Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46         struct snd_pcm_runtime *runtime = substream->runtime;
47         snd_pcm_uframes_t frames, ofs, transfer;
48
49         if (runtime->silence_size < runtime->boundary) {
50                 snd_pcm_sframes_t noise_dist, n;
51                 if (runtime->silence_start != runtime->control->appl_ptr) {
52                         n = runtime->control->appl_ptr - runtime->silence_start;
53                         if (n < 0)
54                                 n += runtime->boundary;
55                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56                                 runtime->silence_filled -= n;
57                         else
58                                 runtime->silence_filled = 0;
59                         runtime->silence_start = runtime->control->appl_ptr;
60                 }
61                 if (runtime->silence_filled >= runtime->buffer_size)
62                         return;
63                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65                         return;
66                 frames = runtime->silence_threshold - noise_dist;
67                 if (frames > runtime->silence_size)
68                         frames = runtime->silence_size;
69         } else {
70                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
71                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72                         if (avail > runtime->buffer_size)
73                                 avail = runtime->buffer_size;
74                         runtime->silence_filled = avail > 0 ? avail : 0;
75                         runtime->silence_start = (runtime->status->hw_ptr +
76                                                   runtime->silence_filled) %
77                                                  runtime->boundary;
78                 } else {
79                         ofs = runtime->status->hw_ptr;
80                         frames = new_hw_ptr - ofs;
81                         if ((snd_pcm_sframes_t)frames < 0)
82                                 frames += runtime->boundary;
83                         runtime->silence_filled -= frames;
84                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85                                 runtime->silence_filled = 0;
86                                 runtime->silence_start = new_hw_ptr;
87                         } else {
88                                 runtime->silence_start = ofs;
89                         }
90                 }
91                 frames = runtime->buffer_size - runtime->silence_filled;
92         }
93         if (snd_BUG_ON(frames > runtime->buffer_size))
94                 return;
95         if (frames == 0)
96                 return;
97         ofs = runtime->silence_start % runtime->buffer_size;
98         while (frames > 0) {
99                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102                         if (substream->ops->silence) {
103                                 int err;
104                                 err = substream->ops->silence(substream, -1, ofs, transfer);
105                                 snd_BUG_ON(err < 0);
106                         } else {
107                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109                         }
110                 } else {
111                         unsigned int c;
112                         unsigned int channels = runtime->channels;
113                         if (substream->ops->silence) {
114                                 for (c = 0; c < channels; ++c) {
115                                         int err;
116                                         err = substream->ops->silence(substream, c, ofs, transfer);
117                                         snd_BUG_ON(err < 0);
118                                 }
119                         } else {
120                                 size_t dma_csize = runtime->dma_bytes / channels;
121                                 for (c = 0; c < channels; ++c) {
122                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124                                 }
125                         }
126                 }
127                 runtime->silence_filled += transfer;
128                 frames -= transfer;
129                 ofs = 0;
130         }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135                            char *name, size_t len)
136 {
137         snprintf(name, len, "pcmC%dD%d%c:%d",
138                  substream->pcm->card->number,
139                  substream->pcm->device,
140                  substream->stream ? 'c' : 'p',
141                  substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC        (1<<0)
147 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
151 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166
167 static void xrun(struct snd_pcm_substream *substream)
168 {
169         struct snd_pcm_runtime *runtime = substream->runtime;
170
171         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175                 char name[16];
176                 snd_pcm_debug_name(substream, name, sizeof(name));
177                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
178                 dump_stack_on_xrun(substream);
179         }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)                           \
184         do {                                                            \
185                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
186                         xrun_log_show(substream);                       \
187                         if (printk_ratelimit()) {                       \
188                                 snd_printd("PCM: " fmt, ##args);        \
189                         }                                               \
190                         dump_stack_on_xrun(substream);                  \
191                 }                                                       \
192         } while (0)
193
194 #define XRUN_LOG_CNT    10
195
196 struct hwptr_log_entry {
197         unsigned int in_interrupt;
198         unsigned long jiffies;
199         snd_pcm_uframes_t pos;
200         snd_pcm_uframes_t period_size;
201         snd_pcm_uframes_t buffer_size;
202         snd_pcm_uframes_t old_hw_ptr;
203         snd_pcm_uframes_t hw_ptr_base;
204 };
205
206 struct snd_pcm_hwptr_log {
207         unsigned int idx;
208         unsigned int hit: 1;
209         struct hwptr_log_entry entries[XRUN_LOG_CNT];
210 };
211
212 static void xrun_log(struct snd_pcm_substream *substream,
213                      snd_pcm_uframes_t pos, int in_interrupt)
214 {
215         struct snd_pcm_runtime *runtime = substream->runtime;
216         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
217         struct hwptr_log_entry *entry;
218
219         if (log == NULL) {
220                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
221                 if (log == NULL)
222                         return;
223                 runtime->hwptr_log = log;
224         } else {
225                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
226                         return;
227         }
228         entry = &log->entries[log->idx];
229         entry->in_interrupt = in_interrupt;
230         entry->jiffies = jiffies;
231         entry->pos = pos;
232         entry->period_size = runtime->period_size;
233         entry->buffer_size = runtime->buffer_size;
234         entry->old_hw_ptr = runtime->status->hw_ptr;
235         entry->hw_ptr_base = runtime->hw_ptr_base;
236         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
237 }
238
239 static void xrun_log_show(struct snd_pcm_substream *substream)
240 {
241         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
242         struct hwptr_log_entry *entry;
243         char name[16];
244         unsigned int idx;
245         int cnt;
246
247         if (log == NULL)
248                 return;
249         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
250                 return;
251         snd_pcm_debug_name(substream, name, sizeof(name));
252         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
253                 entry = &log->entries[idx];
254                 if (entry->period_size == 0)
255                         break;
256                 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
257                            "hwptr=%ld/%ld\n",
258                            name, entry->in_interrupt ? "[Q] " : "",
259                            entry->jiffies,
260                            (unsigned long)entry->pos,
261                            (unsigned long)entry->period_size,
262                            (unsigned long)entry->buffer_size,
263                            (unsigned long)entry->old_hw_ptr,
264                            (unsigned long)entry->hw_ptr_base);
265                 idx++;
266                 idx %= XRUN_LOG_CNT;
267         }
268         log->hit = 1;
269 }
270
271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
272
273 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
274 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
275 #define xrun_log_show(substream)        do { } while (0)
276
277 #endif
278
279 int snd_pcm_update_state(struct snd_pcm_substream *substream,
280                          struct snd_pcm_runtime *runtime)
281 {
282         snd_pcm_uframes_t avail;
283
284         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
285                 avail = snd_pcm_playback_avail(runtime);
286         else
287                 avail = snd_pcm_capture_avail(runtime);
288         if (avail > runtime->avail_max)
289                 runtime->avail_max = avail;
290         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
291                 if (avail >= runtime->buffer_size) {
292                         snd_pcm_drain_done(substream);
293                         return -EPIPE;
294                 }
295         } else {
296                 if (avail >= runtime->stop_threshold) {
297                         xrun(substream);
298                         return -EPIPE;
299                 }
300         }
301         if (runtime->twake) {
302                 if (avail >= runtime->twake)
303                         wake_up(&runtime->tsleep);
304         } else if (avail >= runtime->control->avail_min)
305                 wake_up(&runtime->sleep);
306         return 0;
307 }
308
309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
310                                   unsigned int in_interrupt)
311 {
312         struct snd_pcm_runtime *runtime = substream->runtime;
313         snd_pcm_uframes_t pos;
314         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315         snd_pcm_sframes_t hdelta, delta;
316         unsigned long jdelta;
317         unsigned long curr_jiffies;
318         struct timespec curr_tstamp;
319         struct timespec audio_tstamp;
320         int crossed_boundary = 0;
321
322         old_hw_ptr = runtime->status->hw_ptr;
323
324         /*
325          * group pointer, time and jiffies reads to allow for more
326          * accurate correlations/corrections.
327          * The values are stored at the end of this routine after
328          * corrections for hw_ptr position
329          */
330         pos = substream->ops->pointer(substream);
331         curr_jiffies = jiffies;
332         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
333                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
334
335                 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
336                         (substream->ops->wall_clock))
337                         substream->ops->wall_clock(substream, &audio_tstamp);
338         }
339
340         if (pos == SNDRV_PCM_POS_XRUN) {
341                 xrun(substream);
342                 return -EPIPE;
343         }
344         if (pos >= runtime->buffer_size) {
345                 if (printk_ratelimit()) {
346                         char name[16];
347                         snd_pcm_debug_name(substream, name, sizeof(name));
348                         xrun_log_show(substream);
349                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
350                                    "buffer size = %ld, period size = %ld\n",
351                                    name, pos, runtime->buffer_size,
352                                    runtime->period_size);
353                 }
354                 pos = 0;
355         }
356         pos -= pos % runtime->min_align;
357         if (xrun_debug(substream, XRUN_DEBUG_LOG))
358                 xrun_log(substream, pos, in_interrupt);
359         hw_base = runtime->hw_ptr_base;
360         new_hw_ptr = hw_base + pos;
361         if (in_interrupt) {
362                 /* we know that one period was processed */
363                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
364                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
365                 if (delta > new_hw_ptr) {
366                         /* check for double acknowledged interrupts */
367                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
368                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
369                                 hw_base += runtime->buffer_size;
370                                 if (hw_base >= runtime->boundary) {
371                                         hw_base = 0;
372                                         crossed_boundary++;
373                                 }
374                                 new_hw_ptr = hw_base + pos;
375                                 goto __delta;
376                         }
377                 }
378         }
379         /* new_hw_ptr might be lower than old_hw_ptr in case when */
380         /* pointer crosses the end of the ring buffer */
381         if (new_hw_ptr < old_hw_ptr) {
382                 hw_base += runtime->buffer_size;
383                 if (hw_base >= runtime->boundary) {
384                         hw_base = 0;
385                         crossed_boundary++;
386                 }
387                 new_hw_ptr = hw_base + pos;
388         }
389       __delta:
390         delta = new_hw_ptr - old_hw_ptr;
391         if (delta < 0)
392                 delta += runtime->boundary;
393         if (xrun_debug(substream, in_interrupt ?
394                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
395                 char name[16];
396                 snd_pcm_debug_name(substream, name, sizeof(name));
397                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
398                            "hwptr=%ld/%ld/%ld/%ld\n",
399                            in_interrupt ? "period" : "hwptr",
400                            name,
401                            (unsigned int)pos,
402                            (unsigned int)runtime->period_size,
403                            (unsigned int)runtime->buffer_size,
404                            (unsigned long)delta,
405                            (unsigned long)old_hw_ptr,
406                            (unsigned long)new_hw_ptr,
407                            (unsigned long)runtime->hw_ptr_base);
408         }
409
410         if (runtime->no_period_wakeup) {
411                 snd_pcm_sframes_t xrun_threshold;
412                 /*
413                  * Without regular period interrupts, we have to check
414                  * the elapsed time to detect xruns.
415                  */
416                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
417                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
418                         goto no_delta_check;
419                 hdelta = jdelta - delta * HZ / runtime->rate;
420                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
421                 while (hdelta > xrun_threshold) {
422                         delta += runtime->buffer_size;
423                         hw_base += runtime->buffer_size;
424                         if (hw_base >= runtime->boundary) {
425                                 hw_base = 0;
426                                 crossed_boundary++;
427                         }
428                         new_hw_ptr = hw_base + pos;
429                         hdelta -= runtime->hw_ptr_buffer_jiffies;
430                 }
431                 goto no_delta_check;
432         }
433
434         /* something must be really wrong */
435         if (delta >= runtime->buffer_size + runtime->period_size) {
436                 hw_ptr_error(substream,
437                                "Unexpected hw_pointer value %s"
438                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
439                                "old_hw_ptr=%ld)\n",
440                                      in_interrupt ? "[Q] " : "[P]",
441                                      substream->stream, (long)pos,
442                                      (long)new_hw_ptr, (long)old_hw_ptr);
443                 return 0;
444         }
445
446         /* Do jiffies check only in xrun_debug mode */
447         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
448                 goto no_jiffies_check;
449
450         /* Skip the jiffies check for hardwares with BATCH flag.
451          * Such hardware usually just increases the position at each IRQ,
452          * thus it can't give any strange position.
453          */
454         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
455                 goto no_jiffies_check;
456         hdelta = delta;
457         if (hdelta < runtime->delay)
458                 goto no_jiffies_check;
459         hdelta -= runtime->delay;
460         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
461         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
462                 delta = jdelta /
463                         (((runtime->period_size * HZ) / runtime->rate)
464                                                                 + HZ/100);
465                 /* move new_hw_ptr according jiffies not pos variable */
466                 new_hw_ptr = old_hw_ptr;
467                 hw_base = delta;
468                 /* use loop to avoid checks for delta overflows */
469                 /* the delta value is small or zero in most cases */
470                 while (delta > 0) {
471                         new_hw_ptr += runtime->period_size;
472                         if (new_hw_ptr >= runtime->boundary) {
473                                 new_hw_ptr -= runtime->boundary;
474                                 crossed_boundary--;
475                         }
476                         delta--;
477                 }
478                 /* align hw_base to buffer_size */
479                 hw_ptr_error(substream,
480                              "hw_ptr skipping! %s"
481                              "(pos=%ld, delta=%ld, period=%ld, "
482                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
483                              in_interrupt ? "[Q] " : "",
484                              (long)pos, (long)hdelta,
485                              (long)runtime->period_size, jdelta,
486                              ((hdelta * HZ) / runtime->rate), hw_base,
487                              (unsigned long)old_hw_ptr,
488                              (unsigned long)new_hw_ptr);
489                 /* reset values to proper state */
490                 delta = 0;
491                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
492         }
493  no_jiffies_check:
494         if (delta > runtime->period_size + runtime->period_size / 2) {
495                 hw_ptr_error(substream,
496                              "Lost interrupts? %s"
497                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
498                              "old_hw_ptr=%ld)\n",
499                              in_interrupt ? "[Q] " : "",
500                              substream->stream, (long)delta,
501                              (long)new_hw_ptr,
502                              (long)old_hw_ptr);
503         }
504
505  no_delta_check:
506         if (runtime->status->hw_ptr == new_hw_ptr)
507                 return 0;
508
509         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
510             runtime->silence_size > 0)
511                 snd_pcm_playback_silence(substream, new_hw_ptr);
512
513         if (in_interrupt) {
514                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
515                 if (delta < 0)
516                         delta += runtime->boundary;
517                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
518                 runtime->hw_ptr_interrupt += delta;
519                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
520                         runtime->hw_ptr_interrupt -= runtime->boundary;
521         }
522         runtime->hw_ptr_base = hw_base;
523         runtime->status->hw_ptr = new_hw_ptr;
524         runtime->hw_ptr_jiffies = curr_jiffies;
525         if (crossed_boundary) {
526                 snd_BUG_ON(crossed_boundary != 1);
527                 runtime->hw_ptr_wrap += runtime->boundary;
528         }
529         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
530                 runtime->status->tstamp = curr_tstamp;
531
532                 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
533                         /*
534                          * no wall clock available, provide audio timestamp
535                          * derived from pointer position+delay
536                          */
537                         u64 audio_frames, audio_nsecs;
538
539                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
540                                 audio_frames = runtime->hw_ptr_wrap
541                                         + runtime->status->hw_ptr
542                                         - runtime->delay;
543                         else
544                                 audio_frames = runtime->hw_ptr_wrap
545                                         + runtime->status->hw_ptr
546                                         + runtime->delay;
547                         audio_nsecs = div_u64(audio_frames * 1000000000LL,
548                                         runtime->rate);
549                         audio_tstamp = ns_to_timespec(audio_nsecs);
550                 }
551                 runtime->status->audio_tstamp = audio_tstamp;
552         }
553
554         return snd_pcm_update_state(substream, runtime);
555 }
556
557 /* CAUTION: call it with irq disabled */
558 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
559 {
560         return snd_pcm_update_hw_ptr0(substream, 0);
561 }
562
563 /**
564  * snd_pcm_set_ops - set the PCM operators
565  * @pcm: the pcm instance
566  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
567  * @ops: the operator table
568  *
569  * Sets the given PCM operators to the pcm instance.
570  */
571 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
572 {
573         struct snd_pcm_str *stream = &pcm->streams[direction];
574         struct snd_pcm_substream *substream;
575         
576         for (substream = stream->substream; substream != NULL; substream = substream->next)
577                 substream->ops = ops;
578 }
579
580 EXPORT_SYMBOL(snd_pcm_set_ops);
581
582 /**
583  * snd_pcm_sync - set the PCM sync id
584  * @substream: the pcm substream
585  *
586  * Sets the PCM sync identifier for the card.
587  */
588 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
589 {
590         struct snd_pcm_runtime *runtime = substream->runtime;
591         
592         runtime->sync.id32[0] = substream->pcm->card->number;
593         runtime->sync.id32[1] = -1;
594         runtime->sync.id32[2] = -1;
595         runtime->sync.id32[3] = -1;
596 }
597
598 EXPORT_SYMBOL(snd_pcm_set_sync);
599
600 /*
601  *  Standard ioctl routine
602  */
603
604 static inline unsigned int div32(unsigned int a, unsigned int b, 
605                                  unsigned int *r)
606 {
607         if (b == 0) {
608                 *r = 0;
609                 return UINT_MAX;
610         }
611         *r = a % b;
612         return a / b;
613 }
614
615 static inline unsigned int div_down(unsigned int a, unsigned int b)
616 {
617         if (b == 0)
618                 return UINT_MAX;
619         return a / b;
620 }
621
622 static inline unsigned int div_up(unsigned int a, unsigned int b)
623 {
624         unsigned int r;
625         unsigned int q;
626         if (b == 0)
627                 return UINT_MAX;
628         q = div32(a, b, &r);
629         if (r)
630                 ++q;
631         return q;
632 }
633
634 static inline unsigned int mul(unsigned int a, unsigned int b)
635 {
636         if (a == 0)
637                 return 0;
638         if (div_down(UINT_MAX, a) < b)
639                 return UINT_MAX;
640         return a * b;
641 }
642
643 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
644                                     unsigned int c, unsigned int *r)
645 {
646         u_int64_t n = (u_int64_t) a * b;
647         if (c == 0) {
648                 snd_BUG_ON(!n);
649                 *r = 0;
650                 return UINT_MAX;
651         }
652         n = div_u64_rem(n, c, r);
653         if (n >= UINT_MAX) {
654                 *r = 0;
655                 return UINT_MAX;
656         }
657         return n;
658 }
659
660 /**
661  * snd_interval_refine - refine the interval value of configurator
662  * @i: the interval value to refine
663  * @v: the interval value to refer to
664  *
665  * Refines the interval value with the reference value.
666  * The interval is changed to the range satisfying both intervals.
667  * The interval status (min, max, integer, etc.) are evaluated.
668  *
669  * Return: Positive if the value is changed, zero if it's not changed, or a
670  * negative error code.
671  */
672 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
673 {
674         int changed = 0;
675         if (snd_BUG_ON(snd_interval_empty(i)))
676                 return -EINVAL;
677         if (i->min < v->min) {
678                 i->min = v->min;
679                 i->openmin = v->openmin;
680                 changed = 1;
681         } else if (i->min == v->min && !i->openmin && v->openmin) {
682                 i->openmin = 1;
683                 changed = 1;
684         }
685         if (i->max > v->max) {
686                 i->max = v->max;
687                 i->openmax = v->openmax;
688                 changed = 1;
689         } else if (i->max == v->max && !i->openmax && v->openmax) {
690                 i->openmax = 1;
691                 changed = 1;
692         }
693         if (!i->integer && v->integer) {
694                 i->integer = 1;
695                 changed = 1;
696         }
697         if (i->integer) {
698                 if (i->openmin) {
699                         i->min++;
700                         i->openmin = 0;
701                 }
702                 if (i->openmax) {
703                         i->max--;
704                         i->openmax = 0;
705                 }
706         } else if (!i->openmin && !i->openmax && i->min == i->max)
707                 i->integer = 1;
708         if (snd_interval_checkempty(i)) {
709                 snd_interval_none(i);
710                 return -EINVAL;
711         }
712         return changed;
713 }
714
715 EXPORT_SYMBOL(snd_interval_refine);
716
717 static int snd_interval_refine_first(struct snd_interval *i)
718 {
719         if (snd_BUG_ON(snd_interval_empty(i)))
720                 return -EINVAL;
721         if (snd_interval_single(i))
722                 return 0;
723         i->max = i->min;
724         i->openmax = i->openmin;
725         if (i->openmax)
726                 i->max++;
727         return 1;
728 }
729
730 static int snd_interval_refine_last(struct snd_interval *i)
731 {
732         if (snd_BUG_ON(snd_interval_empty(i)))
733                 return -EINVAL;
734         if (snd_interval_single(i))
735                 return 0;
736         i->min = i->max;
737         i->openmin = i->openmax;
738         if (i->openmin)
739                 i->min--;
740         return 1;
741 }
742
743 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
744 {
745         if (a->empty || b->empty) {
746                 snd_interval_none(c);
747                 return;
748         }
749         c->empty = 0;
750         c->min = mul(a->min, b->min);
751         c->openmin = (a->openmin || b->openmin);
752         c->max = mul(a->max,  b->max);
753         c->openmax = (a->openmax || b->openmax);
754         c->integer = (a->integer && b->integer);
755 }
756
757 /**
758  * snd_interval_div - refine the interval value with division
759  * @a: dividend
760  * @b: divisor
761  * @c: quotient
762  *
763  * c = a / b
764  *
765  * Returns non-zero if the value is changed, zero if not changed.
766  */
767 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
768 {
769         unsigned int r;
770         if (a->empty || b->empty) {
771                 snd_interval_none(c);
772                 return;
773         }
774         c->empty = 0;
775         c->min = div32(a->min, b->max, &r);
776         c->openmin = (r || a->openmin || b->openmax);
777         if (b->min > 0) {
778                 c->max = div32(a->max, b->min, &r);
779                 if (r) {
780                         c->max++;
781                         c->openmax = 1;
782                 } else
783                         c->openmax = (a->openmax || b->openmin);
784         } else {
785                 c->max = UINT_MAX;
786                 c->openmax = 0;
787         }
788         c->integer = 0;
789 }
790
791 /**
792  * snd_interval_muldivk - refine the interval value
793  * @a: dividend 1
794  * @b: dividend 2
795  * @k: divisor (as integer)
796  * @c: result
797   *
798  * c = a * b / k
799  *
800  * Returns non-zero if the value is changed, zero if not changed.
801  */
802 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
803                       unsigned int k, struct snd_interval *c)
804 {
805         unsigned int r;
806         if (a->empty || b->empty) {
807                 snd_interval_none(c);
808                 return;
809         }
810         c->empty = 0;
811         c->min = muldiv32(a->min, b->min, k, &r);
812         c->openmin = (r || a->openmin || b->openmin);
813         c->max = muldiv32(a->max, b->max, k, &r);
814         if (r) {
815                 c->max++;
816                 c->openmax = 1;
817         } else
818                 c->openmax = (a->openmax || b->openmax);
819         c->integer = 0;
820 }
821
822 /**
823  * snd_interval_mulkdiv - refine the interval value
824  * @a: dividend 1
825  * @k: dividend 2 (as integer)
826  * @b: divisor
827  * @c: result
828  *
829  * c = a * k / b
830  *
831  * Returns non-zero if the value is changed, zero if not changed.
832  */
833 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
834                       const struct snd_interval *b, struct snd_interval *c)
835 {
836         unsigned int r;
837         if (a->empty || b->empty) {
838                 snd_interval_none(c);
839                 return;
840         }
841         c->empty = 0;
842         c->min = muldiv32(a->min, k, b->max, &r);
843         c->openmin = (r || a->openmin || b->openmax);
844         if (b->min > 0) {
845                 c->max = muldiv32(a->max, k, b->min, &r);
846                 if (r) {
847                         c->max++;
848                         c->openmax = 1;
849                 } else
850                         c->openmax = (a->openmax || b->openmin);
851         } else {
852                 c->max = UINT_MAX;
853                 c->openmax = 0;
854         }
855         c->integer = 0;
856 }
857
858 /* ---- */
859
860
861 /**
862  * snd_interval_ratnum - refine the interval value
863  * @i: interval to refine
864  * @rats_count: number of ratnum_t 
865  * @rats: ratnum_t array
866  * @nump: pointer to store the resultant numerator
867  * @denp: pointer to store the resultant denominator
868  *
869  * Return: Positive if the value is changed, zero if it's not changed, or a
870  * negative error code.
871  */
872 int snd_interval_ratnum(struct snd_interval *i,
873                         unsigned int rats_count, struct snd_ratnum *rats,
874                         unsigned int *nump, unsigned int *denp)
875 {
876         unsigned int best_num, best_den;
877         int best_diff;
878         unsigned int k;
879         struct snd_interval t;
880         int err;
881         unsigned int result_num, result_den;
882         int result_diff;
883
884         best_num = best_den = best_diff = 0;
885         for (k = 0; k < rats_count; ++k) {
886                 unsigned int num = rats[k].num;
887                 unsigned int den;
888                 unsigned int q = i->min;
889                 int diff;
890                 if (q == 0)
891                         q = 1;
892                 den = div_up(num, q);
893                 if (den < rats[k].den_min)
894                         continue;
895                 if (den > rats[k].den_max)
896                         den = rats[k].den_max;
897                 else {
898                         unsigned int r;
899                         r = (den - rats[k].den_min) % rats[k].den_step;
900                         if (r != 0)
901                                 den -= r;
902                 }
903                 diff = num - q * den;
904                 if (diff < 0)
905                         diff = -diff;
906                 if (best_num == 0 ||
907                     diff * best_den < best_diff * den) {
908                         best_diff = diff;
909                         best_den = den;
910                         best_num = num;
911                 }
912         }
913         if (best_den == 0) {
914                 i->empty = 1;
915                 return -EINVAL;
916         }
917         t.min = div_down(best_num, best_den);
918         t.openmin = !!(best_num % best_den);
919         
920         result_num = best_num;
921         result_diff = best_diff;
922         result_den = best_den;
923         best_num = best_den = best_diff = 0;
924         for (k = 0; k < rats_count; ++k) {
925                 unsigned int num = rats[k].num;
926                 unsigned int den;
927                 unsigned int q = i->max;
928                 int diff;
929                 if (q == 0) {
930                         i->empty = 1;
931                         return -EINVAL;
932                 }
933                 den = div_down(num, q);
934                 if (den > rats[k].den_max)
935                         continue;
936                 if (den < rats[k].den_min)
937                         den = rats[k].den_min;
938                 else {
939                         unsigned int r;
940                         r = (den - rats[k].den_min) % rats[k].den_step;
941                         if (r != 0)
942                                 den += rats[k].den_step - r;
943                 }
944                 diff = q * den - num;
945                 if (diff < 0)
946                         diff = -diff;
947                 if (best_num == 0 ||
948                     diff * best_den < best_diff * den) {
949                         best_diff = diff;
950                         best_den = den;
951                         best_num = num;
952                 }
953         }
954         if (best_den == 0) {
955                 i->empty = 1;
956                 return -EINVAL;
957         }
958         t.max = div_up(best_num, best_den);
959         t.openmax = !!(best_num % best_den);
960         t.integer = 0;
961         err = snd_interval_refine(i, &t);
962         if (err < 0)
963                 return err;
964
965         if (snd_interval_single(i)) {
966                 if (best_diff * result_den < result_diff * best_den) {
967                         result_num = best_num;
968                         result_den = best_den;
969                 }
970                 if (nump)
971                         *nump = result_num;
972                 if (denp)
973                         *denp = result_den;
974         }
975         return err;
976 }
977
978 EXPORT_SYMBOL(snd_interval_ratnum);
979
980 /**
981  * snd_interval_ratden - refine the interval value
982  * @i: interval to refine
983  * @rats_count: number of struct ratden
984  * @rats: struct ratden array
985  * @nump: pointer to store the resultant numerator
986  * @denp: pointer to store the resultant denominator
987  *
988  * Return: Positive if the value is changed, zero if it's not changed, or a
989  * negative error code.
990  */
991 static int snd_interval_ratden(struct snd_interval *i,
992                                unsigned int rats_count, struct snd_ratden *rats,
993                                unsigned int *nump, unsigned int *denp)
994 {
995         unsigned int best_num, best_diff, best_den;
996         unsigned int k;
997         struct snd_interval t;
998         int err;
999
1000         best_num = best_den = best_diff = 0;
1001         for (k = 0; k < rats_count; ++k) {
1002                 unsigned int num;
1003                 unsigned int den = rats[k].den;
1004                 unsigned int q = i->min;
1005                 int diff;
1006                 num = mul(q, den);
1007                 if (num > rats[k].num_max)
1008                         continue;
1009                 if (num < rats[k].num_min)
1010                         num = rats[k].num_max;
1011                 else {
1012                         unsigned int r;
1013                         r = (num - rats[k].num_min) % rats[k].num_step;
1014                         if (r != 0)
1015                                 num += rats[k].num_step - r;
1016                 }
1017                 diff = num - q * den;
1018                 if (best_num == 0 ||
1019                     diff * best_den < best_diff * den) {
1020                         best_diff = diff;
1021                         best_den = den;
1022                         best_num = num;
1023                 }
1024         }
1025         if (best_den == 0) {
1026                 i->empty = 1;
1027                 return -EINVAL;
1028         }
1029         t.min = div_down(best_num, best_den);
1030         t.openmin = !!(best_num % best_den);
1031         
1032         best_num = best_den = best_diff = 0;
1033         for (k = 0; k < rats_count; ++k) {
1034                 unsigned int num;
1035                 unsigned int den = rats[k].den;
1036                 unsigned int q = i->max;
1037                 int diff;
1038                 num = mul(q, den);
1039                 if (num < rats[k].num_min)
1040                         continue;
1041                 if (num > rats[k].num_max)
1042                         num = rats[k].num_max;
1043                 else {
1044                         unsigned int r;
1045                         r = (num - rats[k].num_min) % rats[k].num_step;
1046                         if (r != 0)
1047                                 num -= r;
1048                 }
1049                 diff = q * den - num;
1050                 if (best_num == 0 ||
1051                     diff * best_den < best_diff * den) {
1052                         best_diff = diff;
1053                         best_den = den;
1054                         best_num = num;
1055                 }
1056         }
1057         if (best_den == 0) {
1058                 i->empty = 1;
1059                 return -EINVAL;
1060         }
1061         t.max = div_up(best_num, best_den);
1062         t.openmax = !!(best_num % best_den);
1063         t.integer = 0;
1064         err = snd_interval_refine(i, &t);
1065         if (err < 0)
1066                 return err;
1067
1068         if (snd_interval_single(i)) {
1069                 if (nump)
1070                         *nump = best_num;
1071                 if (denp)
1072                         *denp = best_den;
1073         }
1074         return err;
1075 }
1076
1077 /**
1078  * snd_interval_list - refine the interval value from the list
1079  * @i: the interval value to refine
1080  * @count: the number of elements in the list
1081  * @list: the value list
1082  * @mask: the bit-mask to evaluate
1083  *
1084  * Refines the interval value from the list.
1085  * When mask is non-zero, only the elements corresponding to bit 1 are
1086  * evaluated.
1087  *
1088  * Return: Positive if the value is changed, zero if it's not changed, or a
1089  * negative error code.
1090  */
1091 int snd_interval_list(struct snd_interval *i, unsigned int count,
1092                       const unsigned int *list, unsigned int mask)
1093 {
1094         unsigned int k;
1095         struct snd_interval list_range;
1096
1097         if (!count) {
1098                 i->empty = 1;
1099                 return -EINVAL;
1100         }
1101         snd_interval_any(&list_range);
1102         list_range.min = UINT_MAX;
1103         list_range.max = 0;
1104         for (k = 0; k < count; k++) {
1105                 if (mask && !(mask & (1 << k)))
1106                         continue;
1107                 if (!snd_interval_test(i, list[k]))
1108                         continue;
1109                 list_range.min = min(list_range.min, list[k]);
1110                 list_range.max = max(list_range.max, list[k]);
1111         }
1112         return snd_interval_refine(i, &list_range);
1113 }
1114
1115 EXPORT_SYMBOL(snd_interval_list);
1116
1117 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1118 {
1119         unsigned int n;
1120         int changed = 0;
1121         n = (i->min - min) % step;
1122         if (n != 0 || i->openmin) {
1123                 i->min += step - n;
1124                 changed = 1;
1125         }
1126         n = (i->max - min) % step;
1127         if (n != 0 || i->openmax) {
1128                 i->max -= n;
1129                 changed = 1;
1130         }
1131         if (snd_interval_checkempty(i)) {
1132                 i->empty = 1;
1133                 return -EINVAL;
1134         }
1135         return changed;
1136 }
1137
1138 /* Info constraints helpers */
1139
1140 /**
1141  * snd_pcm_hw_rule_add - add the hw-constraint rule
1142  * @runtime: the pcm runtime instance
1143  * @cond: condition bits
1144  * @var: the variable to evaluate
1145  * @func: the evaluation function
1146  * @private: the private data pointer passed to function
1147  * @dep: the dependent variables
1148  *
1149  * Return: Zero if successful, or a negative error code on failure.
1150  */
1151 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1152                         int var,
1153                         snd_pcm_hw_rule_func_t func, void *private,
1154                         int dep, ...)
1155 {
1156         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1157         struct snd_pcm_hw_rule *c;
1158         unsigned int k;
1159         va_list args;
1160         va_start(args, dep);
1161         if (constrs->rules_num >= constrs->rules_all) {
1162                 struct snd_pcm_hw_rule *new;
1163                 unsigned int new_rules = constrs->rules_all + 16;
1164                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1165                 if (!new) {
1166                         va_end(args);
1167                         return -ENOMEM;
1168                 }
1169                 if (constrs->rules) {
1170                         memcpy(new, constrs->rules,
1171                                constrs->rules_num * sizeof(*c));
1172                         kfree(constrs->rules);
1173                 }
1174                 constrs->rules = new;
1175                 constrs->rules_all = new_rules;
1176         }
1177         c = &constrs->rules[constrs->rules_num];
1178         c->cond = cond;
1179         c->func = func;
1180         c->var = var;
1181         c->private = private;
1182         k = 0;
1183         while (1) {
1184                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1185                         va_end(args);
1186                         return -EINVAL;
1187                 }
1188                 c->deps[k++] = dep;
1189                 if (dep < 0)
1190                         break;
1191                 dep = va_arg(args, int);
1192         }
1193         constrs->rules_num++;
1194         va_end(args);
1195         return 0;
1196 }
1197
1198 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1199
1200 /**
1201  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1202  * @runtime: PCM runtime instance
1203  * @var: hw_params variable to apply the mask
1204  * @mask: the bitmap mask
1205  *
1206  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1207  *
1208  * Return: Zero if successful, or a negative error code on failure.
1209  */
1210 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1211                                u_int32_t mask)
1212 {
1213         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1214         struct snd_mask *maskp = constrs_mask(constrs, var);
1215         *maskp->bits &= mask;
1216         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1217         if (*maskp->bits == 0)
1218                 return -EINVAL;
1219         return 0;
1220 }
1221
1222 /**
1223  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1224  * @runtime: PCM runtime instance
1225  * @var: hw_params variable to apply the mask
1226  * @mask: the 64bit bitmap mask
1227  *
1228  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1229  *
1230  * Return: Zero if successful, or a negative error code on failure.
1231  */
1232 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1233                                  u_int64_t mask)
1234 {
1235         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1236         struct snd_mask *maskp = constrs_mask(constrs, var);
1237         maskp->bits[0] &= (u_int32_t)mask;
1238         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1239         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1240         if (! maskp->bits[0] && ! maskp->bits[1])
1241                 return -EINVAL;
1242         return 0;
1243 }
1244
1245 /**
1246  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247  * @runtime: PCM runtime instance
1248  * @var: hw_params variable to apply the integer constraint
1249  *
1250  * Apply the constraint of integer to an interval parameter.
1251  *
1252  * Return: Positive if the value is changed, zero if it's not changed, or a
1253  * negative error code.
1254  */
1255 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256 {
1257         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258         return snd_interval_setinteger(constrs_interval(constrs, var));
1259 }
1260
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262
1263 /**
1264  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265  * @runtime: PCM runtime instance
1266  * @var: hw_params variable to apply the range
1267  * @min: the minimal value
1268  * @max: the maximal value
1269  * 
1270  * Apply the min/max range constraint to an interval parameter.
1271  *
1272  * Return: Positive if the value is changed, zero if it's not changed, or a
1273  * negative error code.
1274  */
1275 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276                                  unsigned int min, unsigned int max)
1277 {
1278         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279         struct snd_interval t;
1280         t.min = min;
1281         t.max = max;
1282         t.openmin = t.openmax = 0;
1283         t.integer = 0;
1284         return snd_interval_refine(constrs_interval(constrs, var), &t);
1285 }
1286
1287 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288
1289 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290                                 struct snd_pcm_hw_rule *rule)
1291 {
1292         struct snd_pcm_hw_constraint_list *list = rule->private;
1293         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294 }               
1295
1296
1297 /**
1298  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the list constraint
1302  * @l: list
1303  * 
1304  * Apply the list of constraints to an interval parameter.
1305  *
1306  * Return: Zero if successful, or a negative error code on failure.
1307  */
1308 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309                                unsigned int cond,
1310                                snd_pcm_hw_param_t var,
1311                                const struct snd_pcm_hw_constraint_list *l)
1312 {
1313         return snd_pcm_hw_rule_add(runtime, cond, var,
1314                                    snd_pcm_hw_rule_list, (void *)l,
1315                                    var, -1);
1316 }
1317
1318 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319
1320 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321                                    struct snd_pcm_hw_rule *rule)
1322 {
1323         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324         unsigned int num = 0, den = 0;
1325         int err;
1326         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327                                   r->nrats, r->rats, &num, &den);
1328         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329                 params->rate_num = num;
1330                 params->rate_den = den;
1331         }
1332         return err;
1333 }
1334
1335 /**
1336  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337  * @runtime: PCM runtime instance
1338  * @cond: condition bits
1339  * @var: hw_params variable to apply the ratnums constraint
1340  * @r: struct snd_ratnums constriants
1341  *
1342  * Return: Zero if successful, or a negative error code on failure.
1343  */
1344 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1345                                   unsigned int cond,
1346                                   snd_pcm_hw_param_t var,
1347                                   struct snd_pcm_hw_constraint_ratnums *r)
1348 {
1349         return snd_pcm_hw_rule_add(runtime, cond, var,
1350                                    snd_pcm_hw_rule_ratnums, r,
1351                                    var, -1);
1352 }
1353
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355
1356 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357                                    struct snd_pcm_hw_rule *rule)
1358 {
1359         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360         unsigned int num = 0, den = 0;
1361         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362                                   r->nrats, r->rats, &num, &den);
1363         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364                 params->rate_num = num;
1365                 params->rate_den = den;
1366         }
1367         return err;
1368 }
1369
1370 /**
1371  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the ratdens constraint
1375  * @r: struct snd_ratdens constriants
1376  *
1377  * Return: Zero if successful, or a negative error code on failure.
1378  */
1379 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1380                                   unsigned int cond,
1381                                   snd_pcm_hw_param_t var,
1382                                   struct snd_pcm_hw_constraint_ratdens *r)
1383 {
1384         return snd_pcm_hw_rule_add(runtime, cond, var,
1385                                    snd_pcm_hw_rule_ratdens, r,
1386                                    var, -1);
1387 }
1388
1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390
1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392                                   struct snd_pcm_hw_rule *rule)
1393 {
1394         unsigned int l = (unsigned long) rule->private;
1395         int width = l & 0xffff;
1396         unsigned int msbits = l >> 16;
1397         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398         if (snd_interval_single(i) && snd_interval_value(i) == width)
1399                 params->msbits = msbits;
1400         return 0;
1401 }
1402
1403 /**
1404  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405  * @runtime: PCM runtime instance
1406  * @cond: condition bits
1407  * @width: sample bits width
1408  * @msbits: msbits width
1409  *
1410  * Return: Zero if successful, or a negative error code on failure.
1411  */
1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1413                                  unsigned int cond,
1414                                  unsigned int width,
1415                                  unsigned int msbits)
1416 {
1417         unsigned long l = (msbits << 16) | width;
1418         return snd_pcm_hw_rule_add(runtime, cond, -1,
1419                                     snd_pcm_hw_rule_msbits,
1420                                     (void*) l,
1421                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427                                 struct snd_pcm_hw_rule *rule)
1428 {
1429         unsigned long step = (unsigned long) rule->private;
1430         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431 }
1432
1433 /**
1434  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @var: hw_params variable to apply the step constraint
1438  * @step: step size
1439  *
1440  * Return: Zero if successful, or a negative error code on failure.
1441  */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443                                unsigned int cond,
1444                                snd_pcm_hw_param_t var,
1445                                unsigned long step)
1446 {
1447         return snd_pcm_hw_rule_add(runtime, cond, var, 
1448                                    snd_pcm_hw_rule_step, (void *) step,
1449                                    var, -1);
1450 }
1451
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456         static unsigned int pow2_sizes[] = {
1457                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461         };
1462         return snd_interval_list(hw_param_interval(params, rule->var),
1463                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }               
1465
1466 /**
1467  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the power-of-2 constraint
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475                                unsigned int cond,
1476                                snd_pcm_hw_param_t var)
1477 {
1478         return snd_pcm_hw_rule_add(runtime, cond, var, 
1479                                    snd_pcm_hw_rule_pow2, NULL,
1480                                    var, -1);
1481 }
1482
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486                                            struct snd_pcm_hw_rule *rule)
1487 {
1488         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489         struct snd_interval *rate;
1490
1491         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492         return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503                                unsigned int base_rate)
1504 {
1505         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506                                    SNDRV_PCM_HW_PARAM_RATE,
1507                                    snd_pcm_hw_rule_noresample_func,
1508                                    (void *)(uintptr_t)base_rate,
1509                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514                                   snd_pcm_hw_param_t var)
1515 {
1516         if (hw_is_mask(var)) {
1517                 snd_mask_any(hw_param_mask(params, var));
1518                 params->cmask |= 1 << var;
1519                 params->rmask |= 1 << var;
1520                 return;
1521         }
1522         if (hw_is_interval(var)) {
1523                 snd_interval_any(hw_param_interval(params, var));
1524                 params->cmask |= 1 << var;
1525                 params->rmask |= 1 << var;
1526                 return;
1527         }
1528         snd_BUG();
1529 }
1530
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533         unsigned int k;
1534         memset(params, 0, sizeof(*params));
1535         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536                 _snd_pcm_hw_param_any(params, k);
1537         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538                 _snd_pcm_hw_param_any(params, k);
1539         params->info = ~0U;
1540 }
1541
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544 /**
1545  * snd_pcm_hw_param_value - return @params field @var value
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Return: The value for field @var if it's fixed in configuration space
1551  * defined by @params. -%EINVAL otherwise.
1552  */
1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554                            snd_pcm_hw_param_t var, int *dir)
1555 {
1556         if (hw_is_mask(var)) {
1557                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1558                 if (!snd_mask_single(mask))
1559                         return -EINVAL;
1560                 if (dir)
1561                         *dir = 0;
1562                 return snd_mask_value(mask);
1563         }
1564         if (hw_is_interval(var)) {
1565                 const struct snd_interval *i = hw_param_interval_c(params, var);
1566                 if (!snd_interval_single(i))
1567                         return -EINVAL;
1568                 if (dir)
1569                         *dir = i->openmin;
1570                 return snd_interval_value(i);
1571         }
1572         return -EINVAL;
1573 }
1574
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578                                 snd_pcm_hw_param_t var)
1579 {
1580         if (hw_is_mask(var)) {
1581                 snd_mask_none(hw_param_mask(params, var));
1582                 params->cmask |= 1 << var;
1583                 params->rmask |= 1 << var;
1584         } else if (hw_is_interval(var)) {
1585                 snd_interval_none(hw_param_interval(params, var));
1586                 params->cmask |= 1 << var;
1587                 params->rmask |= 1 << var;
1588         } else {
1589                 snd_BUG();
1590         }
1591 }
1592
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596                                    snd_pcm_hw_param_t var)
1597 {
1598         int changed;
1599         if (hw_is_mask(var))
1600                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601         else if (hw_is_interval(var))
1602                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603         else
1604                 return -EINVAL;
1605         if (changed) {
1606                 params->cmask |= 1 << var;
1607                 params->rmask |= 1 << var;
1608         }
1609         return changed;
1610 }
1611
1612
1613 /**
1614  * snd_pcm_hw_param_first - refine config space and return minimum value
1615  * @pcm: PCM instance
1616  * @params: the hw_params instance
1617  * @var: parameter to retrieve
1618  * @dir: pointer to the direction (-1,0,1) or %NULL
1619  *
1620  * Inside configuration space defined by @params remove from @var all
1621  * values > minimum. Reduce configuration space accordingly.
1622  *
1623  * Return: The minimum, or a negative error code on failure.
1624  */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1626                            struct snd_pcm_hw_params *params, 
1627                            snd_pcm_hw_param_t var, int *dir)
1628 {
1629         int changed = _snd_pcm_hw_param_first(params, var);
1630         if (changed < 0)
1631                 return changed;
1632         if (params->rmask) {
1633                 int err = snd_pcm_hw_refine(pcm, params);
1634                 if (snd_BUG_ON(err < 0))
1635                         return err;
1636         }
1637         return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643                                   snd_pcm_hw_param_t var)
1644 {
1645         int changed;
1646         if (hw_is_mask(var))
1647                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648         else if (hw_is_interval(var))
1649                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650         else
1651                 return -EINVAL;
1652         if (changed) {
1653                 params->cmask |= 1 << var;
1654                 params->rmask |= 1 << var;
1655         }
1656         return changed;
1657 }
1658
1659
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673                           struct snd_pcm_hw_params *params,
1674                           snd_pcm_hw_param_t var, int *dir)
1675 {
1676         int changed = _snd_pcm_hw_param_last(params, var);
1677         if (changed < 0)
1678                 return changed;
1679         if (params->rmask) {
1680                 int err = snd_pcm_hw_refine(pcm, params);
1681                 if (snd_BUG_ON(err < 0))
1682                         return err;
1683         }
1684         return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689 /**
1690  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691  * @pcm: PCM instance
1692  * @params: the hw_params instance
1693  *
1694  * Choose one configuration from configuration space defined by @params.
1695  * The configuration chosen is that obtained fixing in this order:
1696  * first access, first format, first subformat, min channels,
1697  * min rate, min period time, max buffer size, min tick time
1698  *
1699  * Return: Zero if successful, or a negative error code on failure.
1700  */
1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702                              struct snd_pcm_hw_params *params)
1703 {
1704         static int vars[] = {
1705                 SNDRV_PCM_HW_PARAM_ACCESS,
1706                 SNDRV_PCM_HW_PARAM_FORMAT,
1707                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708                 SNDRV_PCM_HW_PARAM_CHANNELS,
1709                 SNDRV_PCM_HW_PARAM_RATE,
1710                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1713                 -1
1714         };
1715         int err, *v;
1716
1717         for (v = vars; *v != -1; v++) {
1718                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720                 else
1721                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722                 if (snd_BUG_ON(err < 0))
1723                         return err;
1724         }
1725         return 0;
1726 }
1727
1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729                                    void *arg)
1730 {
1731         struct snd_pcm_runtime *runtime = substream->runtime;
1732         unsigned long flags;
1733         snd_pcm_stream_lock_irqsave(substream, flags);
1734         if (snd_pcm_running(substream) &&
1735             snd_pcm_update_hw_ptr(substream) >= 0)
1736                 runtime->status->hw_ptr %= runtime->buffer_size;
1737         else {
1738                 runtime->status->hw_ptr = 0;
1739                 runtime->hw_ptr_wrap = 0;
1740         }
1741         snd_pcm_stream_unlock_irqrestore(substream, flags);
1742         return 0;
1743 }
1744
1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746                                           void *arg)
1747 {
1748         struct snd_pcm_channel_info *info = arg;
1749         struct snd_pcm_runtime *runtime = substream->runtime;
1750         int width;
1751         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752                 info->offset = -1;
1753                 return 0;
1754         }
1755         width = snd_pcm_format_physical_width(runtime->format);
1756         if (width < 0)
1757                 return width;
1758         info->offset = 0;
1759         switch (runtime->access) {
1760         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762                 info->first = info->channel * width;
1763                 info->step = runtime->channels * width;
1764                 break;
1765         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767         {
1768                 size_t size = runtime->dma_bytes / runtime->channels;
1769                 info->first = info->channel * size * 8;
1770                 info->step = width;
1771                 break;
1772         }
1773         default:
1774                 snd_BUG();
1775                 break;
1776         }
1777         return 0;
1778 }
1779
1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781                                        void *arg)
1782 {
1783         struct snd_pcm_hw_params *params = arg;
1784         snd_pcm_format_t format;
1785         int channels, width;
1786
1787         params->fifo_size = substream->runtime->hw.fifo_size;
1788         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1789                 format = params_format(params);
1790                 channels = params_channels(params);
1791                 width = snd_pcm_format_physical_width(format);
1792                 params->fifo_size /= width * channels;
1793         }
1794         return 0;
1795 }
1796
1797 /**
1798  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1799  * @substream: the pcm substream instance
1800  * @cmd: ioctl command
1801  * @arg: ioctl argument
1802  *
1803  * Processes the generic ioctl commands for PCM.
1804  * Can be passed as the ioctl callback for PCM ops.
1805  *
1806  * Return: Zero if successful, or a negative error code on failure.
1807  */
1808 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1809                       unsigned int cmd, void *arg)
1810 {
1811         switch (cmd) {
1812         case SNDRV_PCM_IOCTL1_INFO:
1813                 return 0;
1814         case SNDRV_PCM_IOCTL1_RESET:
1815                 return snd_pcm_lib_ioctl_reset(substream, arg);
1816         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1817                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1818         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1819                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1820         }
1821         return -ENXIO;
1822 }
1823
1824 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1825
1826 /**
1827  * snd_pcm_period_elapsed - update the pcm status for the next period
1828  * @substream: the pcm substream instance
1829  *
1830  * This function is called from the interrupt handler when the
1831  * PCM has processed the period size.  It will update the current
1832  * pointer, wake up sleepers, etc.
1833  *
1834  * Even if more than one periods have elapsed since the last call, you
1835  * have to call this only once.
1836  */
1837 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1838 {
1839         struct snd_pcm_runtime *runtime;
1840         unsigned long flags;
1841
1842         if (PCM_RUNTIME_CHECK(substream))
1843                 return;
1844         runtime = substream->runtime;
1845
1846         if (runtime->transfer_ack_begin)
1847                 runtime->transfer_ack_begin(substream);
1848
1849         snd_pcm_stream_lock_irqsave(substream, flags);
1850         if (!snd_pcm_running(substream) ||
1851             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1852                 goto _end;
1853
1854         if (substream->timer_running)
1855                 snd_timer_interrupt(substream->timer, 1);
1856  _end:
1857         snd_pcm_stream_unlock_irqrestore(substream, flags);
1858         if (runtime->transfer_ack_end)
1859                 runtime->transfer_ack_end(substream);
1860         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861 }
1862
1863 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1864
1865 /*
1866  * Wait until avail_min data becomes available
1867  * Returns a negative error code if any error occurs during operation.
1868  * The available space is stored on availp.  When err = 0 and avail = 0
1869  * on the capture stream, it indicates the stream is in DRAINING state.
1870  */
1871 static int wait_for_avail(struct snd_pcm_substream *substream,
1872                               snd_pcm_uframes_t *availp)
1873 {
1874         struct snd_pcm_runtime *runtime = substream->runtime;
1875         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1876         wait_queue_t wait;
1877         int err = 0;
1878         snd_pcm_uframes_t avail = 0;
1879         long wait_time, tout;
1880
1881         init_waitqueue_entry(&wait, current);
1882         set_current_state(TASK_INTERRUPTIBLE);
1883         add_wait_queue(&runtime->tsleep, &wait);
1884
1885         if (runtime->no_period_wakeup)
1886                 wait_time = MAX_SCHEDULE_TIMEOUT;
1887         else {
1888                 wait_time = 10;
1889                 if (runtime->rate) {
1890                         long t = runtime->period_size * 2 / runtime->rate;
1891                         wait_time = max(t, wait_time);
1892                 }
1893                 wait_time = msecs_to_jiffies(wait_time * 1000);
1894         }
1895
1896         for (;;) {
1897                 if (signal_pending(current)) {
1898                         err = -ERESTARTSYS;
1899                         break;
1900                 }
1901
1902                 /*
1903                  * We need to check if space became available already
1904                  * (and thus the wakeup happened already) first to close
1905                  * the race of space already having become available.
1906                  * This check must happen after been added to the waitqueue
1907                  * and having current state be INTERRUPTIBLE.
1908                  */
1909                 if (is_playback)
1910                         avail = snd_pcm_playback_avail(runtime);
1911                 else
1912                         avail = snd_pcm_capture_avail(runtime);
1913                 if (avail >= runtime->twake)
1914                         break;
1915                 snd_pcm_stream_unlock_irq(substream);
1916
1917                 tout = schedule_timeout(wait_time);
1918
1919                 snd_pcm_stream_lock_irq(substream);
1920                 set_current_state(TASK_INTERRUPTIBLE);
1921                 switch (runtime->status->state) {
1922                 case SNDRV_PCM_STATE_SUSPENDED:
1923                         err = -ESTRPIPE;
1924                         goto _endloop;
1925                 case SNDRV_PCM_STATE_XRUN:
1926                         err = -EPIPE;
1927                         goto _endloop;
1928                 case SNDRV_PCM_STATE_DRAINING:
1929                         if (is_playback)
1930                                 err = -EPIPE;
1931                         else 
1932                                 avail = 0; /* indicate draining */
1933                         goto _endloop;
1934                 case SNDRV_PCM_STATE_OPEN:
1935                 case SNDRV_PCM_STATE_SETUP:
1936                 case SNDRV_PCM_STATE_DISCONNECTED:
1937                         err = -EBADFD;
1938                         goto _endloop;
1939                 }
1940                 if (!tout) {
1941                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1942                                    is_playback ? "playback" : "capture");
1943                         err = -EIO;
1944                         break;
1945                 }
1946         }
1947  _endloop:
1948         set_current_state(TASK_RUNNING);
1949         remove_wait_queue(&runtime->tsleep, &wait);
1950         *availp = avail;
1951         return err;
1952 }
1953         
1954 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1955                                       unsigned int hwoff,
1956                                       unsigned long data, unsigned int off,
1957                                       snd_pcm_uframes_t frames)
1958 {
1959         struct snd_pcm_runtime *runtime = substream->runtime;
1960         int err;
1961         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1962         if (substream->ops->copy) {
1963                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1964                         return err;
1965         } else {
1966                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1967                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1968                         return -EFAULT;
1969         }
1970         return 0;
1971 }
1972  
1973 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1974                           unsigned long data, unsigned int off,
1975                           snd_pcm_uframes_t size);
1976
1977 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1978                                             unsigned long data,
1979                                             snd_pcm_uframes_t size,
1980                                             int nonblock,
1981                                             transfer_f transfer)
1982 {
1983         struct snd_pcm_runtime *runtime = substream->runtime;
1984         snd_pcm_uframes_t xfer = 0;
1985         snd_pcm_uframes_t offset = 0;
1986         snd_pcm_uframes_t avail;
1987         int err = 0;
1988
1989         if (size == 0)
1990                 return 0;
1991
1992         snd_pcm_stream_lock_irq(substream);
1993         switch (runtime->status->state) {
1994         case SNDRV_PCM_STATE_PREPARED:
1995         case SNDRV_PCM_STATE_RUNNING:
1996         case SNDRV_PCM_STATE_PAUSED:
1997                 break;
1998         case SNDRV_PCM_STATE_XRUN:
1999                 err = -EPIPE;
2000                 goto _end_unlock;
2001         case SNDRV_PCM_STATE_SUSPENDED:
2002                 err = -ESTRPIPE;
2003                 goto _end_unlock;
2004         default:
2005                 err = -EBADFD;
2006                 goto _end_unlock;
2007         }
2008
2009         runtime->twake = runtime->control->avail_min ? : 1;
2010         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2011                 snd_pcm_update_hw_ptr(substream);
2012         avail = snd_pcm_playback_avail(runtime);
2013         while (size > 0) {
2014                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2015                 snd_pcm_uframes_t cont;
2016                 if (!avail) {
2017                         if (nonblock) {
2018                                 err = -EAGAIN;
2019                                 goto _end_unlock;
2020                         }
2021                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2022                                         runtime->control->avail_min ? : 1);
2023                         err = wait_for_avail(substream, &avail);
2024                         if (err < 0)
2025                                 goto _end_unlock;
2026                 }
2027                 frames = size > avail ? avail : size;
2028                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2029                 if (frames > cont)
2030                         frames = cont;
2031                 if (snd_BUG_ON(!frames)) {
2032                         runtime->twake = 0;
2033                         snd_pcm_stream_unlock_irq(substream);
2034                         return -EINVAL;
2035                 }
2036                 appl_ptr = runtime->control->appl_ptr;
2037                 appl_ofs = appl_ptr % runtime->buffer_size;
2038                 snd_pcm_stream_unlock_irq(substream);
2039                 err = transfer(substream, appl_ofs, data, offset, frames);
2040                 snd_pcm_stream_lock_irq(substream);
2041                 if (err < 0)
2042                         goto _end_unlock;
2043                 switch (runtime->status->state) {
2044                 case SNDRV_PCM_STATE_XRUN:
2045                         err = -EPIPE;
2046                         goto _end_unlock;
2047                 case SNDRV_PCM_STATE_SUSPENDED:
2048                         err = -ESTRPIPE;
2049                         goto _end_unlock;
2050                 default:
2051                         break;
2052                 }
2053                 appl_ptr += frames;
2054                 if (appl_ptr >= runtime->boundary)
2055                         appl_ptr -= runtime->boundary;
2056                 runtime->control->appl_ptr = appl_ptr;
2057                 if (substream->ops->ack)
2058                         substream->ops->ack(substream);
2059
2060                 offset += frames;
2061                 size -= frames;
2062                 xfer += frames;
2063                 avail -= frames;
2064                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2065                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2066                         err = snd_pcm_start(substream);
2067                         if (err < 0)
2068                                 goto _end_unlock;
2069                 }
2070         }
2071  _end_unlock:
2072         runtime->twake = 0;
2073         if (xfer > 0 && err >= 0)
2074                 snd_pcm_update_state(substream, runtime);
2075         snd_pcm_stream_unlock_irq(substream);
2076         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2077 }
2078
2079 /* sanity-check for read/write methods */
2080 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2081 {
2082         struct snd_pcm_runtime *runtime;
2083         if (PCM_RUNTIME_CHECK(substream))
2084                 return -ENXIO;
2085         runtime = substream->runtime;
2086         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2087                 return -EINVAL;
2088         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2089                 return -EBADFD;
2090         return 0;
2091 }
2092
2093 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2094 {
2095         struct snd_pcm_runtime *runtime;
2096         int nonblock;
2097         int err;
2098
2099         err = pcm_sanity_check(substream);
2100         if (err < 0)
2101                 return err;
2102         runtime = substream->runtime;
2103         nonblock = !!(substream->f_flags & O_NONBLOCK);
2104
2105         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2106             runtime->channels > 1)
2107                 return -EINVAL;
2108         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2109                                   snd_pcm_lib_write_transfer);
2110 }
2111
2112 EXPORT_SYMBOL(snd_pcm_lib_write);
2113
2114 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2115                                        unsigned int hwoff,
2116                                        unsigned long data, unsigned int off,
2117                                        snd_pcm_uframes_t frames)
2118 {
2119         struct snd_pcm_runtime *runtime = substream->runtime;
2120         int err;
2121         void __user **bufs = (void __user **)data;
2122         int channels = runtime->channels;
2123         int c;
2124         if (substream->ops->copy) {
2125                 if (snd_BUG_ON(!substream->ops->silence))
2126                         return -EINVAL;
2127                 for (c = 0; c < channels; ++c, ++bufs) {
2128                         if (*bufs == NULL) {
2129                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2130                                         return err;
2131                         } else {
2132                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2133                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2134                                         return err;
2135                         }
2136                 }
2137         } else {
2138                 /* default transfer behaviour */
2139                 size_t dma_csize = runtime->dma_bytes / channels;
2140                 for (c = 0; c < channels; ++c, ++bufs) {
2141                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2142                         if (*bufs == NULL) {
2143                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2144                         } else {
2145                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2146                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2147                                         return -EFAULT;
2148                         }
2149                 }
2150         }
2151         return 0;
2152 }
2153  
2154 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2155                                      void __user **bufs,
2156                                      snd_pcm_uframes_t frames)
2157 {
2158         struct snd_pcm_runtime *runtime;
2159         int nonblock;
2160         int err;
2161
2162         err = pcm_sanity_check(substream);
2163         if (err < 0)
2164                 return err;
2165         runtime = substream->runtime;
2166         nonblock = !!(substream->f_flags & O_NONBLOCK);
2167
2168         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2169                 return -EINVAL;
2170         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2171                                   nonblock, snd_pcm_lib_writev_transfer);
2172 }
2173
2174 EXPORT_SYMBOL(snd_pcm_lib_writev);
2175
2176 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2177                                      unsigned int hwoff,
2178                                      unsigned long data, unsigned int off,
2179                                      snd_pcm_uframes_t frames)
2180 {
2181         struct snd_pcm_runtime *runtime = substream->runtime;
2182         int err;
2183         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2184         if (substream->ops->copy) {
2185                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2186                         return err;
2187         } else {
2188                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2189                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2190                         return -EFAULT;
2191         }
2192         return 0;
2193 }
2194
2195 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2196                                            unsigned long data,
2197                                            snd_pcm_uframes_t size,
2198                                            int nonblock,
2199                                            transfer_f transfer)
2200 {
2201         struct snd_pcm_runtime *runtime = substream->runtime;
2202         snd_pcm_uframes_t xfer = 0;
2203         snd_pcm_uframes_t offset = 0;
2204         snd_pcm_uframes_t avail;
2205         int err = 0;
2206
2207         if (size == 0)
2208                 return 0;
2209
2210         snd_pcm_stream_lock_irq(substream);
2211         switch (runtime->status->state) {
2212         case SNDRV_PCM_STATE_PREPARED:
2213                 if (size >= runtime->start_threshold) {
2214                         err = snd_pcm_start(substream);
2215                         if (err < 0)
2216                                 goto _end_unlock;
2217                 }
2218                 break;
2219         case SNDRV_PCM_STATE_DRAINING:
2220         case SNDRV_PCM_STATE_RUNNING:
2221         case SNDRV_PCM_STATE_PAUSED:
2222                 break;
2223         case SNDRV_PCM_STATE_XRUN:
2224                 err = -EPIPE;
2225                 goto _end_unlock;
2226         case SNDRV_PCM_STATE_SUSPENDED:
2227                 err = -ESTRPIPE;
2228                 goto _end_unlock;
2229         default:
2230                 err = -EBADFD;
2231                 goto _end_unlock;
2232         }
2233
2234         runtime->twake = runtime->control->avail_min ? : 1;
2235         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2236                 snd_pcm_update_hw_ptr(substream);
2237         avail = snd_pcm_capture_avail(runtime);
2238         while (size > 0) {
2239                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2240                 snd_pcm_uframes_t cont;
2241                 if (!avail) {
2242                         if (runtime->status->state ==
2243                             SNDRV_PCM_STATE_DRAINING) {
2244                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2245                                 goto _end_unlock;
2246                         }
2247                         if (nonblock) {
2248                                 err = -EAGAIN;
2249                                 goto _end_unlock;
2250                         }
2251                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2252                                         runtime->control->avail_min ? : 1);
2253                         err = wait_for_avail(substream, &avail);
2254                         if (err < 0)
2255                                 goto _end_unlock;
2256                         if (!avail)
2257                                 continue; /* draining */
2258                 }
2259                 frames = size > avail ? avail : size;
2260                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2261                 if (frames > cont)
2262                         frames = cont;
2263                 if (snd_BUG_ON(!frames)) {
2264                         runtime->twake = 0;
2265                         snd_pcm_stream_unlock_irq(substream);
2266                         return -EINVAL;
2267                 }
2268                 appl_ptr = runtime->control->appl_ptr;
2269                 appl_ofs = appl_ptr % runtime->buffer_size;
2270                 snd_pcm_stream_unlock_irq(substream);
2271                 err = transfer(substream, appl_ofs, data, offset, frames);
2272                 snd_pcm_stream_lock_irq(substream);
2273                 if (err < 0)
2274                         goto _end_unlock;
2275                 switch (runtime->status->state) {
2276                 case SNDRV_PCM_STATE_XRUN:
2277                         err = -EPIPE;
2278                         goto _end_unlock;
2279                 case SNDRV_PCM_STATE_SUSPENDED:
2280                         err = -ESTRPIPE;
2281                         goto _end_unlock;
2282                 default:
2283                         break;
2284                 }
2285                 appl_ptr += frames;
2286                 if (appl_ptr >= runtime->boundary)
2287                         appl_ptr -= runtime->boundary;
2288                 runtime->control->appl_ptr = appl_ptr;
2289                 if (substream->ops->ack)
2290                         substream->ops->ack(substream);
2291
2292                 offset += frames;
2293                 size -= frames;
2294                 xfer += frames;
2295                 avail -= frames;
2296         }
2297  _end_unlock:
2298         runtime->twake = 0;
2299         if (xfer > 0 && err >= 0)
2300                 snd_pcm_update_state(substream, runtime);
2301         snd_pcm_stream_unlock_irq(substream);
2302         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2303 }
2304
2305 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2306 {
2307         struct snd_pcm_runtime *runtime;
2308         int nonblock;
2309         int err;
2310         
2311         err = pcm_sanity_check(substream);
2312         if (err < 0)
2313                 return err;
2314         runtime = substream->runtime;
2315         nonblock = !!(substream->f_flags & O_NONBLOCK);
2316         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2317                 return -EINVAL;
2318         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2319 }
2320
2321 EXPORT_SYMBOL(snd_pcm_lib_read);
2322
2323 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2324                                       unsigned int hwoff,
2325                                       unsigned long data, unsigned int off,
2326                                       snd_pcm_uframes_t frames)
2327 {
2328         struct snd_pcm_runtime *runtime = substream->runtime;
2329         int err;
2330         void __user **bufs = (void __user **)data;
2331         int channels = runtime->channels;
2332         int c;
2333         if (substream->ops->copy) {
2334                 for (c = 0; c < channels; ++c, ++bufs) {
2335                         char __user *buf;
2336                         if (*bufs == NULL)
2337                                 continue;
2338                         buf = *bufs + samples_to_bytes(runtime, off);
2339                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2340                                 return err;
2341                 }
2342         } else {
2343                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2344                 for (c = 0; c < channels; ++c, ++bufs) {
2345                         char *hwbuf;
2346                         char __user *buf;
2347                         if (*bufs == NULL)
2348                                 continue;
2349
2350                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2351                         buf = *bufs + samples_to_bytes(runtime, off);
2352                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2353                                 return -EFAULT;
2354                 }
2355         }
2356         return 0;
2357 }
2358  
2359 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2360                                     void __user **bufs,
2361                                     snd_pcm_uframes_t frames)
2362 {
2363         struct snd_pcm_runtime *runtime;
2364         int nonblock;
2365         int err;
2366
2367         err = pcm_sanity_check(substream);
2368         if (err < 0)
2369                 return err;
2370         runtime = substream->runtime;
2371         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2372                 return -EBADFD;
2373
2374         nonblock = !!(substream->f_flags & O_NONBLOCK);
2375         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2376                 return -EINVAL;
2377         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2378 }
2379
2380 EXPORT_SYMBOL(snd_pcm_lib_readv);
2381
2382 /*
2383  * standard channel mapping helpers
2384  */
2385
2386 /* default channel maps for multi-channel playbacks, up to 8 channels */
2387 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2388         { .channels = 1,
2389           .map = { SNDRV_CHMAP_MONO } },
2390         { .channels = 2,
2391           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2392         { .channels = 4,
2393           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2394                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2395         { .channels = 6,
2396           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2398                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2399         { .channels = 8,
2400           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2401                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2402                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2403                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2404         { }
2405 };
2406 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2407
2408 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2409 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2410         { .channels = 1,
2411           .map = { SNDRV_CHMAP_MONO } },
2412         { .channels = 2,
2413           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2414         { .channels = 4,
2415           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2416                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2417         { .channels = 6,
2418           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2420                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2421         { .channels = 8,
2422           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2423                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2424                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2425                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2426         { }
2427 };
2428 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2429
2430 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2431 {
2432         if (ch > info->max_channels)
2433                 return false;
2434         return !info->channel_mask || (info->channel_mask & (1U << ch));
2435 }
2436
2437 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2438                               struct snd_ctl_elem_info *uinfo)
2439 {
2440         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2441
2442         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2443         uinfo->count = 0;
2444         uinfo->count = info->max_channels;
2445         uinfo->value.integer.min = 0;
2446         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2447         return 0;
2448 }
2449
2450 /* get callback for channel map ctl element
2451  * stores the channel position firstly matching with the current channels
2452  */
2453 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2454                              struct snd_ctl_elem_value *ucontrol)
2455 {
2456         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2457         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2458         struct snd_pcm_substream *substream;
2459         const struct snd_pcm_chmap_elem *map;
2460
2461         if (snd_BUG_ON(!info->chmap))
2462                 return -EINVAL;
2463         substream = snd_pcm_chmap_substream(info, idx);
2464         if (!substream)
2465                 return -ENODEV;
2466         memset(ucontrol->value.integer.value, 0,
2467                sizeof(ucontrol->value.integer.value));
2468         if (!substream->runtime)
2469                 return 0; /* no channels set */
2470         for (map = info->chmap; map->channels; map++) {
2471                 int i;
2472                 if (map->channels == substream->runtime->channels &&
2473                     valid_chmap_channels(info, map->channels)) {
2474                         for (i = 0; i < map->channels; i++)
2475                                 ucontrol->value.integer.value[i] = map->map[i];
2476                         return 0;
2477                 }
2478         }
2479         return -EINVAL;
2480 }
2481
2482 /* tlv callback for channel map ctl element
2483  * expands the pre-defined channel maps in a form of TLV
2484  */
2485 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2486                              unsigned int size, unsigned int __user *tlv)
2487 {
2488         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2489         const struct snd_pcm_chmap_elem *map;
2490         unsigned int __user *dst;
2491         int c, count = 0;
2492
2493         if (snd_BUG_ON(!info->chmap))
2494                 return -EINVAL;
2495         if (size < 8)
2496                 return -ENOMEM;
2497         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2498                 return -EFAULT;
2499         size -= 8;
2500         dst = tlv + 2;
2501         for (map = info->chmap; map->channels; map++) {
2502                 int chs_bytes = map->channels * 4;
2503                 if (!valid_chmap_channels(info, map->channels))
2504                         continue;
2505                 if (size < 8)
2506                         return -ENOMEM;
2507                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2508                     put_user(chs_bytes, dst + 1))
2509                         return -EFAULT;
2510                 dst += 2;
2511                 size -= 8;
2512                 count += 8;
2513                 if (size < chs_bytes)
2514                         return -ENOMEM;
2515                 size -= chs_bytes;
2516                 count += chs_bytes;
2517                 for (c = 0; c < map->channels; c++) {
2518                         if (put_user(map->map[c], dst))
2519                                 return -EFAULT;
2520                         dst++;
2521                 }
2522         }
2523         if (put_user(count, tlv + 1))
2524                 return -EFAULT;
2525         return 0;
2526 }
2527
2528 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2529 {
2530         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2531         info->pcm->streams[info->stream].chmap_kctl = NULL;
2532         kfree(info);
2533 }
2534
2535 /**
2536  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2537  * @pcm: the assigned PCM instance
2538  * @stream: stream direction
2539  * @chmap: channel map elements (for query)
2540  * @max_channels: the max number of channels for the stream
2541  * @private_value: the value passed to each kcontrol's private_value field
2542  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2543  *
2544  * Create channel-mapping control elements assigned to the given PCM stream(s).
2545  * Return: Zero if successful, or a negative error value.
2546  */
2547 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2548                            const struct snd_pcm_chmap_elem *chmap,
2549                            int max_channels,
2550                            unsigned long private_value,
2551                            struct snd_pcm_chmap **info_ret)
2552 {
2553         struct snd_pcm_chmap *info;
2554         struct snd_kcontrol_new knew = {
2555                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2556                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2557                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2558                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2559                 .info = pcm_chmap_ctl_info,
2560                 .get = pcm_chmap_ctl_get,
2561                 .tlv.c = pcm_chmap_ctl_tlv,
2562         };
2563         int err;
2564
2565         info = kzalloc(sizeof(*info), GFP_KERNEL);
2566         if (!info)
2567                 return -ENOMEM;
2568         info->pcm = pcm;
2569         info->stream = stream;
2570         info->chmap = chmap;
2571         info->max_channels = max_channels;
2572         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2573                 knew.name = "Playback Channel Map";
2574         else
2575                 knew.name = "Capture Channel Map";
2576         knew.device = pcm->device;
2577         knew.count = pcm->streams[stream].substream_count;
2578         knew.private_value = private_value;
2579         info->kctl = snd_ctl_new1(&knew, info);
2580         if (!info->kctl) {
2581                 kfree(info);
2582                 return -ENOMEM;
2583         }
2584         info->kctl->private_free = pcm_chmap_ctl_private_free;
2585         err = snd_ctl_add(pcm->card, info->kctl);
2586         if (err < 0)
2587                 return err;
2588         pcm->streams[stream].chmap_kctl = info->kctl;
2589         if (info_ret)
2590                 *info_ret = info;
2591         return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);