctx_header = header;
832         unsigned int events_per_period = s->ctx_data.rx.events_per_period;
833         unsigned int event_count = s->ctx_data.rx.event_count;
834         unsigned int packets;
835         int i;
836
837         if (s->packet_index < 0)
838                 return;
839
840         // Calculate the number of packets in buffer and check XRUN.
841         packets = header_length / sizeof(*ctx_header);
842
843         generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq_descs,
844                            d->seq_size);
845
846         process_ctx_payloads(s, s->pkt_descs, packets);
847
848         for (i = 0; i < packets; ++i) {
849                 const struct pkt_desc *desc = s->pkt_descs + i;
850                 unsigned int syt;
851                 struct {
852                         struct fw_iso_packet params;
853                         __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
854                 } template = { {0}, {0} };
855                 bool sched_irq = false;
856
857                 if (s->ctx_data.rx.syt_override < 0)
858                         syt = desc->syt;
859                 else
860                         syt = s->ctx_data.rx.syt_override;
861
862                 build_it_pkt_header(s, desc->cycle, &template.params,
863                                     desc->data_blocks, desc->data_block_counter,
864                                     syt, i);
865
866                 if (s == s->domain->irq_target) {
867                         event_count += desc->data_blocks;
868                         if (event_count >= events_per_period) {
869                                 event_count -= events_per_period;
870                                 sched_irq = true;
871                         }
872                 }
873
874                 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
875                         cancel_stream(s);
876                         return;
877                 }
878         }
879
880         s->ctx_data.rx.event_count = event_count;
881 }
882
883 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
884                                size_t header_length, void *header,
885                                void *private_data)
886 {
887         struct amdtp_stream *s = private_data;
888         __be32 *ctx_header = header;
889         unsigned int packets;
890         int i;
891         int err;
892
893         if (s->packet_index < 0)
894                 return;
895
896         // Calculate the number of packets in buffer and check XRUN.
897         packets = header_length / s->ctx_data.tx.ctx_header_size;
898
899         err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
900         if (err < 0) {
901                 if (err != -EAGAIN) {
902                         cancel_stream(s);
903                         return;
904                 }
905         } else {
906                 process_ctx_payloads(s, s->pkt_descs, packets);
907         }
908
909         for (i = 0; i < packets; ++i) {
910                 struct fw_iso_packet params = {0};
911
912                 if (queue_in_packet(s, &params) < 0) {
913                         cancel_stream(s);
914                         return;
915                 }
916         }
917 }
918
919 static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets)
920 {
921         struct amdtp_stream *irq_target = d->irq_target;
922         unsigned int seq_tail = d->seq_tail;
923         unsigned int seq_size = d->seq_size;
924         unsigned int min_avail;
925         struct amdtp_stream *s;
926
927         min_avail = d->seq_size;
928         list_for_each_entry(s, &d->streams, list) {
929                 unsigned int seq_index;
930                 unsigned int avail;
931
932                 if (s->direction == AMDTP_IN_STREAM)
933                         continue;
934
935                 seq_index = s->ctx_data.rx.seq_index;
936                 avail = d->seq_tail;
937                 if (seq_index > avail)
938                         avail += d->seq_size;
939                 avail -= seq_index;
940
941                 if (avail < min_avail)
942                         min_avail = avail;
943         }
944
945         while (min_avail < packets) {
946                 struct seq_desc *desc = d->seq_descs + seq_tail;
947
948                 desc->syt_offset = calculate_syt_offset(&d->last_syt_offset,
949                                         &d->syt_offset_state, irq_target->sfc);
950                 desc->data_blocks = calculate_data_blocks(&d->data_block_state,
951                                 !!(irq_target->flags & CIP_BLOCKING),
952                                 desc->syt_offset == CIP_SYT_NO_INFO,
953                                 irq_target->syt_interval, irq_target->sfc);
954
955                 ++seq_tail;
956                 seq_tail %= seq_size;
957
958                 ++min_avail;
959         }
960
961         d->seq_tail = seq_tail;
962 }
963
964 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp,
965                                 size_t header_length, void *header,
966                                 void *private_data)
967 {
968         struct amdtp_stream *irq_target = private_data;
969         struct amdtp_domain *d = irq_target->domain;
970         unsigned int packets = header_length / sizeof(__be32);
971         struct amdtp_stream *s;
972
973         // Record enough entries with extra 3 cycles at least.
974         pool_ideal_seq_descs(d, packets + 3);
975
976         out_stream_callback(context, tstamp, header_length, header, irq_target);
977         if (amdtp_streaming_error(irq_target))
978                 goto error;
979
980         list_for_each_entry(s, &d->streams, list) {
981                 if (s != irq_target && amdtp_stream_running(s)) {
982                         fw_iso_context_flush_completions(s->context);
983                         if (amdtp_streaming_error(s))
984                                 goto error;
985                 }
986         }
987
988         return;
989 error:
990         if (amdtp_stream_running(irq_target))
991                 cancel_stream(irq_target);
992
993         list_for_each_entry(s, &d->streams, list) {
994                 if (amdtp_stream_running(s))
995                         cancel_stream(s);
996         }
997 }
998
999 // this is executed one time.
1000 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1001                                         u32 tstamp, size_t header_length,
1002                                         void *header, void *private_data)
1003 {
1004         struct amdtp_stream *s = private_data;
1005         const __be32 *ctx_header = header;
1006         u32 cycle;
1007
1008         /*
1009          * For in-stream, first packet has come.
1010          * For out-stream, prepared to transmit first packet
1011          */
1012         s->callbacked = true;
1013         wake_up(&s->callback_wait);
1014
1015         if (s->direction == AMDTP_IN_STREAM) {
1016                 cycle = compute_cycle_count(ctx_header[1]);
1017
1018                 context->callback.sc = in_stream_callback;
1019         } else {
1020                 cycle = compute_it_cycle(*ctx_header, s->queue_size);
1021
1022                 if (s == s->domain->irq_target)
1023                         context->callback.sc = irq_target_callback;
1024                 else
1025                         context->callback.sc = out_stream_callback;
1026         }
1027
1028         s->start_cycle = cycle;
1029
1030         context->callback.sc(context, tstamp, header_length, header, s);
1031 }
1032
1033 /**
1034  * amdtp_stream_start - start transferring packets
1035  * @s: the AMDTP stream to start
1036  * @channel: the isochronous channel on the bus
1037  * @speed: firewire speed code
1038  * @start_cycle: the isochronous cycle to start the context. Start immediately
1039  *               if negative value is given.
1040  * @queue_size: The number of packets in the queue.
1041  * @idle_irq_interval: the interval to queue packet during initial state.
1042  *
1043  * The stream cannot be started until it has been configured with
1044  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1045  * device can be started.
1046  */
1047 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1048                               int start_cycle, unsigned int queue_size,
1049                               unsigned int idle_irq_interval)
1050 {
1051         bool is_irq_target = (s == s->domain->irq_target);
1052         unsigned int ctx_header_size;
1053         unsigned int max_ctx_payload_size;
1054         enum dma_data_direction dir;
1055         int type, tag, err;
1056
1057         mutex_lock(&s->mutex);
1058
1059         if (WARN_ON(amdtp_stream_running(s) ||
1060                     (s->data_block_quadlets < 1))) {
1061                 err = -EBADFD;
1062                 goto err_unlock;
1063         }
1064
1065         if (s->direction == AMDTP_IN_STREAM) {
1066                 // NOTE: IT context should be used for constant IRQ.
1067                 if (is_irq_target) {
1068                         err = -EINVAL;
1069                         goto err_unlock;
1070                 }
1071
1072                 s->data_block_counter = UINT_MAX;
1073         } else {
1074                 s->data_block_counter = 0;
1075         }
1076
1077         // initialize packet buffer.
1078         max_ctx_payload_size = amdtp_stream_get_max_payload(s);
1079         if (s->direction == AMDTP_IN_STREAM) {
1080                 dir = DMA_FROM_DEVICE;
1081                 type = FW_ISO_CONTEXT_RECEIVE;
1082                 if (!(s->flags & CIP_NO_HEADER)) {
1083                         max_ctx_payload_size -= 8;
1084                         ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1085                 } else {
1086                         ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1087                 }
1088         } else {
1089                 dir = DMA_TO_DEVICE;
1090                 type = FW_ISO_CONTEXT_TRANSMIT;
1091                 ctx_header_size = 0;    // No effect for IT context.
1092
1093                 if (!(s->flags & CIP_NO_HEADER))
1094                         max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1095         }
1096
1097         err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size,
1098                                       max_ctx_payload_size, dir);
1099         if (err < 0)
1100                 goto err_unlock;
1101         s->queue_size = queue_size;
1102
1103         s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1104                                           type, channel, speed, ctx_header_size,
1105                                           amdtp_stream_first_callback, s);
1106         if (IS_ERR(s->context)) {
1107                 err = PTR_ERR(s->context);
1108                 if (err == -EBUSY)
1109                         dev_err(&s->unit->device,
1110                                 "no free stream on this controller\n");
1111                 goto err_buffer;
1112         }
1113
1114         amdtp_stream_update(s);
1115
1116         if (s->direction == AMDTP_IN_STREAM) {
1117                 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1118                 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1119         }
1120
1121         if (s->flags & CIP_NO_HEADER)
1122                 s->tag = TAG_NO_CIP_HEADER;
1123         else
1124                 s->tag = TAG_CIP;
1125
1126         s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1127                                GFP_KERNEL);
1128         if (!s->pkt_descs) {
1129                 err = -ENOMEM;
1130                 goto err_context;
1131         }
1132
1133         s->packet_index = 0;
1134         do {
1135                 struct fw_iso_packet params;
1136
1137                 if (s->direction == AMDTP_IN_STREAM) {
1138                         err = queue_in_packet(s, &params);
1139                 } else {
1140                         bool sched_irq = false;
1141
1142                         params.header_length = 0;
1143                         params.payload_length = 0;
1144
1145                         if (is_irq_target) {
1146                                 sched_irq = !((s->packet_index + 1) %
1147                                               idle_irq_interval);
1148                         }
1149
1150                         err = queue_out_packet(s, &params, sched_irq);
1151                 }
1152                 if (err < 0)
1153                         goto err_pkt_descs;
1154         } while (s->packet_index > 0);
1155
1156         /* NOTE: TAG1 matches CIP. This just affects in stream. */
1157         tag = FW_ISO_CONTEXT_MATCH_TAG1;
1158         if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1159                 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1160
1161         s->callbacked = false;
1162         err = fw_iso_context_start(s->context, start_cycle, 0, tag);
1163         if (err < 0)
1164                 goto err_pkt_descs;
1165
1166         mutex_unlock(&s->mutex);
1167
1168         return 0;
1169 err_pkt_descs:
1170         kfree(s->pkt_descs);
1171 err_context:
1172         fw_iso_context_destroy(s->context);
1173         s->context = ERR_PTR(-1);
1174 err_buffer:
1175         iso_packets_buffer_destroy(&s->buffer, s->unit);
1176 err_unlock:
1177         mutex_unlock(&s->mutex);
1178
1179         return err;
1180 }
1181
1182 /**
1183  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1184  * @d: the AMDTP domain.
1185  * @s: the AMDTP stream that transports the PCM data
1186  *
1187  * Returns the current buffer position, in frames.
1188  */
1189 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1190                                               struct amdtp_stream *s)
1191 {
1192         struct amdtp_stream *irq_target = d->irq_target;
1193
1194         if (irq_target && amdtp_stream_running(irq_target)) {
1195                 // This function is called in software IRQ context of
1196                 // period_work or process context.
1197                 //
1198                 // When the software IRQ context was scheduled by software IRQ
1199                 // context of IT contexts, queued packets were already handled.
1200                 // Therefore, no need to flush the queue in buffer furthermore.
1201                 //
1202                 // When the process context reach here, some packets will be
1203                 // already queued in the buffer. These packets should be handled
1204                 // immediately to keep better granularity of PCM pointer.
1205                 //
1206                 // Later, the process context will sometimes schedules software
1207                 // IRQ context of the period_work. Then, no need to flush the
1208                 // queue by the same reason as described in the above
1209                 if (current_work() != &s->period_work) {
1210                         // Queued packet should be processed without any kernel
1211                         // preemption to keep latency against bus cycle.
1212                         preempt_disable();
1213                         fw_iso_context_flush_completions(irq_target->context);
1214                         preempt_enable();
1215                 }
1216         }
1217
1218         return READ_ONCE(s->pcm_buffer_pointer);
1219 }
1220 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1221
1222 /**
1223  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1224  * @d: the AMDTP domain.
1225  * @s: the AMDTP stream that transfers the PCM frames
1226  *
1227  * Returns zero always.
1228  */
1229 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1230 {
1231         struct amdtp_stream *irq_target = d->irq_target;
1232
1233         // Process isochronous packets for recent isochronous cycle to handle
1234         // queued PCM frames.
1235         if (irq_target && amdtp_stream_running(irq_target)) {
1236                 // Queued packet should be processed without any kernel
1237                 // preemption to keep latency against bus cycle.
1238                 preempt_disable();
1239                 fw_iso_context_flush_completions(irq_target->context);
1240                 preempt_enable();
1241         }
1242
1243         return 0;
1244 }
1245 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1246
1247 /**
1248  * amdtp_stream_update - update the stream after a bus reset
1249  * @s: the AMDTP stream
1250  */
1251 void amdtp_stream_update(struct amdtp_stream *s)
1252 {
1253         /* Precomputing. */
1254         WRITE_ONCE(s->source_node_id_field,
1255                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1256 }
1257 EXPORT_SYMBOL(amdtp_stream_update);
1258
1259 /**
1260  * amdtp_stream_stop - stop sending packets
1261  * @s: the AMDTP stream to stop
1262  *
1263  * All PCM and MIDI devices of the stream must be stopped before the stream
1264  * itself can be stopped.
1265  */
1266 static void amdtp_stream_stop(struct amdtp_stream *s)
1267 {
1268         mutex_lock(&s->mutex);
1269
1270         if (!amdtp_stream_running(s)) {
1271                 mutex_unlock(&s->mutex);
1272                 return;
1273         }
1274
1275         cancel_work_sync(&s->period_work);
1276         fw_iso_context_stop(s->context);
1277         fw_iso_context_destroy(s->context);
1278         s->context = ERR_PTR(-1);
1279         iso_packets_buffer_destroy(&s->buffer, s->unit);
1280         kfree(s->pkt_descs);
1281
1282         s->callbacked = false;
1283
1284         mutex_unlock(&s->mutex);
1285 }
1286
1287 /**
1288  * amdtp_stream_pcm_abort - abort the running PCM device
1289  * @s: the AMDTP stream about to be stopped
1290  *
1291  * If the isochronous stream needs to be stopped asynchronously, call this
1292  * function first to stop the PCM device.
1293  */
1294 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1295 {
1296         struct snd_pcm_substream *pcm;
1297
1298         pcm = READ_ONCE(s->pcm);
1299         if (pcm)
1300                 snd_pcm_stop_xrun(pcm);
1301 }
1302 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1303
1304 /**
1305  * amdtp_domain_init - initialize an AMDTP domain structure
1306  * @d: the AMDTP domain to initialize.
1307  */
1308 int amdtp_domain_init(struct amdtp_domain *d)
1309 {
1310         INIT_LIST_HEAD(&d->streams);
1311
1312         d->events_per_period = 0;
1313
1314         d->seq_descs = NULL;
1315
1316         return 0;
1317 }
1318 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1319
1320 /**
1321  * amdtp_domain_destroy - destroy an AMDTP domain structure
1322  * @d: the AMDTP domain to destroy.
1323  */
1324 void amdtp_domain_destroy(struct amdtp_domain *d)
1325 {
1326         // At present nothing to do.
1327         return;
1328 }
1329 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1330
1331 /**
1332  * amdtp_domain_add_stream - register isoc context into the domain.
1333  * @d: the AMDTP domain.
1334  * @s: the AMDTP stream.
1335  * @channel: the isochronous channel on the bus.
1336  * @speed: firewire speed code.
1337  */
1338 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1339                             int channel, int speed)
1340 {
1341         struct amdtp_stream *tmp;
1342
1343         list_for_each_entry(tmp, &d->streams, list) {
1344                 if (s == tmp)
1345                         return -EBUSY;
1346         }
1347
1348         list_add(&s->list, &d->streams);
1349
1350         s->channel = channel;
1351         s->speed = speed;
1352         s->domain = d;
1353
1354         return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1357
1358 static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1359 {
1360         int generation;
1361         int rcode;
1362         __be32 reg;
1363         u32 data;
1364
1365         // This is a request to local 1394 OHCI controller and expected to
1366         // complete without any event waiting.
1367         generation = fw_card->generation;
1368         smp_rmb();      // node_id vs. generation.
1369         rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1370                                    fw_card->node_id, generation, SCODE_100,
1371                                    CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1372                                    &reg, sizeof(reg));
1373         if (rcode != RCODE_COMPLETE)
1374                 return -EIO;
1375
1376         data = be32_to_cpu(reg);
1377         *cur_cycle = data >> 12;
1378
1379         return 0;
1380 }
1381
1382 /**
1383  * amdtp_domain_start - start sending packets for isoc context in the domain.
1384  * @d: the AMDTP domain.
1385  * @ir_delay_cycle: the cycle delay to start all IR contexts.
1386  */
1387 int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
1388 {
1389         static const struct {
1390                 unsigned int data_block;
1391                 unsigned int syt_offset;
1392         } *entry, initial_state[] = {
1393                 [CIP_SFC_32000]  = {  4, 3072 },
1394                 [CIP_SFC_48000]  = {  6, 1024 },
1395                 [CIP_SFC_96000]  = { 12, 1024 },
1396                 [CIP_SFC_192000] = { 24, 1024 },
1397                 [CIP_SFC_44100]  = {  0,   67 },
1398                 [CIP_SFC_88200]  = {  0,   67 },
1399                 [CIP_SFC_176400] = {  0,   67 },
1400         };
1401         unsigned int events_per_buffer = d->events_per_buffer;
1402         unsigned int events_per_period = d->events_per_period;
1403         unsigned int idle_irq_interval;
1404         unsigned int queue_size;
1405         struct amdtp_stream *s;
1406         int cycle;
1407         int err;
1408
1409         // Select an IT context as IRQ target.
1410         list_for_each_entry(s, &d->streams, list) {
1411                 if (s->direction == AMDTP_OUT_STREAM)
1412                         break;
1413         }
1414         if (!s)
1415                 return -ENXIO;
1416         d->irq_target = s;
1417
1418         // This is a case that AMDTP streams in domain run just for MIDI
1419         // substream. Use the number of events equivalent to 10 msec as
1420         // interval of hardware IRQ.
1421         if (events_per_period == 0)
1422                 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1423         if (events_per_buffer == 0)
1424                 events_per_buffer = events_per_period * 3;
1425
1426         queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1427                                   amdtp_rate_table[d->irq_target->sfc]);
1428
1429         d->seq_descs = kcalloc(queue_size, sizeof(*d->seq_descs), GFP_KERNEL);
1430         if (!d->seq_descs)
1431                 return -ENOMEM;
1432         d->seq_size = queue_size;
1433         d->seq_tail = 0;
1434
1435         entry = &initial_state[s->sfc];
1436         d->data_block_state = entry->data_block;
1437         d->syt_offset_state = entry->syt_offset;
1438         d->last_syt_offset = TICKS_PER_CYCLE;
1439
1440         if (ir_delay_cycle > 0) {
1441                 struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1442
1443                 err = get_current_cycle_time(fw_card, &cycle);
1444                 if (err < 0)
1445                         goto error;
1446
1447                 // No need to care overflow in cycle field because of enough
1448                 // width.
1449                 cycle += ir_delay_cycle;
1450
1451                 // Round up to sec field.
1452                 if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1453                         unsigned int sec;
1454
1455                         // The sec field can overflow.
1456                         sec = (cycle & 0xffffe000) >> 13;
1457                         cycle = (++sec << 13) |
1458                                 ((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1459                 }
1460
1461                 // In OHCI 1394 specification, lower 2 bits are available for
1462                 // sec field.
1463                 cycle &= 0x00007fff;
1464         } else {
1465                 cycle = -1;
1466         }
1467
1468         list_for_each_entry(s, &d->streams, list) {
1469                 int cycle_match;
1470
1471                 if (s->direction == AMDTP_IN_STREAM) {
1472                         cycle_match = cycle;
1473                 } else {
1474                         // IT context starts immediately.
1475                         cycle_match = -1;
1476                         s->ctx_data.rx.seq_index = 0;
1477                 }
1478
1479                 if (s != d->irq_target) {
1480                         err = amdtp_stream_start(s, s->channel, s->speed,
1481                                                  cycle_match, queue_size, 0);
1482                         if (err < 0)
1483                                 goto error;
1484                 }
1485         }
1486
1487         s = d->irq_target;
1488         s->ctx_data.rx.events_per_period = events_per_period;
1489         s->ctx_data.rx.event_count = 0;
1490         s->ctx_data.rx.seq_index = 0;
1491
1492         idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1493                                          amdtp_rate_table[d->irq_target->sfc]);
1494         err = amdtp_stream_start(s, s->channel, s->speed, -1, queue_size,
1495                                  idle_irq_interval);
1496         if (err < 0)
1497                 goto error;
1498
1499         return 0;
1500 error:
1501         list_for_each_entry(s, &d->streams, list)
1502                 amdtp_stream_stop(s);
1503         kfree(d->seq_descs);
1504         d->seq_descs = NULL;
1505         return err;
1506 }
1507 EXPORT_SYMBOL_GPL(amdtp_domain_start);
1508
1509 /**
1510  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1511  * @d: the AMDTP domain to which the isoc contexts belong.
1512  */
1513 void amdtp_domain_stop(struct amdtp_domain *d)
1514 {
1515         struct amdtp_stream *s, *next;
1516
1517         if (d->irq_target)
1518                 amdtp_stream_stop(d->irq_target);
1519
1520         list_for_each_entry_safe(s, next, &d->streams, list) {
1521                 list_del(&s->list);
1522
1523                 if (s != d->irq_target)
1524                         amdtp_stream_stop(s);
1525         }
1526
1527         d->events_per_period = 0;
1528         d->irq_target = NULL;
1529
1530         kfree(d->seq_descs);
1531         d->seq_descs = NULL;
1532 }
1533 EXPORT_SYMBOL_GPL(amdtp_domain_stop);