Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62         struct snd_pcm_runtime *runtime = substream->runtime;
63         snd_pcm_uframes_t frames, ofs, transfer;
64         int err;
65
66         if (runtime->silence_size < runtime->boundary) {
67                 snd_pcm_sframes_t noise_dist, n;
68                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69                 if (runtime->silence_start != appl_ptr) {
70                         n = appl_ptr - runtime->silence_start;
71                         if (n < 0)
72                                 n += runtime->boundary;
73                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74                                 runtime->silence_filled -= n;
75                         else
76                                 runtime->silence_filled = 0;
77                         runtime->silence_start = appl_ptr;
78                 }
79                 if (runtime->silence_filled >= runtime->buffer_size)
80                         return;
81                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83                         return;
84                 frames = runtime->silence_threshold - noise_dist;
85                 if (frames > runtime->silence_size)
86                         frames = runtime->silence_size;
87         } else {
88                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
89                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90                         if (avail > runtime->buffer_size)
91                                 avail = runtime->buffer_size;
92                         runtime->silence_filled = avail > 0 ? avail : 0;
93                         runtime->silence_start = (runtime->status->hw_ptr +
94                                                   runtime->silence_filled) %
95                                                  runtime->boundary;
96                 } else {
97                         ofs = runtime->status->hw_ptr;
98                         frames = new_hw_ptr - ofs;
99                         if ((snd_pcm_sframes_t)frames < 0)
100                                 frames += runtime->boundary;
101                         runtime->silence_filled -= frames;
102                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103                                 runtime->silence_filled = 0;
104                                 runtime->silence_start = new_hw_ptr;
105                         } else {
106                                 runtime->silence_start = ofs;
107                         }
108                 }
109                 frames = runtime->buffer_size - runtime->silence_filled;
110         }
111         if (snd_BUG_ON(frames > runtime->buffer_size))
112                 return;
113         if (frames == 0)
114                 return;
115         ofs = runtime->silence_start % runtime->buffer_size;
116         while (frames > 0) {
117                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118                 err = fill_silence_frames(substream, ofs, transfer);
119                 snd_BUG_ON(err < 0);
120                 runtime->silence_filled += transfer;
121                 frames -= transfer;
122                 ofs = 0;
123         }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128                            char *name, size_t len)
129 {
130         snprintf(name, len, "pcmC%dD%d%c:%d",
131                  substream->pcm->card->number,
132                  substream->pcm->device,
133                  substream->stream ? 'c' : 'p',
134                  substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146                         ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)     0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do {                      \
152                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
153                         dump_stack();                           \
154         } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158         struct snd_pcm_runtime *runtime = substream->runtime;
159
160         trace_xrun(substream);
161         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165                 char name[16];
166                 snd_pcm_debug_name(substream, name, sizeof(name));
167                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168                 dump_stack_on_xrun(substream);
169         }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
174         do {                                                            \
175                 trace_hw_ptr_error(substream, reason);  \
176                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
177                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178                                            (in_interrupt) ? 'Q' : 'P', ##args); \
179                         dump_stack_on_xrun(substream);                  \
180                 }                                                       \
181         } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190                          struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201                 if (avail >= runtime->buffer_size) {
202                         snd_pcm_drain_done(substream);
203                         return -EPIPE;
204                 }
205         } else {
206                 if (avail >= runtime->stop_threshold) {
207                         xrun(substream);
208                         return -EPIPE;
209                 }
210         }
211         if (runtime->twake) {
212                 if (avail >= runtime->twake)
213                         wake_up(&runtime->tsleep);
214         } else if (avail >= runtime->control->avail_min)
215                 wake_up(&runtime->sleep);
216         return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220                                 struct timespec *curr_tstamp,
221                                 struct timespec *audio_tstamp)
222 {
223         struct snd_pcm_runtime *runtime = substream->runtime;
224         u64 audio_frames, audio_nsecs;
225         struct timespec driver_tstamp;
226
227         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228                 return;
229
230         if (!(substream->ops->get_time_info) ||
231                 (runtime->audio_tstamp_report.actual_type ==
232                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234                 /*
235                  * provide audio timestamp derived from pointer position
236                  * add delay only if requested
237                  */
238
239                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241                 if (runtime->audio_tstamp_config.report_delay) {
242                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243                                 audio_frames -=  runtime->delay;
244                         else
245                                 audio_frames +=  runtime->delay;
246                 }
247                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248                                 runtime->rate);
249                 *audio_tstamp = ns_to_timespec(audio_nsecs);
250         }
251         if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252                 runtime->status->audio_tstamp = *audio_tstamp;
253                 runtime->status->tstamp = *curr_tstamp;
254         }
255
256         /*
257          * re-take a driver timestamp to let apps detect if the reference tstamp
258          * read by low-level hardware was provided with a delay
259          */
260         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261         runtime->driver_tstamp = driver_tstamp;
262 }
263
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265                                   unsigned int in_interrupt)
266 {
267         struct snd_pcm_runtime *runtime = substream->runtime;
268         snd_pcm_uframes_t pos;
269         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270         snd_pcm_sframes_t hdelta, delta;
271         unsigned long jdelta;
272         unsigned long curr_jiffies;
273         struct timespec curr_tstamp;
274         struct timespec audio_tstamp;
275         int crossed_boundary = 0;
276
277         old_hw_ptr = runtime->status->hw_ptr;
278
279         /*
280          * group pointer, time and jiffies reads to allow for more
281          * accurate correlations/corrections.
282          * The values are stored at the end of this routine after
283          * corrections for hw_ptr position
284          */
285         pos = substream->ops->pointer(substream);
286         curr_jiffies = jiffies;
287         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288                 if ((substream->ops->get_time_info) &&
289                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290                         substream->ops->get_time_info(substream, &curr_tstamp,
291                                                 &audio_tstamp,
292                                                 &runtime->audio_tstamp_config,
293                                                 &runtime->audio_tstamp_report);
294
295                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298                 } else
299                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300         }
301
302         if (pos == SNDRV_PCM_POS_XRUN) {
303                 xrun(substream);
304                 return -EPIPE;
305         }
306         if (pos >= runtime->buffer_size) {
307                 if (printk_ratelimit()) {
308                         char name[16];
309                         snd_pcm_debug_name(substream, name, sizeof(name));
310                         pcm_err(substream->pcm,
311                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312                                 name, pos, runtime->buffer_size,
313                                 runtime->period_size);
314                 }
315                 pos = 0;
316         }
317         pos -= pos % runtime->min_align;
318         trace_hwptr(substream, pos, in_interrupt);
319         hw_base = runtime->hw_ptr_base;
320         new_hw_ptr = hw_base + pos;
321         if (in_interrupt) {
322                 /* we know that one period was processed */
323                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
325                 if (delta > new_hw_ptr) {
326                         /* check for double acknowledged interrupts */
327                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329                                 hw_base += runtime->buffer_size;
330                                 if (hw_base >= runtime->boundary) {
331                                         hw_base = 0;
332                                         crossed_boundary++;
333                                 }
334                                 new_hw_ptr = hw_base + pos;
335                                 goto __delta;
336                         }
337                 }
338         }
339         /* new_hw_ptr might be lower than old_hw_ptr in case when */
340         /* pointer crosses the end of the ring buffer */
341         if (new_hw_ptr < old_hw_ptr) {
342                 hw_base += runtime->buffer_size;
343                 if (hw_base >= runtime->boundary) {
344                         hw_base = 0;
345                         crossed_boundary++;
346                 }
347                 new_hw_ptr = hw_base + pos;
348         }
349       __delta:
350         delta = new_hw_ptr - old_hw_ptr;
351         if (delta < 0)
352                 delta += runtime->boundary;
353
354         if (runtime->no_period_wakeup) {
355                 snd_pcm_sframes_t xrun_threshold;
356                 /*
357                  * Without regular period interrupts, we have to check
358                  * the elapsed time to detect xruns.
359                  */
360                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362                         goto no_delta_check;
363                 hdelta = jdelta - delta * HZ / runtime->rate;
364                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365                 while (hdelta > xrun_threshold) {
366                         delta += runtime->buffer_size;
367                         hw_base += runtime->buffer_size;
368                         if (hw_base >= runtime->boundary) {
369                                 hw_base = 0;
370                                 crossed_boundary++;
371                         }
372                         new_hw_ptr = hw_base + pos;
373                         hdelta -= runtime->hw_ptr_buffer_jiffies;
374                 }
375                 goto no_delta_check;
376         }
377
378         /* something must be really wrong */
379         if (delta >= runtime->buffer_size + runtime->period_size) {
380                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382                              substream->stream, (long)pos,
383                              (long)new_hw_ptr, (long)old_hw_ptr);
384                 return 0;
385         }
386
387         /* Do jiffies check only in xrun_debug mode */
388         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389                 goto no_jiffies_check;
390
391         /* Skip the jiffies check for hardwares with BATCH flag.
392          * Such hardware usually just increases the position at each IRQ,
393          * thus it can't give any strange position.
394          */
395         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396                 goto no_jiffies_check;
397         hdelta = delta;
398         if (hdelta < runtime->delay)
399                 goto no_jiffies_check;
400         hdelta -= runtime->delay;
401         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403                 delta = jdelta /
404                         (((runtime->period_size * HZ) / runtime->rate)
405                                                                 + HZ/100);
406                 /* move new_hw_ptr according jiffies not pos variable */
407                 new_hw_ptr = old_hw_ptr;
408                 hw_base = delta;
409                 /* use loop to avoid checks for delta overflows */
410                 /* the delta value is small or zero in most cases */
411                 while (delta > 0) {
412                         new_hw_ptr += runtime->period_size;
413                         if (new_hw_ptr >= runtime->boundary) {
414                                 new_hw_ptr -= runtime->boundary;
415                                 crossed_boundary--;
416                         }
417                         delta--;
418                 }
419                 /* align hw_base to buffer_size */
420                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422                              (long)pos, (long)hdelta,
423                              (long)runtime->period_size, jdelta,
424                              ((hdelta * HZ) / runtime->rate), hw_base,
425                              (unsigned long)old_hw_ptr,
426                              (unsigned long)new_hw_ptr);
427                 /* reset values to proper state */
428                 delta = 0;
429                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430         }
431  no_jiffies_check:
432         if (delta > runtime->period_size + runtime->period_size / 2) {
433                 hw_ptr_error(substream, in_interrupt,
434                              "Lost interrupts?",
435                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436                              substream->stream, (long)delta,
437                              (long)new_hw_ptr,
438                              (long)old_hw_ptr);
439         }
440
441  no_delta_check:
442         if (runtime->status->hw_ptr == new_hw_ptr) {
443                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
444                 return 0;
445         }
446
447         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
448             runtime->silence_size > 0)
449                 snd_pcm_playback_silence(substream, new_hw_ptr);
450
451         if (in_interrupt) {
452                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
453                 if (delta < 0)
454                         delta += runtime->boundary;
455                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
456                 runtime->hw_ptr_interrupt += delta;
457                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
458                         runtime->hw_ptr_interrupt -= runtime->boundary;
459         }
460         runtime->hw_ptr_base = hw_base;
461         runtime->status->hw_ptr = new_hw_ptr;
462         runtime->hw_ptr_jiffies = curr_jiffies;
463         if (crossed_boundary) {
464                 snd_BUG_ON(crossed_boundary != 1);
465                 runtime->hw_ptr_wrap += runtime->boundary;
466         }
467
468         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
469
470         return snd_pcm_update_state(substream, runtime);
471 }
472
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
475 {
476         return snd_pcm_update_hw_ptr0(substream, 0);
477 }
478
479 /**
480  * snd_pcm_set_ops - set the PCM operators
481  * @pcm: the pcm instance
482  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483  * @ops: the operator table
484  *
485  * Sets the given PCM operators to the pcm instance.
486  */
487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
488                      const struct snd_pcm_ops *ops)
489 {
490         struct snd_pcm_str *stream = &pcm->streams[direction];
491         struct snd_pcm_substream *substream;
492         
493         for (substream = stream->substream; substream != NULL; substream = substream->next)
494                 substream->ops = ops;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_ops);
497
498 /**
499  * snd_pcm_sync - set the PCM sync id
500  * @substream: the pcm substream
501  *
502  * Sets the PCM sync identifier for the card.
503  */
504 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
505 {
506         struct snd_pcm_runtime *runtime = substream->runtime;
507         
508         runtime->sync.id32[0] = substream->pcm->card->number;
509         runtime->sync.id32[1] = -1;
510         runtime->sync.id32[2] = -1;
511         runtime->sync.id32[3] = -1;
512 }
513 EXPORT_SYMBOL(snd_pcm_set_sync);
514
515 /*
516  *  Standard ioctl routine
517  */
518
519 static inline unsigned int div32(unsigned int a, unsigned int b, 
520                                  unsigned int *r)
521 {
522         if (b == 0) {
523                 *r = 0;
524                 return UINT_MAX;
525         }
526         *r = a % b;
527         return a / b;
528 }
529
530 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 {
532         if (b == 0)
533                 return UINT_MAX;
534         return a / b;
535 }
536
537 static inline unsigned int div_up(unsigned int a, unsigned int b)
538 {
539         unsigned int r;
540         unsigned int q;
541         if (b == 0)
542                 return UINT_MAX;
543         q = div32(a, b, &r);
544         if (r)
545                 ++q;
546         return q;
547 }
548
549 static inline unsigned int mul(unsigned int a, unsigned int b)
550 {
551         if (a == 0)
552                 return 0;
553         if (div_down(UINT_MAX, a) < b)
554                 return UINT_MAX;
555         return a * b;
556 }
557
558 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
559                                     unsigned int c, unsigned int *r)
560 {
561         u_int64_t n = (u_int64_t) a * b;
562         if (c == 0) {
563                 snd_BUG_ON(!n);
564                 *r = 0;
565                 return UINT_MAX;
566         }
567         n = div_u64_rem(n, c, r);
568         if (n >= UINT_MAX) {
569                 *r = 0;
570                 return UINT_MAX;
571         }
572         return n;
573 }
574
575 /**
576  * snd_interval_refine - refine the interval value of configurator
577  * @i: the interval value to refine
578  * @v: the interval value to refer to
579  *
580  * Refines the interval value with the reference value.
581  * The interval is changed to the range satisfying both intervals.
582  * The interval status (min, max, integer, etc.) are evaluated.
583  *
584  * Return: Positive if the value is changed, zero if it's not changed, or a
585  * negative error code.
586  */
587 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
588 {
589         int changed = 0;
590         if (snd_BUG_ON(snd_interval_empty(i)))
591                 return -EINVAL;
592         if (i->min < v->min) {
593                 i->min = v->min;
594                 i->openmin = v->openmin;
595                 changed = 1;
596         } else if (i->min == v->min && !i->openmin && v->openmin) {
597                 i->openmin = 1;
598                 changed = 1;
599         }
600         if (i->max > v->max) {
601                 i->max = v->max;
602                 i->openmax = v->openmax;
603                 changed = 1;
604         } else if (i->max == v->max && !i->openmax && v->openmax) {
605                 i->openmax = 1;
606                 changed = 1;
607         }
608         if (!i->integer && v->integer) {
609                 i->integer = 1;
610                 changed = 1;
611         }
612         if (i->integer) {
613                 if (i->openmin) {
614                         i->min++;
615                         i->openmin = 0;
616                 }
617                 if (i->openmax) {
618                         i->max--;
619                         i->openmax = 0;
620                 }
621         } else if (!i->openmin && !i->openmax && i->min == i->max)
622                 i->integer = 1;
623         if (snd_interval_checkempty(i)) {
624                 snd_interval_none(i);
625                 return -EINVAL;
626         }
627         return changed;
628 }
629 EXPORT_SYMBOL(snd_interval_refine);
630
631 static int snd_interval_refine_first(struct snd_interval *i)
632 {
633         if (snd_BUG_ON(snd_interval_empty(i)))
634                 return -EINVAL;
635         if (snd_interval_single(i))
636                 return 0;
637         i->max = i->min;
638         i->openmax = i->openmin;
639         if (i->openmax)
640                 i->max++;
641         return 1;
642 }
643
644 static int snd_interval_refine_last(struct snd_interval *i)
645 {
646         if (snd_BUG_ON(snd_interval_empty(i)))
647                 return -EINVAL;
648         if (snd_interval_single(i))
649                 return 0;
650         i->min = i->max;
651         i->openmin = i->openmax;
652         if (i->openmin)
653                 i->min--;
654         return 1;
655 }
656
657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658 {
659         if (a->empty || b->empty) {
660                 snd_interval_none(c);
661                 return;
662         }
663         c->empty = 0;
664         c->min = mul(a->min, b->min);
665         c->openmin = (a->openmin || b->openmin);
666         c->max = mul(a->max,  b->max);
667         c->openmax = (a->openmax || b->openmax);
668         c->integer = (a->integer && b->integer);
669 }
670
671 /**
672  * snd_interval_div - refine the interval value with division
673  * @a: dividend
674  * @b: divisor
675  * @c: quotient
676  *
677  * c = a / b
678  *
679  * Returns non-zero if the value is changed, zero if not changed.
680  */
681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682 {
683         unsigned int r;
684         if (a->empty || b->empty) {
685                 snd_interval_none(c);
686                 return;
687         }
688         c->empty = 0;
689         c->min = div32(a->min, b->max, &r);
690         c->openmin = (r || a->openmin || b->openmax);
691         if (b->min > 0) {
692                 c->max = div32(a->max, b->min, &r);
693                 if (r) {
694                         c->max++;
695                         c->openmax = 1;
696                 } else
697                         c->openmax = (a->openmax || b->openmin);
698         } else {
699                 c->max = UINT_MAX;
700                 c->openmax = 0;
701         }
702         c->integer = 0;
703 }
704
705 /**
706  * snd_interval_muldivk - refine the interval value
707  * @a: dividend 1
708  * @b: dividend 2
709  * @k: divisor (as integer)
710  * @c: result
711   *
712  * c = a * b / k
713  *
714  * Returns non-zero if the value is changed, zero if not changed.
715  */
716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717                       unsigned int k, struct snd_interval *c)
718 {
719         unsigned int r;
720         if (a->empty || b->empty) {
721                 snd_interval_none(c);
722                 return;
723         }
724         c->empty = 0;
725         c->min = muldiv32(a->min, b->min, k, &r);
726         c->openmin = (r || a->openmin || b->openmin);
727         c->max = muldiv32(a->max, b->max, k, &r);
728         if (r) {
729                 c->max++;
730                 c->openmax = 1;
731         } else
732                 c->openmax = (a->openmax || b->openmax);
733         c->integer = 0;
734 }
735
736 /**
737  * snd_interval_mulkdiv - refine the interval value
738  * @a: dividend 1
739  * @k: dividend 2 (as integer)
740  * @b: divisor
741  * @c: result
742  *
743  * c = a * k / b
744  *
745  * Returns non-zero if the value is changed, zero if not changed.
746  */
747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748                       const struct snd_interval *b, struct snd_interval *c)
749 {
750         unsigned int r;
751         if (a->empty || b->empty) {
752                 snd_interval_none(c);
753                 return;
754         }
755         c->empty = 0;
756         c->min = muldiv32(a->min, k, b->max, &r);
757         c->openmin = (r || a->openmin || b->openmax);
758         if (b->min > 0) {
759                 c->max = muldiv32(a->max, k, b->min, &r);
760                 if (r) {
761                         c->max++;
762                         c->openmax = 1;
763                 } else
764                         c->openmax = (a->openmax || b->openmin);
765         } else {
766                 c->max = UINT_MAX;
767                 c->openmax = 0;
768         }
769         c->integer = 0;
770 }
771
772 /* ---- */
773
774
775 /**
776  * snd_interval_ratnum - refine the interval value
777  * @i: interval to refine
778  * @rats_count: number of ratnum_t 
779  * @rats: ratnum_t array
780  * @nump: pointer to store the resultant numerator
781  * @denp: pointer to store the resultant denominator
782  *
783  * Return: Positive if the value is changed, zero if it's not changed, or a
784  * negative error code.
785  */
786 int snd_interval_ratnum(struct snd_interval *i,
787                         unsigned int rats_count, const struct snd_ratnum *rats,
788                         unsigned int *nump, unsigned int *denp)
789 {
790         unsigned int best_num, best_den;
791         int best_diff;
792         unsigned int k;
793         struct snd_interval t;
794         int err;
795         unsigned int result_num, result_den;
796         int result_diff;
797
798         best_num = best_den = best_diff = 0;
799         for (k = 0; k < rats_count; ++k) {
800                 unsigned int num = rats[k].num;
801                 unsigned int den;
802                 unsigned int q = i->min;
803                 int diff;
804                 if (q == 0)
805                         q = 1;
806                 den = div_up(num, q);
807                 if (den < rats[k].den_min)
808                         continue;
809                 if (den > rats[k].den_max)
810                         den = rats[k].den_max;
811                 else {
812                         unsigned int r;
813                         r = (den - rats[k].den_min) % rats[k].den_step;
814                         if (r != 0)
815                                 den -= r;
816                 }
817                 diff = num - q * den;
818                 if (diff < 0)
819                         diff = -diff;
820                 if (best_num == 0 ||
821                     diff * best_den < best_diff * den) {
822                         best_diff = diff;
823                         best_den = den;
824                         best_num = num;
825                 }
826         }
827         if (best_den == 0) {
828                 i->empty = 1;
829                 return -EINVAL;
830         }
831         t.min = div_down(best_num, best_den);
832         t.openmin = !!(best_num % best_den);
833         
834         result_num = best_num;
835         result_diff = best_diff;
836         result_den = best_den;
837         best_num = best_den = best_diff = 0;
838         for (k = 0; k < rats_count; ++k) {
839                 unsigned int num = rats[k].num;
840                 unsigned int den;
841                 unsigned int q = i->max;
842                 int diff;
843                 if (q == 0) {
844                         i->empty = 1;
845                         return -EINVAL;
846                 }
847                 den = div_down(num, q);
848                 if (den > rats[k].den_max)
849                         continue;
850                 if (den < rats[k].den_min)
851                         den = rats[k].den_min;
852                 else {
853                         unsigned int r;
854                         r = (den - rats[k].den_min) % rats[k].den_step;
855                         if (r != 0)
856                                 den += rats[k].den_step - r;
857                 }
858                 diff = q * den - num;
859                 if (diff < 0)
860                         diff = -diff;
861                 if (best_num == 0 ||
862                     diff * best_den < best_diff * den) {
863                         best_diff = diff;
864                         best_den = den;
865                         best_num = num;
866                 }
867         }
868         if (best_den == 0) {
869                 i->empty = 1;
870                 return -EINVAL;
871         }
872         t.max = div_up(best_num, best_den);
873         t.openmax = !!(best_num % best_den);
874         t.integer = 0;
875         err = snd_interval_refine(i, &t);
876         if (err < 0)
877                 return err;
878
879         if (snd_interval_single(i)) {
880                 if (best_diff * result_den < result_diff * best_den) {
881                         result_num = best_num;
882                         result_den = best_den;
883                 }
884                 if (nump)
885                         *nump = result_num;
886                 if (denp)
887                         *denp = result_den;
888         }
889         return err;
890 }
891 EXPORT_SYMBOL(snd_interval_ratnum);
892
893 /**
894  * snd_interval_ratden - refine the interval value
895  * @i: interval to refine
896  * @rats_count: number of struct ratden
897  * @rats: struct ratden array
898  * @nump: pointer to store the resultant numerator
899  * @denp: pointer to store the resultant denominator
900  *
901  * Return: Positive if the value is changed, zero if it's not changed, or a
902  * negative error code.
903  */
904 static int snd_interval_ratden(struct snd_interval *i,
905                                unsigned int rats_count,
906                                const struct snd_ratden *rats,
907                                unsigned int *nump, unsigned int *denp)
908 {
909         unsigned int best_num, best_diff, best_den;
910         unsigned int k;
911         struct snd_interval t;
912         int err;
913
914         best_num = best_den = best_diff = 0;
915         for (k = 0; k < rats_count; ++k) {
916                 unsigned int num;
917                 unsigned int den = rats[k].den;
918                 unsigned int q = i->min;
919                 int diff;
920                 num = mul(q, den);
921                 if (num > rats[k].num_max)
922                         continue;
923                 if (num < rats[k].num_min)
924                         num = rats[k].num_max;
925                 else {
926                         unsigned int r;
927                         r = (num - rats[k].num_min) % rats[k].num_step;
928                         if (r != 0)
929                                 num += rats[k].num_step - r;
930                 }
931                 diff = num - q * den;
932                 if (best_num == 0 ||
933                     diff * best_den < best_diff * den) {
934                         best_diff = diff;
935                         best_den = den;
936                         best_num = num;
937                 }
938         }
939         if (best_den == 0) {
940                 i->empty = 1;
941                 return -EINVAL;
942         }
943         t.min = div_down(best_num, best_den);
944         t.openmin = !!(best_num % best_den);
945         
946         best_num = best_den = best_diff = 0;
947         for (k = 0; k < rats_count; ++k) {
948                 unsigned int num;
949                 unsigned int den = rats[k].den;
950                 unsigned int q = i->max;
951                 int diff;
952                 num = mul(q, den);
953                 if (num < rats[k].num_min)
954                         continue;
955                 if (num > rats[k].num_max)
956                         num = rats[k].num_max;
957                 else {
958                         unsigned int r;
959                         r = (num - rats[k].num_min) % rats[k].num_step;
960                         if (r != 0)
961                                 num -= r;
962                 }
963                 diff = q * den - num;
964                 if (best_num == 0 ||
965                     diff * best_den < best_diff * den) {
966                         best_diff = diff;
967                         best_den = den;
968                         best_num = num;
969                 }
970         }
971         if (best_den == 0) {
972                 i->empty = 1;
973                 return -EINVAL;
974         }
975         t.max = div_up(best_num, best_den);
976         t.openmax = !!(best_num % best_den);
977         t.integer = 0;
978         err = snd_interval_refine(i, &t);
979         if (err < 0)
980                 return err;
981
982         if (snd_interval_single(i)) {
983                 if (nump)
984                         *nump = best_num;
985                 if (denp)
986                         *denp = best_den;
987         }
988         return err;
989 }
990
991 /**
992  * snd_interval_list - refine the interval value from the list
993  * @i: the interval value to refine
994  * @count: the number of elements in the list
995  * @list: the value list
996  * @mask: the bit-mask to evaluate
997  *
998  * Refines the interval value from the list.
999  * When mask is non-zero, only the elements corresponding to bit 1 are
1000  * evaluated.
1001  *
1002  * Return: Positive if the value is changed, zero if it's not changed, or a
1003  * negative error code.
1004  */
1005 int snd_interval_list(struct snd_interval *i, unsigned int count,
1006                       const unsigned int *list, unsigned int mask)
1007 {
1008         unsigned int k;
1009         struct snd_interval list_range;
1010
1011         if (!count) {
1012                 i->empty = 1;
1013                 return -EINVAL;
1014         }
1015         snd_interval_any(&list_range);
1016         list_range.min = UINT_MAX;
1017         list_range.max = 0;
1018         for (k = 0; k < count; k++) {
1019                 if (mask && !(mask & (1 << k)))
1020                         continue;
1021                 if (!snd_interval_test(i, list[k]))
1022                         continue;
1023                 list_range.min = min(list_range.min, list[k]);
1024                 list_range.max = max(list_range.max, list[k]);
1025         }
1026         return snd_interval_refine(i, &list_range);
1027 }
1028 EXPORT_SYMBOL(snd_interval_list);
1029
1030 /**
1031  * snd_interval_ranges - refine the interval value from the list of ranges
1032  * @i: the interval value to refine
1033  * @count: the number of elements in the list of ranges
1034  * @ranges: the ranges list
1035  * @mask: the bit-mask to evaluate
1036  *
1037  * Refines the interval value from the list of ranges.
1038  * When mask is non-zero, only the elements corresponding to bit 1 are
1039  * evaluated.
1040  *
1041  * Return: Positive if the value is changed, zero if it's not changed, or a
1042  * negative error code.
1043  */
1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045                         const struct snd_interval *ranges, unsigned int mask)
1046 {
1047         unsigned int k;
1048         struct snd_interval range_union;
1049         struct snd_interval range;
1050
1051         if (!count) {
1052                 snd_interval_none(i);
1053                 return -EINVAL;
1054         }
1055         snd_interval_any(&range_union);
1056         range_union.min = UINT_MAX;
1057         range_union.max = 0;
1058         for (k = 0; k < count; k++) {
1059                 if (mask && !(mask & (1 << k)))
1060                         continue;
1061                 snd_interval_copy(&range, &ranges[k]);
1062                 if (snd_interval_refine(&range, i) < 0)
1063                         continue;
1064                 if (snd_interval_empty(&range))
1065                         continue;
1066
1067                 if (range.min < range_union.min) {
1068                         range_union.min = range.min;
1069                         range_union.openmin = 1;
1070                 }
1071                 if (range.min == range_union.min && !range.openmin)
1072                         range_union.openmin = 0;
1073                 if (range.max > range_union.max) {
1074                         range_union.max = range.max;
1075                         range_union.openmax = 1;
1076                 }
1077                 if (range.max == range_union.max && !range.openmax)
1078                         range_union.openmax = 0;
1079         }
1080         return snd_interval_refine(i, &range_union);
1081 }
1082 EXPORT_SYMBOL(snd_interval_ranges);
1083
1084 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085 {
1086         unsigned int n;
1087         int changed = 0;
1088         n = i->min % step;
1089         if (n != 0 || i->openmin) {
1090                 i->min += step - n;
1091                 i->openmin = 0;
1092                 changed = 1;
1093         }
1094         n = i->max % step;
1095         if (n != 0 || i->openmax) {
1096                 i->max -= n;
1097                 i->openmax = 0;
1098                 changed = 1;
1099         }
1100         if (snd_interval_checkempty(i)) {
1101                 i->empty = 1;
1102                 return -EINVAL;
1103         }
1104         return changed;
1105 }
1106
1107 /* Info constraints helpers */
1108
1109 /**
1110  * snd_pcm_hw_rule_add - add the hw-constraint rule
1111  * @runtime: the pcm runtime instance
1112  * @cond: condition bits
1113  * @var: the variable to evaluate
1114  * @func: the evaluation function
1115  * @private: the private data pointer passed to function
1116  * @dep: the dependent variables
1117  *
1118  * Return: Zero if successful, or a negative error code on failure.
1119  */
1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121                         int var,
1122                         snd_pcm_hw_rule_func_t func, void *private,
1123                         int dep, ...)
1124 {
1125         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126         struct snd_pcm_hw_rule *c;
1127         unsigned int k;
1128         va_list args;
1129         va_start(args, dep);
1130         if (constrs->rules_num >= constrs->rules_all) {
1131                 struct snd_pcm_hw_rule *new;
1132                 unsigned int new_rules = constrs->rules_all + 16;
1133                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1134                 if (!new) {
1135                         va_end(args);
1136                         return -ENOMEM;
1137                 }
1138                 if (constrs->rules) {
1139                         memcpy(new, constrs->rules,
1140                                constrs->rules_num * sizeof(*c));
1141                         kfree(constrs->rules);
1142                 }
1143                 constrs->rules = new;
1144                 constrs->rules_all = new_rules;
1145         }
1146         c = &constrs->rules[constrs->rules_num];
1147         c->cond = cond;
1148         c->func = func;
1149         c->var = var;
1150         c->private = private;
1151         k = 0;
1152         while (1) {
1153                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1154                         va_end(args);
1155                         return -EINVAL;
1156                 }
1157                 c->deps[k++] = dep;
1158                 if (dep < 0)
1159                         break;
1160                 dep = va_arg(args, int);
1161         }
1162         constrs->rules_num++;
1163         va_end(args);
1164         return 0;
1165 }
1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1167
1168 /**
1169  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1170  * @runtime: PCM runtime instance
1171  * @var: hw_params variable to apply the mask
1172  * @mask: the bitmap mask
1173  *
1174  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1175  *
1176  * Return: Zero if successful, or a negative error code on failure.
1177  */
1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1179                                u_int32_t mask)
1180 {
1181         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1182         struct snd_mask *maskp = constrs_mask(constrs, var);
1183         *maskp->bits &= mask;
1184         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1185         if (*maskp->bits == 0)
1186                 return -EINVAL;
1187         return 0;
1188 }
1189
1190 /**
1191  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1192  * @runtime: PCM runtime instance
1193  * @var: hw_params variable to apply the mask
1194  * @mask: the 64bit bitmap mask
1195  *
1196  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1197  *
1198  * Return: Zero if successful, or a negative error code on failure.
1199  */
1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1201                                  u_int64_t mask)
1202 {
1203         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1204         struct snd_mask *maskp = constrs_mask(constrs, var);
1205         maskp->bits[0] &= (u_int32_t)mask;
1206         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1207         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1208         if (! maskp->bits[0] && ! maskp->bits[1])
1209                 return -EINVAL;
1210         return 0;
1211 }
1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1213
1214 /**
1215  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1216  * @runtime: PCM runtime instance
1217  * @var: hw_params variable to apply the integer constraint
1218  *
1219  * Apply the constraint of integer to an interval parameter.
1220  *
1221  * Return: Positive if the value is changed, zero if it's not changed, or a
1222  * negative error code.
1223  */
1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1225 {
1226         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1227         return snd_interval_setinteger(constrs_interval(constrs, var));
1228 }
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1230
1231 /**
1232  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1233  * @runtime: PCM runtime instance
1234  * @var: hw_params variable to apply the range
1235  * @min: the minimal value
1236  * @max: the maximal value
1237  * 
1238  * Apply the min/max range constraint to an interval parameter.
1239  *
1240  * Return: Positive if the value is changed, zero if it's not changed, or a
1241  * negative error code.
1242  */
1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1244                                  unsigned int min, unsigned int max)
1245 {
1246         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247         struct snd_interval t;
1248         t.min = min;
1249         t.max = max;
1250         t.openmin = t.openmax = 0;
1251         t.integer = 0;
1252         return snd_interval_refine(constrs_interval(constrs, var), &t);
1253 }
1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1255
1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1257                                 struct snd_pcm_hw_rule *rule)
1258 {
1259         struct snd_pcm_hw_constraint_list *list = rule->private;
1260         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1261 }               
1262
1263
1264 /**
1265  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the list constraint
1269  * @l: list
1270  * 
1271  * Apply the list of constraints to an interval parameter.
1272  *
1273  * Return: Zero if successful, or a negative error code on failure.
1274  */
1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1276                                unsigned int cond,
1277                                snd_pcm_hw_param_t var,
1278                                const struct snd_pcm_hw_constraint_list *l)
1279 {
1280         return snd_pcm_hw_rule_add(runtime, cond, var,
1281                                    snd_pcm_hw_rule_list, (void *)l,
1282                                    var, -1);
1283 }
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1285
1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1287                                   struct snd_pcm_hw_rule *rule)
1288 {
1289         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1290         return snd_interval_ranges(hw_param_interval(params, rule->var),
1291                                    r->count, r->ranges, r->mask);
1292 }
1293
1294
1295 /**
1296  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @var: hw_params variable to apply the list of range constraints
1300  * @r: ranges
1301  *
1302  * Apply the list of range constraints to an interval parameter.
1303  *
1304  * Return: Zero if successful, or a negative error code on failure.
1305  */
1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1307                                  unsigned int cond,
1308                                  snd_pcm_hw_param_t var,
1309                                  const struct snd_pcm_hw_constraint_ranges *r)
1310 {
1311         return snd_pcm_hw_rule_add(runtime, cond, var,
1312                                    snd_pcm_hw_rule_ranges, (void *)r,
1313                                    var, -1);
1314 }
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1316
1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1318                                    struct snd_pcm_hw_rule *rule)
1319 {
1320         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1321         unsigned int num = 0, den = 0;
1322         int err;
1323         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1324                                   r->nrats, r->rats, &num, &den);
1325         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1326                 params->rate_num = num;
1327                 params->rate_den = den;
1328         }
1329         return err;
1330 }
1331
1332 /**
1333  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1334  * @runtime: PCM runtime instance
1335  * @cond: condition bits
1336  * @var: hw_params variable to apply the ratnums constraint
1337  * @r: struct snd_ratnums constriants
1338  *
1339  * Return: Zero if successful, or a negative error code on failure.
1340  */
1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1342                                   unsigned int cond,
1343                                   snd_pcm_hw_param_t var,
1344                                   const struct snd_pcm_hw_constraint_ratnums *r)
1345 {
1346         return snd_pcm_hw_rule_add(runtime, cond, var,
1347                                    snd_pcm_hw_rule_ratnums, (void *)r,
1348                                    var, -1);
1349 }
1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1351
1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1353                                    struct snd_pcm_hw_rule *rule)
1354 {
1355         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1356         unsigned int num = 0, den = 0;
1357         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1358                                   r->nrats, r->rats, &num, &den);
1359         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1360                 params->rate_num = num;
1361                 params->rate_den = den;
1362         }
1363         return err;
1364 }
1365
1366 /**
1367  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1368  * @runtime: PCM runtime instance
1369  * @cond: condition bits
1370  * @var: hw_params variable to apply the ratdens constraint
1371  * @r: struct snd_ratdens constriants
1372  *
1373  * Return: Zero if successful, or a negative error code on failure.
1374  */
1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1376                                   unsigned int cond,
1377                                   snd_pcm_hw_param_t var,
1378                                   const struct snd_pcm_hw_constraint_ratdens *r)
1379 {
1380         return snd_pcm_hw_rule_add(runtime, cond, var,
1381                                    snd_pcm_hw_rule_ratdens, (void *)r,
1382                                    var, -1);
1383 }
1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1385
1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1387                                   struct snd_pcm_hw_rule *rule)
1388 {
1389         unsigned int l = (unsigned long) rule->private;
1390         int width = l & 0xffff;
1391         unsigned int msbits = l >> 16;
1392         const struct snd_interval *i =
1393                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1394
1395         if (!snd_interval_single(i))
1396                 return 0;
1397
1398         if ((snd_interval_value(i) == width) ||
1399             (width == 0 && snd_interval_value(i) > msbits))
1400                 params->msbits = min_not_zero(params->msbits, msbits);
1401
1402         return 0;
1403 }
1404
1405 /**
1406  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407  * @runtime: PCM runtime instance
1408  * @cond: condition bits
1409  * @width: sample bits width
1410  * @msbits: msbits width
1411  *
1412  * This constraint will set the number of most significant bits (msbits) if a
1413  * sample format with the specified width has been select. If width is set to 0
1414  * the msbits will be set for any sample format with a width larger than the
1415  * specified msbits.
1416  *
1417  * Return: Zero if successful, or a negative error code on failure.
1418  */
1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1420                                  unsigned int cond,
1421                                  unsigned int width,
1422                                  unsigned int msbits)
1423 {
1424         unsigned long l = (msbits << 16) | width;
1425         return snd_pcm_hw_rule_add(runtime, cond, -1,
1426                                     snd_pcm_hw_rule_msbits,
1427                                     (void*) l,
1428                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1429 }
1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1431
1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1433                                 struct snd_pcm_hw_rule *rule)
1434 {
1435         unsigned long step = (unsigned long) rule->private;
1436         return snd_interval_step(hw_param_interval(params, rule->var), step);
1437 }
1438
1439 /**
1440  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1441  * @runtime: PCM runtime instance
1442  * @cond: condition bits
1443  * @var: hw_params variable to apply the step constraint
1444  * @step: step size
1445  *
1446  * Return: Zero if successful, or a negative error code on failure.
1447  */
1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1449                                unsigned int cond,
1450                                snd_pcm_hw_param_t var,
1451                                unsigned long step)
1452 {
1453         return snd_pcm_hw_rule_add(runtime, cond, var, 
1454                                    snd_pcm_hw_rule_step, (void *) step,
1455                                    var, -1);
1456 }
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1458
1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1460 {
1461         static unsigned int pow2_sizes[] = {
1462                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1463                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1464                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1465                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1466         };
1467         return snd_interval_list(hw_param_interval(params, rule->var),
1468                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1469 }               
1470
1471 /**
1472  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1473  * @runtime: PCM runtime instance
1474  * @cond: condition bits
1475  * @var: hw_params variable to apply the power-of-2 constraint
1476  *
1477  * Return: Zero if successful, or a negative error code on failure.
1478  */
1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1480                                unsigned int cond,
1481                                snd_pcm_hw_param_t var)
1482 {
1483         return snd_pcm_hw_rule_add(runtime, cond, var, 
1484                                    snd_pcm_hw_rule_pow2, NULL,
1485                                    var, -1);
1486 }
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1488
1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1490                                            struct snd_pcm_hw_rule *rule)
1491 {
1492         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1493         struct snd_interval *rate;
1494
1495         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1496         return snd_interval_list(rate, 1, &base_rate, 0);
1497 }
1498
1499 /**
1500  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501  * @runtime: PCM runtime instance
1502  * @base_rate: the rate at which the hardware does not resample
1503  *
1504  * Return: Zero if successful, or a negative error code on failure.
1505  */
1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1507                                unsigned int base_rate)
1508 {
1509         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1510                                    SNDRV_PCM_HW_PARAM_RATE,
1511                                    snd_pcm_hw_rule_noresample_func,
1512                                    (void *)(uintptr_t)base_rate,
1513                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1514 }
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1516
1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1518                                   snd_pcm_hw_param_t var)
1519 {
1520         if (hw_is_mask(var)) {
1521                 snd_mask_any(hw_param_mask(params, var));
1522                 params->cmask |= 1 << var;
1523                 params->rmask |= 1 << var;
1524                 return;
1525         }
1526         if (hw_is_interval(var)) {
1527                 snd_interval_any(hw_param_interval(params, var));
1528                 params->cmask |= 1 << var;
1529                 params->rmask |= 1 << var;
1530                 return;
1531         }
1532         snd_BUG();
1533 }
1534
1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1536 {
1537         unsigned int k;
1538         memset(params, 0, sizeof(*params));
1539         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1540                 _snd_pcm_hw_param_any(params, k);
1541         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1542                 _snd_pcm_hw_param_any(params, k);
1543         params->info = ~0U;
1544 }
1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1546
1547 /**
1548  * snd_pcm_hw_param_value - return @params field @var value
1549  * @params: the hw_params instance
1550  * @var: parameter to retrieve
1551  * @dir: pointer to the direction (-1,0,1) or %NULL
1552  *
1553  * Return: The value for field @var if it's fixed in configuration space
1554  * defined by @params. -%EINVAL otherwise.
1555  */
1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1557                            snd_pcm_hw_param_t var, int *dir)
1558 {
1559         if (hw_is_mask(var)) {
1560                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1561                 if (!snd_mask_single(mask))
1562                         return -EINVAL;
1563                 if (dir)
1564                         *dir = 0;
1565                 return snd_mask_value(mask);
1566         }
1567         if (hw_is_interval(var)) {
1568                 const struct snd_interval *i = hw_param_interval_c(params, var);
1569                 if (!snd_interval_single(i))
1570                         return -EINVAL;
1571                 if (dir)
1572                         *dir = i->openmin;
1573                 return snd_interval_value(i);
1574         }
1575         return -EINVAL;
1576 }
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1578
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1580                                 snd_pcm_hw_param_t var)
1581 {
1582         if (hw_is_mask(var)) {
1583                 snd_mask_none(hw_param_mask(params, var));
1584                 params->cmask |= 1 << var;
1585                 params->rmask |= 1 << var;
1586         } else if (hw_is_interval(var)) {
1587                 snd_interval_none(hw_param_interval(params, var));
1588                 params->cmask |= 1 << var;
1589                 params->rmask |= 1 << var;
1590         } else {
1591                 snd_BUG();
1592         }
1593 }
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597                                    snd_pcm_hw_param_t var)
1598 {
1599         int changed;
1600         if (hw_is_mask(var))
1601                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1602         else if (hw_is_interval(var))
1603                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1604         else
1605                 return -EINVAL;
1606         if (changed) {
1607                 params->cmask |= 1 << var;
1608                 params->rmask |= 1 << var;
1609         }
1610         return changed;
1611 }
1612
1613
1614 /**
1615  * snd_pcm_hw_param_first - refine config space and return minimum value
1616  * @pcm: PCM instance
1617  * @params: the hw_params instance
1618  * @var: parameter to retrieve
1619  * @dir: pointer to the direction (-1,0,1) or %NULL
1620  *
1621  * Inside configuration space defined by @params remove from @var all
1622  * values > minimum. Reduce configuration space accordingly.
1623  *
1624  * Return: The minimum, or a negative error code on failure.
1625  */
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1627                            struct snd_pcm_hw_params *params, 
1628                            snd_pcm_hw_param_t var, int *dir)
1629 {
1630         int changed = _snd_pcm_hw_param_first(params, var);
1631         if (changed < 0)
1632                 return changed;
1633         if (params->rmask) {
1634                 int err = snd_pcm_hw_refine(pcm, params);
1635                 if (snd_BUG_ON(err < 0))
1636                         return err;
1637         }
1638         return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643                                   snd_pcm_hw_param_t var)
1644 {
1645         int changed;
1646         if (hw_is_mask(var))
1647                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648         else if (hw_is_interval(var))
1649                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650         else
1651                 return -EINVAL;
1652         if (changed) {
1653                 params->cmask |= 1 << var;
1654                 params->rmask |= 1 << var;
1655         }
1656         return changed;
1657 }
1658
1659
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673                           struct snd_pcm_hw_params *params,
1674                           snd_pcm_hw_param_t var, int *dir)
1675 {
1676         int changed = _snd_pcm_hw_param_last(params, var);
1677         if (changed < 0)
1678                 return changed;
1679         if (params->rmask) {
1680                 int err = snd_pcm_hw_refine(pcm, params);
1681                 if (snd_BUG_ON(err < 0))
1682                         return err;
1683         }
1684         return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1687
1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1689                                    void *arg)
1690 {
1691         struct snd_pcm_runtime *runtime = substream->runtime;
1692         unsigned long flags;
1693         snd_pcm_stream_lock_irqsave(substream, flags);
1694         if (snd_pcm_running(substream) &&
1695             snd_pcm_update_hw_ptr(substream) >= 0)
1696                 runtime->status->hw_ptr %= runtime->buffer_size;
1697         else {
1698                 runtime->status->hw_ptr = 0;
1699                 runtime->hw_ptr_wrap = 0;
1700         }
1701         snd_pcm_stream_unlock_irqrestore(substream, flags);
1702         return 0;
1703 }
1704
1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1706                                           void *arg)
1707 {
1708         struct snd_pcm_channel_info *info = arg;
1709         struct snd_pcm_runtime *runtime = substream->runtime;
1710         int width;
1711         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1712                 info->offset = -1;
1713                 return 0;
1714         }
1715         width = snd_pcm_format_physical_width(runtime->format);
1716         if (width < 0)
1717                 return width;
1718         info->offset = 0;
1719         switch (runtime->access) {
1720         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1721         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1722                 info->first = info->channel * width;
1723                 info->step = runtime->channels * width;
1724                 break;
1725         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1726         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1727         {
1728                 size_t size = runtime->dma_bytes / runtime->channels;
1729                 info->first = info->channel * size * 8;
1730                 info->step = width;
1731                 break;
1732         }
1733         default:
1734                 snd_BUG();
1735                 break;
1736         }
1737         return 0;
1738 }
1739
1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1741                                        void *arg)
1742 {
1743         struct snd_pcm_hw_params *params = arg;
1744         snd_pcm_format_t format;
1745         int channels;
1746         ssize_t frame_size;
1747
1748         params->fifo_size = substream->runtime->hw.fifo_size;
1749         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1750                 format = params_format(params);
1751                 channels = params_channels(params);
1752                 frame_size = snd_pcm_format_size(format, channels);
1753                 if (frame_size > 0)
1754                         params->fifo_size /= (unsigned)frame_size;
1755         }
1756         return 0;
1757 }
1758
1759 /**
1760  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1761  * @substream: the pcm substream instance
1762  * @cmd: ioctl command
1763  * @arg: ioctl argument
1764  *
1765  * Processes the generic ioctl commands for PCM.
1766  * Can be passed as the ioctl callback for PCM ops.
1767  *
1768  * Return: Zero if successful, or a negative error code on failure.
1769  */
1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1771                       unsigned int cmd, void *arg)
1772 {
1773         switch (cmd) {
1774         case SNDRV_PCM_IOCTL1_RESET:
1775                 return snd_pcm_lib_ioctl_reset(substream, arg);
1776         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1777                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1778         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1779                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1780         }
1781         return -ENXIO;
1782 }
1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1784
1785 /**
1786  * snd_pcm_period_elapsed - update the pcm status for the next period
1787  * @substream: the pcm substream instance
1788  *
1789  * This function is called from the interrupt handler when the
1790  * PCM has processed the period size.  It will update the current
1791  * pointer, wake up sleepers, etc.
1792  *
1793  * Even if more than one periods have elapsed since the last call, you
1794  * have to call this only once.
1795  */
1796 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1797 {
1798         struct snd_pcm_runtime *runtime;
1799         unsigned long flags;
1800
1801         if (PCM_RUNTIME_CHECK(substream))
1802                 return;
1803         runtime = substream->runtime;
1804
1805         snd_pcm_stream_lock_irqsave(substream, flags);
1806         if (!snd_pcm_running(substream) ||
1807             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1808                 goto _end;
1809
1810 #ifdef CONFIG_SND_PCM_TIMER
1811         if (substream->timer_running)
1812                 snd_timer_interrupt(substream->timer, 1);
1813 #endif
1814  _end:
1815         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1816         snd_pcm_stream_unlock_irqrestore(substream, flags);
1817 }
1818 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1819
1820 /*
1821  * Wait until avail_min data becomes available
1822  * Returns a negative error code if any error occurs during operation.
1823  * The available space is stored on availp.  When err = 0 and avail = 0
1824  * on the capture stream, it indicates the stream is in DRAINING state.
1825  */
1826 static int wait_for_avail(struct snd_pcm_substream *substream,
1827                               snd_pcm_uframes_t *availp)
1828 {
1829         struct snd_pcm_runtime *runtime = substream->runtime;
1830         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1831         wait_queue_entry_t wait;
1832         int err = 0;
1833         snd_pcm_uframes_t avail = 0;
1834         long wait_time, tout;
1835
1836         init_waitqueue_entry(&wait, current);
1837         set_current_state(TASK_INTERRUPTIBLE);
1838         add_wait_queue(&runtime->tsleep, &wait);
1839
1840         if (runtime->no_period_wakeup)
1841                 wait_time = MAX_SCHEDULE_TIMEOUT;
1842         else {
1843                 wait_time = 10;
1844                 if (runtime->rate) {
1845                         long t = runtime->period_size * 2 / runtime->rate;
1846                         wait_time = max(t, wait_time);
1847                 }
1848                 wait_time = msecs_to_jiffies(wait_time * 1000);
1849         }
1850
1851         for (;;) {
1852                 if (signal_pending(current)) {
1853                         err = -ERESTARTSYS;
1854                         break;
1855                 }
1856
1857                 /*
1858                  * We need to check if space became available already
1859                  * (and thus the wakeup happened already) first to close
1860                  * the race of space already having become available.
1861                  * This check must happen after been added to the waitqueue
1862                  * and having current state be INTERRUPTIBLE.
1863                  */
1864                 if (is_playback)
1865                         avail = snd_pcm_playback_avail(runtime);
1866                 else
1867                         avail = snd_pcm_capture_avail(runtime);
1868                 if (avail >= runtime->twake)
1869                         break;
1870                 snd_pcm_stream_unlock_irq(substream);
1871
1872                 tout = schedule_timeout(wait_time);
1873
1874                 snd_pcm_stream_lock_irq(substream);
1875                 set_current_state(TASK_INTERRUPTIBLE);
1876                 switch (runtime->status->state) {
1877                 case SNDRV_PCM_STATE_SUSPENDED:
1878                         err = -ESTRPIPE;
1879                         goto _endloop;
1880                 case SNDRV_PCM_STATE_XRUN:
1881                         err = -EPIPE;
1882                         goto _endloop;
1883                 case SNDRV_PCM_STATE_DRAINING:
1884                         if (is_playback)
1885                                 err = -EPIPE;
1886                         else 
1887                                 avail = 0; /* indicate draining */
1888                         goto _endloop;
1889                 case SNDRV_PCM_STATE_OPEN:
1890                 case SNDRV_PCM_STATE_SETUP:
1891                 case SNDRV_PCM_STATE_DISCONNECTED:
1892                         err = -EBADFD;
1893                         goto _endloop;
1894                 case SNDRV_PCM_STATE_PAUSED:
1895                         continue;
1896                 }
1897                 if (!tout) {
1898                         pcm_dbg(substream->pcm,
1899                                 "%s write error (DMA or IRQ trouble?)\n",
1900                                 is_playback ? "playback" : "capture");
1901                         err = -EIO;
1902                         break;
1903                 }
1904         }
1905  _endloop:
1906         set_current_state(TASK_RUNNING);
1907         remove_wait_queue(&runtime->tsleep, &wait);
1908         *availp = avail;
1909         return err;
1910 }
1911         
1912 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1913                               int channel, unsigned long hwoff,
1914                               void *buf, unsigned long bytes);
1915
1916 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1917                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1918
1919 /* calculate the target DMA-buffer position to be written/read */
1920 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1921                            int channel, unsigned long hwoff)
1922 {
1923         return runtime->dma_area + hwoff +
1924                 channel * (runtime->dma_bytes / runtime->channels);
1925 }
1926
1927 /* default copy_user ops for write; used for both interleaved and non- modes */
1928 static int default_write_copy(struct snd_pcm_substream *substream,
1929                               int channel, unsigned long hwoff,
1930                               void *buf, unsigned long bytes)
1931 {
1932         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1933                            (void __user *)buf, bytes))
1934                 return -EFAULT;
1935         return 0;
1936 }
1937
1938 /* default copy_kernel ops for write */
1939 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1940                                      int channel, unsigned long hwoff,
1941                                      void *buf, unsigned long bytes)
1942 {
1943         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1944         return 0;
1945 }
1946
1947 /* fill silence instead of copy data; called as a transfer helper
1948  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1949  * a NULL buffer is passed
1950  */
1951 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1952                         unsigned long hwoff, void *buf, unsigned long bytes)
1953 {
1954         struct snd_pcm_runtime *runtime = substream->runtime;
1955
1956         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1957                 return 0;
1958         if (substream->ops->fill_silence)
1959                 return substream->ops->fill_silence(substream, channel,
1960                                                     hwoff, bytes);
1961
1962         snd_pcm_format_set_silence(runtime->format,
1963                                    get_dma_ptr(runtime, channel, hwoff),
1964                                    bytes_to_samples(runtime, bytes));
1965         return 0;
1966 }
1967
1968 /* default copy_user ops for read; used for both interleaved and non- modes */
1969 static int default_read_copy(struct snd_pcm_substream *substream,
1970                              int channel, unsigned long hwoff,
1971                              void *buf, unsigned long bytes)
1972 {
1973         if (copy_to_user((void __user *)buf,
1974                          get_dma_ptr(substream->runtime, channel, hwoff),
1975                          bytes))
1976                 return -EFAULT;
1977         return 0;
1978 }
1979
1980 /* default copy_kernel ops for read */
1981 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1982                                     int channel, unsigned long hwoff,
1983                                     void *buf, unsigned long bytes)
1984 {
1985         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1986         return 0;
1987 }
1988
1989 /* call transfer function with the converted pointers and sizes;
1990  * for interleaved mode, it's one shot for all samples
1991  */
1992 static int interleaved_copy(struct snd_pcm_substream *substream,
1993                             snd_pcm_uframes_t hwoff, void *data,
1994                             snd_pcm_uframes_t off,
1995                             snd_pcm_uframes_t frames,
1996                             pcm_transfer_f transfer)
1997 {
1998         struct snd_pcm_runtime *runtime = substream->runtime;
1999
2000         /* convert to bytes */
2001         hwoff = frames_to_bytes(runtime, hwoff);
2002         off = frames_to_bytes(runtime, off);
2003         frames = frames_to_bytes(runtime, frames);
2004         return transfer(substream, 0, hwoff, data + off, frames);
2005 }
2006
2007 /* call transfer function with the converted pointers and sizes for each
2008  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2009  */
2010 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2011                                snd_pcm_uframes_t hwoff, void *data,
2012                                snd_pcm_uframes_t off,
2013                                snd_pcm_uframes_t frames,
2014                                pcm_transfer_f transfer)
2015 {
2016         struct snd_pcm_runtime *runtime = substream->runtime;
2017         int channels = runtime->channels;
2018         void **bufs = data;
2019         int c, err;
2020
2021         /* convert to bytes; note that it's not frames_to_bytes() here.
2022          * in non-interleaved mode, we copy for each channel, thus
2023          * each copy is n_samples bytes x channels = whole frames.
2024          */
2025         off = samples_to_bytes(runtime, off);
2026         frames = samples_to_bytes(runtime, frames);
2027         hwoff = samples_to_bytes(runtime, hwoff);
2028         for (c = 0; c < channels; ++c, ++bufs) {
2029                 if (!data || !*bufs)
2030                         err = fill_silence(substream, c, hwoff, NULL, frames);
2031                 else
2032                         err = transfer(substream, c, hwoff, *bufs + off,
2033                                        frames);
2034                 if (err < 0)
2035                         return err;
2036         }
2037         return 0;
2038 }
2039
2040 /* fill silence on the given buffer position;
2041  * called from snd_pcm_playback_silence()
2042  */
2043 static int fill_silence_frames(struct snd_pcm_substream *substream,
2044                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2045 {
2046         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2047             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2048                 return interleaved_copy(substream, off, NULL, 0, frames,
2049                                         fill_silence);
2050         else
2051                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2052                                            fill_silence);
2053 }
2054
2055 /* sanity-check for read/write methods */
2056 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2057 {
2058         struct snd_pcm_runtime *runtime;
2059         if (PCM_RUNTIME_CHECK(substream))
2060                 return -ENXIO;
2061         runtime = substream->runtime;
2062         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2063                 return -EINVAL;
2064         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2065                 return -EBADFD;
2066         return 0;
2067 }
2068
2069 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2070 {
2071         switch (runtime->status->state) {
2072         case SNDRV_PCM_STATE_PREPARED:
2073         case SNDRV_PCM_STATE_RUNNING:
2074         case SNDRV_PCM_STATE_PAUSED:
2075                 return 0;
2076         case SNDRV_PCM_STATE_XRUN:
2077                 return -EPIPE;
2078         case SNDRV_PCM_STATE_SUSPENDED:
2079                 return -ESTRPIPE;
2080         default:
2081                 return -EBADFD;
2082         }
2083 }
2084
2085 /* update to the given appl_ptr and call ack callback if needed;
2086  * when an error is returned, take back to the original value
2087  */
2088 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2089                            snd_pcm_uframes_t appl_ptr)
2090 {
2091         struct snd_pcm_runtime *runtime = substream->runtime;
2092         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2093         int ret;
2094
2095         if (old_appl_ptr == appl_ptr)
2096                 return 0;
2097
2098         runtime->control->appl_ptr = appl_ptr;
2099         if (substream->ops->ack) {
2100                 ret = substream->ops->ack(substream);
2101                 if (ret < 0) {
2102                         runtime->control->appl_ptr = old_appl_ptr;
2103                         return ret;
2104                 }
2105         }
2106
2107         trace_applptr(substream, old_appl_ptr, appl_ptr);
2108
2109         return 0;
2110 }
2111
2112 /* the common loop for read/write data */
2113 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2114                                      void *data, bool interleaved,
2115                                      snd_pcm_uframes_t size, bool in_kernel)
2116 {
2117         struct snd_pcm_runtime *runtime = substream->runtime;
2118         snd_pcm_uframes_t xfer = 0;
2119         snd_pcm_uframes_t offset = 0;
2120         snd_pcm_uframes_t avail;
2121         pcm_copy_f writer;
2122         pcm_transfer_f transfer;
2123         bool nonblock;
2124         bool is_playback;
2125         int err;
2126
2127         err = pcm_sanity_check(substream);
2128         if (err < 0)
2129                 return err;
2130
2131         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2132         if (interleaved) {
2133                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2134                     runtime->channels > 1)
2135                         return -EINVAL;
2136                 writer = interleaved_copy;
2137         } else {
2138                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2139                         return -EINVAL;
2140                 writer = noninterleaved_copy;
2141         }
2142
2143         if (!data) {
2144                 if (is_playback)
2145                         transfer = fill_silence;
2146                 else
2147                         return -EINVAL;
2148         } else if (in_kernel) {
2149                 if (substream->ops->copy_kernel)
2150                         transfer = substream->ops->copy_kernel;
2151                 else
2152                         transfer = is_playback ?
2153                                 default_write_copy_kernel : default_read_copy_kernel;
2154         } else {
2155                 if (substream->ops->copy_user)
2156                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2157                 else
2158                         transfer = is_playback ?
2159                                 default_write_copy : default_read_copy;
2160         }
2161
2162         if (size == 0)
2163                 return 0;
2164
2165         nonblock = !!(substream->f_flags & O_NONBLOCK);
2166
2167         snd_pcm_stream_lock_irq(substream);
2168         err = pcm_accessible_state(runtime);
2169         if (err < 0)
2170                 goto _end_unlock;
2171
2172         if (!is_playback &&
2173             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174             size >= runtime->start_threshold) {
2175                 err = snd_pcm_start(substream);
2176                 if (err < 0)
2177                         goto _end_unlock;
2178         }
2179
2180         runtime->twake = runtime->control->avail_min ? : 1;
2181         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2182                 snd_pcm_update_hw_ptr(substream);
2183         if (is_playback)
2184                 avail = snd_pcm_playback_avail(runtime);
2185         else
2186                 avail = snd_pcm_capture_avail(runtime);
2187         while (size > 0) {
2188                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2189                 snd_pcm_uframes_t cont;
2190                 if (!avail) {
2191                         if (!is_playback &&
2192                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2193                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2194                                 goto _end_unlock;
2195                         }
2196                         if (nonblock) {
2197                                 err = -EAGAIN;
2198                                 goto _end_unlock;
2199                         }
2200                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2201                                         runtime->control->avail_min ? : 1);
2202                         err = wait_for_avail(substream, &avail);
2203                         if (err < 0)
2204                                 goto _end_unlock;
2205                         if (!avail)
2206                                 continue; /* draining */
2207                 }
2208                 frames = size > avail ? avail : size;
2209                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2210                 appl_ofs = appl_ptr % runtime->buffer_size;
2211                 cont = runtime->buffer_size - appl_ofs;
2212                 if (frames > cont)
2213                         frames = cont;
2214                 if (snd_BUG_ON(!frames)) {
2215                         runtime->twake = 0;
2216                         snd_pcm_stream_unlock_irq(substream);
2217                         return -EINVAL;
2218                 }
2219                 snd_pcm_stream_unlock_irq(substream);
2220                 err = writer(substream, appl_ofs, data, offset, frames,
2221                              transfer);
2222                 snd_pcm_stream_lock_irq(substream);
2223                 if (err < 0)
2224                         goto _end_unlock;
2225                 err = pcm_accessible_state(runtime);
2226                 if (err < 0)
2227                         goto _end_unlock;
2228                 appl_ptr += frames;
2229                 if (appl_ptr >= runtime->boundary)
2230                         appl_ptr -= runtime->boundary;
2231                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2232                 if (err < 0)
2233                         goto _end_unlock;
2234
2235                 offset += frames;
2236                 size -= frames;
2237                 xfer += frames;
2238                 avail -= frames;
2239                 if (is_playback &&
2240                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2241                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2242                         err = snd_pcm_start(substream);
2243                         if (err < 0)
2244                                 goto _end_unlock;
2245                 }
2246         }
2247  _end_unlock:
2248         runtime->twake = 0;
2249         if (xfer > 0 && err >= 0)
2250                 snd_pcm_update_state(substream, runtime);
2251         snd_pcm_stream_unlock_irq(substream);
2252         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2253 }
2254 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2255
2256 /*
2257  * standard channel mapping helpers
2258  */
2259
2260 /* default channel maps for multi-channel playbacks, up to 8 channels */
2261 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2262         { .channels = 1,
2263           .map = { SNDRV_CHMAP_MONO } },
2264         { .channels = 2,
2265           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2266         { .channels = 4,
2267           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2268                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2269         { .channels = 6,
2270           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2271                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2272                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2273         { .channels = 8,
2274           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2275                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2276                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2277                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2278         { }
2279 };
2280 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2281
2282 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2283 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2284         { .channels = 1,
2285           .map = { SNDRV_CHMAP_MONO } },
2286         { .channels = 2,
2287           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2288         { .channels = 4,
2289           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2290                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2291         { .channels = 6,
2292           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2293                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2294                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2295         { .channels = 8,
2296           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2297                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2298                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2299                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2300         { }
2301 };
2302 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2303
2304 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2305 {
2306         if (ch > info->max_channels)
2307                 return false;
2308         return !info->channel_mask || (info->channel_mask & (1U << ch));
2309 }
2310
2311 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2312                               struct snd_ctl_elem_info *uinfo)
2313 {
2314         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2315
2316         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2317         uinfo->count = 0;
2318         uinfo->count = info->max_channels;
2319         uinfo->value.integer.min = 0;
2320         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2321         return 0;
2322 }
2323
2324 /* get callback for channel map ctl element
2325  * stores the channel position firstly matching with the current channels
2326  */
2327 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2328                              struct snd_ctl_elem_value *ucontrol)
2329 {
2330         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2331         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2332         struct snd_pcm_substream *substream;
2333         const struct snd_pcm_chmap_elem *map;
2334
2335         if (!info->chmap)
2336                 return -EINVAL;
2337         substream = snd_pcm_chmap_substream(info, idx);
2338         if (!substream)
2339                 return -ENODEV;
2340         memset(ucontrol->value.integer.value, 0,
2341                sizeof(ucontrol->value.integer.value));
2342         if (!substream->runtime)
2343                 return 0; /* no channels set */
2344         for (map = info->chmap; map->channels; map++) {
2345                 int i;
2346                 if (map->channels == substream->runtime->channels &&
2347                     valid_chmap_channels(info, map->channels)) {
2348                         for (i = 0; i < map->channels; i++)
2349                                 ucontrol->value.integer.value[i] = map->map[i];
2350                         return 0;
2351                 }
2352         }
2353         return -EINVAL;
2354 }
2355
2356 /* tlv callback for channel map ctl element
2357  * expands the pre-defined channel maps in a form of TLV
2358  */
2359 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2360                              unsigned int size, unsigned int __user *tlv)
2361 {
2362         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2363         const struct snd_pcm_chmap_elem *map;
2364         unsigned int __user *dst;
2365         int c, count = 0;
2366
2367         if (!info->chmap)
2368                 return -EINVAL;
2369         if (size < 8)
2370                 return -ENOMEM;
2371         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2372                 return -EFAULT;
2373         size -= 8;
2374         dst = tlv + 2;
2375         for (map = info->chmap; map->channels; map++) {
2376                 int chs_bytes = map->channels * 4;
2377                 if (!valid_chmap_channels(info, map->channels))
2378                         continue;
2379                 if (size < 8)
2380                         return -ENOMEM;
2381                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2382                     put_user(chs_bytes, dst + 1))
2383                         return -EFAULT;
2384                 dst += 2;
2385                 size -= 8;
2386                 count += 8;
2387                 if (size < chs_bytes)
2388                         return -ENOMEM;
2389                 size -= chs_bytes;
2390                 count += chs_bytes;
2391                 for (c = 0; c < map->channels; c++) {
2392                         if (put_user(map->map[c], dst))
2393                                 return -EFAULT;
2394                         dst++;
2395                 }
2396         }
2397         if (put_user(count, tlv + 1))
2398                 return -EFAULT;
2399         return 0;
2400 }
2401
2402 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2403 {
2404         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2405         info->pcm->streams[info->stream].chmap_kctl = NULL;
2406         kfree(info);
2407 }
2408
2409 /**
2410  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2411  * @pcm: the assigned PCM instance
2412  * @stream: stream direction
2413  * @chmap: channel map elements (for query)
2414  * @max_channels: the max number of channels for the stream
2415  * @private_value: the value passed to each kcontrol's private_value field
2416  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2417  *
2418  * Create channel-mapping control elements assigned to the given PCM stream(s).
2419  * Return: Zero if successful, or a negative error value.
2420  */
2421 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2422                            const struct snd_pcm_chmap_elem *chmap,
2423                            int max_channels,
2424                            unsigned long private_value,
2425                            struct snd_pcm_chmap **info_ret)
2426 {
2427         struct snd_pcm_chmap *info;
2428         struct snd_kcontrol_new knew = {
2429                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2430                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2431                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2432                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2433                 .info = pcm_chmap_ctl_info,
2434                 .get = pcm_chmap_ctl_get,
2435                 .tlv.c = pcm_chmap_ctl_tlv,
2436         };
2437         int err;
2438
2439         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2440                 return -EBUSY;
2441         info = kzalloc(sizeof(*info), GFP_KERNEL);
2442         if (!info)
2443                 return -ENOMEM;
2444         info->pcm = pcm;
2445         info->stream = stream;
2446         info->chmap = chmap;
2447         info->max_channels = max_channels;
2448         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2449                 knew.name = "Playback Channel Map";
2450         else
2451                 knew.name = "Capture Channel Map";
2452         knew.device = pcm->device;
2453         knew.count = pcm->streams[stream].substream_count;
2454         knew.private_value = private_value;
2455         info->kctl = snd_ctl_new1(&knew, info);
2456         if (!info->kctl) {
2457                 kfree(info);
2458                 return -ENOMEM;
2459         }
2460         info->kctl->private_free = pcm_chmap_ctl_private_free;
2461         err = snd_ctl_add(pcm->card, info->kctl);
2462         if (err < 0)
2463                 return err;
2464         pcm->streams[stream].chmap_kctl = info->kctl;
2465         if (info_ret)
2466                 *info_ret = info;
2467         return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);