Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11
12 #define pr_fmt(fmt) "LSM: " fmt
13
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <net/flow.h>
32
33 /* How many LSMs were built into the kernel? */
34 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
35
36 /*
37  * How many LSMs are built into the kernel as determined at
38  * build time. Used to determine fixed array sizes.
39  * The capability module is accounted for by CONFIG_SECURITY
40  */
41 #define LSM_CONFIG_COUNT ( \
42         (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
43         (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
44         (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
45         (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
46         (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
47         (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
48         (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
49         (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
50         (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
51         (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
52         (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
53         (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
54         (IS_ENABLED(CONFIG_EVM) ? 1 : 0))
55
56 /*
57  * These are descriptions of the reasons that can be passed to the
58  * security_locked_down() LSM hook. Placing this array here allows
59  * all security modules to use the same descriptions for auditing
60  * purposes.
61  */
62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
63         [LOCKDOWN_NONE] = "none",
64         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
65         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
66         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
67         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
68         [LOCKDOWN_HIBERNATION] = "hibernation",
69         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
70         [LOCKDOWN_IOPORT] = "raw io port access",
71         [LOCKDOWN_MSR] = "raw MSR access",
72         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
73         [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
74         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
75         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
76         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
77         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
78         [LOCKDOWN_DEBUGFS] = "debugfs access",
79         [LOCKDOWN_XMON_WR] = "xmon write access",
80         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
81         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
82         [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
83         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
84         [LOCKDOWN_KCORE] = "/proc/kcore access",
85         [LOCKDOWN_KPROBES] = "use of kprobes",
86         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
87         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
88         [LOCKDOWN_PERF] = "unsafe use of perf",
89         [LOCKDOWN_TRACEFS] = "use of tracefs",
90         [LOCKDOWN_XMON_RW] = "xmon read and write access",
91         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
92         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
93 };
94
95 struct security_hook_heads security_hook_heads __ro_after_init;
96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
97
98 static struct kmem_cache *lsm_file_cache;
99 static struct kmem_cache *lsm_inode_cache;
100
101 char *lsm_names;
102 static struct lsm_blob_sizes blob_sizes __ro_after_init;
103
104 /* Boot-time LSM user choice */
105 static __initdata const char *chosen_lsm_order;
106 static __initdata const char *chosen_major_lsm;
107
108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
109
110 /* Ordered list of LSMs to initialize. */
111 static __initdata struct lsm_info **ordered_lsms;
112 static __initdata struct lsm_info *exclusive;
113
114 static __initdata bool debug;
115 #define init_debug(...)                                         \
116         do {                                                    \
117                 if (debug)                                      \
118                         pr_info(__VA_ARGS__);                   \
119         } while (0)
120
121 static bool __init is_enabled(struct lsm_info *lsm)
122 {
123         if (!lsm->enabled)
124                 return false;
125
126         return *lsm->enabled;
127 }
128
129 /* Mark an LSM's enabled flag. */
130 static int lsm_enabled_true __initdata = 1;
131 static int lsm_enabled_false __initdata = 0;
132 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
133 {
134         /*
135          * When an LSM hasn't configured an enable variable, we can use
136          * a hard-coded location for storing the default enabled state.
137          */
138         if (!lsm->enabled) {
139                 if (enabled)
140                         lsm->enabled = &lsm_enabled_true;
141                 else
142                         lsm->enabled = &lsm_enabled_false;
143         } else if (lsm->enabled == &lsm_enabled_true) {
144                 if (!enabled)
145                         lsm->enabled = &lsm_enabled_false;
146         } else if (lsm->enabled == &lsm_enabled_false) {
147                 if (enabled)
148                         lsm->enabled = &lsm_enabled_true;
149         } else {
150                 *lsm->enabled = enabled;
151         }
152 }
153
154 /* Is an LSM already listed in the ordered LSMs list? */
155 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
156 {
157         struct lsm_info **check;
158
159         for (check = ordered_lsms; *check; check++)
160                 if (*check == lsm)
161                         return true;
162
163         return false;
164 }
165
166 /* Append an LSM to the list of ordered LSMs to initialize. */
167 static int last_lsm __initdata;
168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
169 {
170         /* Ignore duplicate selections. */
171         if (exists_ordered_lsm(lsm))
172                 return;
173
174         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
175                 return;
176
177         /* Enable this LSM, if it is not already set. */
178         if (!lsm->enabled)
179                 lsm->enabled = &lsm_enabled_true;
180         ordered_lsms[last_lsm++] = lsm;
181
182         init_debug("%s ordered: %s (%s)\n", from, lsm->name,
183                    is_enabled(lsm) ? "enabled" : "disabled");
184 }
185
186 /* Is an LSM allowed to be initialized? */
187 static bool __init lsm_allowed(struct lsm_info *lsm)
188 {
189         /* Skip if the LSM is disabled. */
190         if (!is_enabled(lsm))
191                 return false;
192
193         /* Not allowed if another exclusive LSM already initialized. */
194         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
195                 init_debug("exclusive disabled: %s\n", lsm->name);
196                 return false;
197         }
198
199         return true;
200 }
201
202 static void __init lsm_set_blob_size(int *need, int *lbs)
203 {
204         int offset;
205
206         if (*need <= 0)
207                 return;
208
209         offset = ALIGN(*lbs, sizeof(void *));
210         *lbs = offset + *need;
211         *need = offset;
212 }
213
214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
215 {
216         if (!needed)
217                 return;
218
219         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
220         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
221         /*
222          * The inode blob gets an rcu_head in addition to
223          * what the modules might need.
224          */
225         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
226                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
227         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
228         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
229         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
230         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
231         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
232         lsm_set_blob_size(&needed->lbs_xattr_count,
233                           &blob_sizes.lbs_xattr_count);
234 }
235
236 /* Prepare LSM for initialization. */
237 static void __init prepare_lsm(struct lsm_info *lsm)
238 {
239         int enabled = lsm_allowed(lsm);
240
241         /* Record enablement (to handle any following exclusive LSMs). */
242         set_enabled(lsm, enabled);
243
244         /* If enabled, do pre-initialization work. */
245         if (enabled) {
246                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
247                         exclusive = lsm;
248                         init_debug("exclusive chosen:   %s\n", lsm->name);
249                 }
250
251                 lsm_set_blob_sizes(lsm->blobs);
252         }
253 }
254
255 /* Initialize a given LSM, if it is enabled. */
256 static void __init initialize_lsm(struct lsm_info *lsm)
257 {
258         if (is_enabled(lsm)) {
259                 int ret;
260
261                 init_debug("initializing %s\n", lsm->name);
262                 ret = lsm->init();
263                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
264         }
265 }
266
267 /*
268  * Current index to use while initializing the lsm id list.
269  */
270 u32 lsm_active_cnt __ro_after_init;
271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
272
273 /* Populate ordered LSMs list from comma-separated LSM name list. */
274 static void __init ordered_lsm_parse(const char *order, const char *origin)
275 {
276         struct lsm_info *lsm;
277         char *sep, *name, *next;
278
279         /* LSM_ORDER_FIRST is always first. */
280         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281                 if (lsm->order == LSM_ORDER_FIRST)
282                         append_ordered_lsm(lsm, "  first");
283         }
284
285         /* Process "security=", if given. */
286         if (chosen_major_lsm) {
287                 struct lsm_info *major;
288
289                 /*
290                  * To match the original "security=" behavior, this
291                  * explicitly does NOT fallback to another Legacy Major
292                  * if the selected one was separately disabled: disable
293                  * all non-matching Legacy Major LSMs.
294                  */
295                 for (major = __start_lsm_info; major < __end_lsm_info;
296                      major++) {
297                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
298                             strcmp(major->name, chosen_major_lsm) != 0) {
299                                 set_enabled(major, false);
300                                 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
301                                            chosen_major_lsm, major->name);
302                         }
303                 }
304         }
305
306         sep = kstrdup(order, GFP_KERNEL);
307         next = sep;
308         /* Walk the list, looking for matching LSMs. */
309         while ((name = strsep(&next, ",")) != NULL) {
310                 bool found = false;
311
312                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
313                         if (strcmp(lsm->name, name) == 0) {
314                                 if (lsm->order == LSM_ORDER_MUTABLE)
315                                         append_ordered_lsm(lsm, origin);
316                                 found = true;
317                         }
318                 }
319
320                 if (!found)
321                         init_debug("%s ignored: %s (not built into kernel)\n",
322                                    origin, name);
323         }
324
325         /* Process "security=", if given. */
326         if (chosen_major_lsm) {
327                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
328                         if (exists_ordered_lsm(lsm))
329                                 continue;
330                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
331                                 append_ordered_lsm(lsm, "security=");
332                 }
333         }
334
335         /* LSM_ORDER_LAST is always last. */
336         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
337                 if (lsm->order == LSM_ORDER_LAST)
338                         append_ordered_lsm(lsm, "   last");
339         }
340
341         /* Disable all LSMs not in the ordered list. */
342         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
343                 if (exists_ordered_lsm(lsm))
344                         continue;
345                 set_enabled(lsm, false);
346                 init_debug("%s skipped: %s (not in requested order)\n",
347                            origin, lsm->name);
348         }
349
350         kfree(sep);
351 }
352
353 static void __init lsm_early_cred(struct cred *cred);
354 static void __init lsm_early_task(struct task_struct *task);
355
356 static int lsm_append(const char *new, char **result);
357
358 static void __init report_lsm_order(void)
359 {
360         struct lsm_info **lsm, *early;
361         int first = 0;
362
363         pr_info("initializing lsm=");
364
365         /* Report each enabled LSM name, comma separated. */
366         for (early = __start_early_lsm_info;
367              early < __end_early_lsm_info; early++)
368                 if (is_enabled(early))
369                         pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
370         for (lsm = ordered_lsms; *lsm; lsm++)
371                 if (is_enabled(*lsm))
372                         pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
373
374         pr_cont("\n");
375 }
376
377 static void __init ordered_lsm_init(void)
378 {
379         struct lsm_info **lsm;
380
381         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
382                                GFP_KERNEL);
383
384         if (chosen_lsm_order) {
385                 if (chosen_major_lsm) {
386                         pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
387                                 chosen_major_lsm, chosen_lsm_order);
388                         chosen_major_lsm = NULL;
389                 }
390                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
391         } else
392                 ordered_lsm_parse(builtin_lsm_order, "builtin");
393
394         for (lsm = ordered_lsms; *lsm; lsm++)
395                 prepare_lsm(*lsm);
396
397         report_lsm_order();
398
399         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
400         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
401         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
402         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
403         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
404         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
405         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
406         init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
407
408         /*
409          * Create any kmem_caches needed for blobs
410          */
411         if (blob_sizes.lbs_file)
412                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
413                                                    blob_sizes.lbs_file, 0,
414                                                    SLAB_PANIC, NULL);
415         if (blob_sizes.lbs_inode)
416                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
417                                                     blob_sizes.lbs_inode, 0,
418                                                     SLAB_PANIC, NULL);
419
420         lsm_early_cred((struct cred *) current->cred);
421         lsm_early_task(current);
422         for (lsm = ordered_lsms; *lsm; lsm++)
423                 initialize_lsm(*lsm);
424
425         kfree(ordered_lsms);
426 }
427
428 int __init early_security_init(void)
429 {
430         struct lsm_info *lsm;
431
432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
433         INIT_HLIST_HEAD(&security_hook_heads.NAME);
434 #include "linux/lsm_hook_defs.h"
435 #undef LSM_HOOK
436
437         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
438                 if (!lsm->enabled)
439                         lsm->enabled = &lsm_enabled_true;
440                 prepare_lsm(lsm);
441                 initialize_lsm(lsm);
442         }
443
444         return 0;
445 }
446
447 /**
448  * security_init - initializes the security framework
449  *
450  * This should be called early in the kernel initialization sequence.
451  */
452 int __init security_init(void)
453 {
454         struct lsm_info *lsm;
455
456         init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
457         init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
458         init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
459
460         /*
461          * Append the names of the early LSM modules now that kmalloc() is
462          * available
463          */
464         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
465                 init_debug("  early started: %s (%s)\n", lsm->name,
466                            is_enabled(lsm) ? "enabled" : "disabled");
467                 if (lsm->enabled)
468                         lsm_append(lsm->name, &lsm_names);
469         }
470
471         /* Load LSMs in specified order. */
472         ordered_lsm_init();
473
474         return 0;
475 }
476
477 /* Save user chosen LSM */
478 static int __init choose_major_lsm(char *str)
479 {
480         chosen_major_lsm = str;
481         return 1;
482 }
483 __setup("security=", choose_major_lsm);
484
485 /* Explicitly choose LSM initialization order. */
486 static int __init choose_lsm_order(char *str)
487 {
488         chosen_lsm_order = str;
489         return 1;
490 }
491 __setup("lsm=", choose_lsm_order);
492
493 /* Enable LSM order debugging. */
494 static int __init enable_debug(char *str)
495 {
496         debug = true;
497         return 1;
498 }
499 __setup("lsm.debug", enable_debug);
500
501 static bool match_last_lsm(const char *list, const char *lsm)
502 {
503         const char *last;
504
505         if (WARN_ON(!list || !lsm))
506                 return false;
507         last = strrchr(list, ',');
508         if (last)
509                 /* Pass the comma, strcmp() will check for '\0' */
510                 last++;
511         else
512                 last = list;
513         return !strcmp(last, lsm);
514 }
515
516 static int lsm_append(const char *new, char **result)
517 {
518         char *cp;
519
520         if (*result == NULL) {
521                 *result = kstrdup(new, GFP_KERNEL);
522                 if (*result == NULL)
523                         return -ENOMEM;
524         } else {
525                 /* Check if it is the last registered name */
526                 if (match_last_lsm(*result, new))
527                         return 0;
528                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
529                 if (cp == NULL)
530                         return -ENOMEM;
531                 kfree(*result);
532                 *result = cp;
533         }
534         return 0;
535 }
536
537 /**
538  * security_add_hooks - Add a modules hooks to the hook lists.
539  * @hooks: the hooks to add
540  * @count: the number of hooks to add
541  * @lsmid: the identification information for the security module
542  *
543  * Each LSM has to register its hooks with the infrastructure.
544  */
545 void __init security_add_hooks(struct security_hook_list *hooks, int count,
546                                const struct lsm_id *lsmid)
547 {
548         int i;
549
550         /*
551          * A security module may call security_add_hooks() more
552          * than once during initialization, and LSM initialization
553          * is serialized. Landlock is one such case.
554          * Look at the previous entry, if there is one, for duplication.
555          */
556         if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
557                 if (lsm_active_cnt >= LSM_CONFIG_COUNT)
558                         panic("%s Too many LSMs registered.\n", __func__);
559                 lsm_idlist[lsm_active_cnt++] = lsmid;
560         }
561
562         for (i = 0; i < count; i++) {
563                 hooks[i].lsmid = lsmid;
564                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
565         }
566
567         /*
568          * Don't try to append during early_security_init(), we'll come back
569          * and fix this up afterwards.
570          */
571         if (slab_is_available()) {
572                 if (lsm_append(lsmid->name, &lsm_names) < 0)
573                         panic("%s - Cannot get early memory.\n", __func__);
574         }
575 }
576
577 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
578 {
579         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
580                                             event, data);
581 }
582 EXPORT_SYMBOL(call_blocking_lsm_notifier);
583
584 int register_blocking_lsm_notifier(struct notifier_block *nb)
585 {
586         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
587                                                 nb);
588 }
589 EXPORT_SYMBOL(register_blocking_lsm_notifier);
590
591 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
592 {
593         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
594                                                   nb);
595 }
596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
597
598 /**
599  * lsm_cred_alloc - allocate a composite cred blob
600  * @cred: the cred that needs a blob
601  * @gfp: allocation type
602  *
603  * Allocate the cred blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
608 {
609         if (blob_sizes.lbs_cred == 0) {
610                 cred->security = NULL;
611                 return 0;
612         }
613
614         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
615         if (cred->security == NULL)
616                 return -ENOMEM;
617         return 0;
618 }
619
620 /**
621  * lsm_early_cred - during initialization allocate a composite cred blob
622  * @cred: the cred that needs a blob
623  *
624  * Allocate the cred blob for all the modules
625  */
626 static void __init lsm_early_cred(struct cred *cred)
627 {
628         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
629
630         if (rc)
631                 panic("%s: Early cred alloc failed.\n", __func__);
632 }
633
634 /**
635  * lsm_file_alloc - allocate a composite file blob
636  * @file: the file that needs a blob
637  *
638  * Allocate the file blob for all the modules
639  *
640  * Returns 0, or -ENOMEM if memory can't be allocated.
641  */
642 static int lsm_file_alloc(struct file *file)
643 {
644         if (!lsm_file_cache) {
645                 file->f_security = NULL;
646                 return 0;
647         }
648
649         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
650         if (file->f_security == NULL)
651                 return -ENOMEM;
652         return 0;
653 }
654
655 /**
656  * lsm_inode_alloc - allocate a composite inode blob
657  * @inode: the inode that needs a blob
658  *
659  * Allocate the inode blob for all the modules
660  *
661  * Returns 0, or -ENOMEM if memory can't be allocated.
662  */
663 int lsm_inode_alloc(struct inode *inode)
664 {
665         if (!lsm_inode_cache) {
666                 inode->i_security = NULL;
667                 return 0;
668         }
669
670         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
671         if (inode->i_security == NULL)
672                 return -ENOMEM;
673         return 0;
674 }
675
676 /**
677  * lsm_task_alloc - allocate a composite task blob
678  * @task: the task that needs a blob
679  *
680  * Allocate the task blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_task_alloc(struct task_struct *task)
685 {
686         if (blob_sizes.lbs_task == 0) {
687                 task->security = NULL;
688                 return 0;
689         }
690
691         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
692         if (task->security == NULL)
693                 return -ENOMEM;
694         return 0;
695 }
696
697 /**
698  * lsm_ipc_alloc - allocate a composite ipc blob
699  * @kip: the ipc that needs a blob
700  *
701  * Allocate the ipc blob for all the modules
702  *
703  * Returns 0, or -ENOMEM if memory can't be allocated.
704  */
705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
706 {
707         if (blob_sizes.lbs_ipc == 0) {
708                 kip->security = NULL;
709                 return 0;
710         }
711
712         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
713         if (kip->security == NULL)
714                 return -ENOMEM;
715         return 0;
716 }
717
718 /**
719  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
720  * @mp: the msg_msg that needs a blob
721  *
722  * Allocate the ipc blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
726 static int lsm_msg_msg_alloc(struct msg_msg *mp)
727 {
728         if (blob_sizes.lbs_msg_msg == 0) {
729                 mp->security = NULL;
730                 return 0;
731         }
732
733         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
734         if (mp->security == NULL)
735                 return -ENOMEM;
736         return 0;
737 }
738
739 /**
740  * lsm_early_task - during initialization allocate a composite task blob
741  * @task: the task that needs a blob
742  *
743  * Allocate the task blob for all the modules
744  */
745 static void __init lsm_early_task(struct task_struct *task)
746 {
747         int rc = lsm_task_alloc(task);
748
749         if (rc)
750                 panic("%s: Early task alloc failed.\n", __func__);
751 }
752
753 /**
754  * lsm_superblock_alloc - allocate a composite superblock blob
755  * @sb: the superblock that needs a blob
756  *
757  * Allocate the superblock blob for all the modules
758  *
759  * Returns 0, or -ENOMEM if memory can't be allocated.
760  */
761 static int lsm_superblock_alloc(struct super_block *sb)
762 {
763         if (blob_sizes.lbs_superblock == 0) {
764                 sb->s_security = NULL;
765                 return 0;
766         }
767
768         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
769         if (sb->s_security == NULL)
770                 return -ENOMEM;
771         return 0;
772 }
773
774 /**
775  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
776  * @uctx: a userspace LSM context to be filled
777  * @uctx_len: available uctx size (input), used uctx size (output)
778  * @val: the new LSM context value
779  * @val_len: the size of the new LSM context value
780  * @id: LSM id
781  * @flags: LSM defined flags
782  *
783  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
784  * simply calculate the required size to output via @utc_len and return
785  * success.
786  *
787  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
788  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
789  */
790 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
791                       void *val, size_t val_len,
792                       u64 id, u64 flags)
793 {
794         struct lsm_ctx *nctx = NULL;
795         size_t nctx_len;
796         int rc = 0;
797
798         nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
799         if (nctx_len > *uctx_len) {
800                 rc = -E2BIG;
801                 goto out;
802         }
803
804         /* no buffer - return success/0 and set @uctx_len to the req size */
805         if (!uctx)
806                 goto out;
807
808         nctx = kzalloc(nctx_len, GFP_KERNEL);
809         if (nctx == NULL) {
810                 rc = -ENOMEM;
811                 goto out;
812         }
813         nctx->id = id;
814         nctx->flags = flags;
815         nctx->len = nctx_len;
816         nctx->ctx_len = val_len;
817         memcpy(nctx->ctx, val, val_len);
818
819         if (copy_to_user(uctx, nctx, nctx_len))
820                 rc = -EFAULT;
821
822 out:
823         kfree(nctx);
824         *uctx_len = nctx_len;
825         return rc;
826 }
827
828 /*
829  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
830  * can be accessed with:
831  *
832  *      LSM_RET_DEFAULT(<hook_name>)
833  *
834  * The macros below define static constants for the default value of each
835  * LSM hook.
836  */
837 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
838 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
839 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
840         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
841 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
842         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
843
844 #include <linux/lsm_hook_defs.h>
845 #undef LSM_HOOK
846
847 /*
848  * Hook list operation macros.
849  *
850  * call_void_hook:
851  *      This is a hook that does not return a value.
852  *
853  * call_int_hook:
854  *      This is a hook that returns a value.
855  */
856
857 #define call_void_hook(FUNC, ...)                               \
858         do {                                                    \
859                 struct security_hook_list *P;                   \
860                                                                 \
861                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
862                         P->hook.FUNC(__VA_ARGS__);              \
863         } while (0)
864
865 #define call_int_hook(FUNC, ...) ({                             \
866         int RC = LSM_RET_DEFAULT(FUNC);                         \
867         do {                                                    \
868                 struct security_hook_list *P;                   \
869                                                                 \
870                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
871                         RC = P->hook.FUNC(__VA_ARGS__);         \
872                         if (RC != LSM_RET_DEFAULT(FUNC))        \
873                                 break;                          \
874                 }                                               \
875         } while (0);                                            \
876         RC;                                                     \
877 })
878
879 /* Security operations */
880
881 /**
882  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
883  * @mgr: task credentials of current binder process
884  *
885  * Check whether @mgr is allowed to be the binder context manager.
886  *
887  * Return: Return 0 if permission is granted.
888  */
889 int security_binder_set_context_mgr(const struct cred *mgr)
890 {
891         return call_int_hook(binder_set_context_mgr, mgr);
892 }
893
894 /**
895  * security_binder_transaction() - Check if a binder transaction is allowed
896  * @from: sending process
897  * @to: receiving process
898  *
899  * Check whether @from is allowed to invoke a binder transaction call to @to.
900  *
901  * Return: Returns 0 if permission is granted.
902  */
903 int security_binder_transaction(const struct cred *from,
904                                 const struct cred *to)
905 {
906         return call_int_hook(binder_transaction, from, to);
907 }
908
909 /**
910  * security_binder_transfer_binder() - Check if a binder transfer is allowed
911  * @from: sending process
912  * @to: receiving process
913  *
914  * Check whether @from is allowed to transfer a binder reference to @to.
915  *
916  * Return: Returns 0 if permission is granted.
917  */
918 int security_binder_transfer_binder(const struct cred *from,
919                                     const struct cred *to)
920 {
921         return call_int_hook(binder_transfer_binder, from, to);
922 }
923
924 /**
925  * security_binder_transfer_file() - Check if a binder file xfer is allowed
926  * @from: sending process
927  * @to: receiving process
928  * @file: file being transferred
929  *
930  * Check whether @from is allowed to transfer @file to @to.
931  *
932  * Return: Returns 0 if permission is granted.
933  */
934 int security_binder_transfer_file(const struct cred *from,
935                                   const struct cred *to, const struct file *file)
936 {
937         return call_int_hook(binder_transfer_file, from, to, file);
938 }
939
940 /**
941  * security_ptrace_access_check() - Check if tracing is allowed
942  * @child: target process
943  * @mode: PTRACE_MODE flags
944  *
945  * Check permission before allowing the current process to trace the @child
946  * process.  Security modules may also want to perform a process tracing check
947  * during an execve in the set_security or apply_creds hooks of tracing check
948  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
949  * process is being traced and its security attributes would be changed by the
950  * execve.
951  *
952  * Return: Returns 0 if permission is granted.
953  */
954 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
955 {
956         return call_int_hook(ptrace_access_check, child, mode);
957 }
958
959 /**
960  * security_ptrace_traceme() - Check if tracing is allowed
961  * @parent: tracing process
962  *
963  * Check that the @parent process has sufficient permission to trace the
964  * current process before allowing the current process to present itself to the
965  * @parent process for tracing.
966  *
967  * Return: Returns 0 if permission is granted.
968  */
969 int security_ptrace_traceme(struct task_struct *parent)
970 {
971         return call_int_hook(ptrace_traceme, parent);
972 }
973
974 /**
975  * security_capget() - Get the capability sets for a process
976  * @target: target process
977  * @effective: effective capability set
978  * @inheritable: inheritable capability set
979  * @permitted: permitted capability set
980  *
981  * Get the @effective, @inheritable, and @permitted capability sets for the
982  * @target process.  The hook may also perform permission checking to determine
983  * if the current process is allowed to see the capability sets of the @target
984  * process.
985  *
986  * Return: Returns 0 if the capability sets were successfully obtained.
987  */
988 int security_capget(const struct task_struct *target,
989                     kernel_cap_t *effective,
990                     kernel_cap_t *inheritable,
991                     kernel_cap_t *permitted)
992 {
993         return call_int_hook(capget, target, effective, inheritable, permitted);
994 }
995
996 /**
997  * security_capset() - Set the capability sets for a process
998  * @new: new credentials for the target process
999  * @old: current credentials of the target process
1000  * @effective: effective capability set
1001  * @inheritable: inheritable capability set
1002  * @permitted: permitted capability set
1003  *
1004  * Set the @effective, @inheritable, and @permitted capability sets for the
1005  * current process.
1006  *
1007  * Return: Returns 0 and update @new if permission is granted.
1008  */
1009 int security_capset(struct cred *new, const struct cred *old,
1010                     const kernel_cap_t *effective,
1011                     const kernel_cap_t *inheritable,
1012                     const kernel_cap_t *permitted)
1013 {
1014         return call_int_hook(capset, new, old, effective, inheritable,
1015                              permitted);
1016 }
1017
1018 /**
1019  * security_capable() - Check if a process has the necessary capability
1020  * @cred: credentials to examine
1021  * @ns: user namespace
1022  * @cap: capability requested
1023  * @opts: capability check options
1024  *
1025  * Check whether the @tsk process has the @cap capability in the indicated
1026  * credentials.  @cap contains the capability <include/linux/capability.h>.
1027  * @opts contains options for the capable check <include/linux/security.h>.
1028  *
1029  * Return: Returns 0 if the capability is granted.
1030  */
1031 int security_capable(const struct cred *cred,
1032                      struct user_namespace *ns,
1033                      int cap,
1034                      unsigned int opts)
1035 {
1036         return call_int_hook(capable, cred, ns, cap, opts);
1037 }
1038
1039 /**
1040  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1041  * @cmds: commands
1042  * @type: type
1043  * @id: id
1044  * @sb: filesystem
1045  *
1046  * Check whether the quotactl syscall is allowed for this @sb.
1047  *
1048  * Return: Returns 0 if permission is granted.
1049  */
1050 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1051 {
1052         return call_int_hook(quotactl, cmds, type, id, sb);
1053 }
1054
1055 /**
1056  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1057  * @dentry: dentry
1058  *
1059  * Check whether QUOTAON is allowed for @dentry.
1060  *
1061  * Return: Returns 0 if permission is granted.
1062  */
1063 int security_quota_on(struct dentry *dentry)
1064 {
1065         return call_int_hook(quota_on, dentry);
1066 }
1067
1068 /**
1069  * security_syslog() - Check if accessing the kernel message ring is allowed
1070  * @type: SYSLOG_ACTION_* type
1071  *
1072  * Check permission before accessing the kernel message ring or changing
1073  * logging to the console.  See the syslog(2) manual page for an explanation of
1074  * the @type values.
1075  *
1076  * Return: Return 0 if permission is granted.
1077  */
1078 int security_syslog(int type)
1079 {
1080         return call_int_hook(syslog, type);
1081 }
1082
1083 /**
1084  * security_settime64() - Check if changing the system time is allowed
1085  * @ts: new time
1086  * @tz: timezone
1087  *
1088  * Check permission to change the system time, struct timespec64 is defined in
1089  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1090  *
1091  * Return: Returns 0 if permission is granted.
1092  */
1093 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1094 {
1095         return call_int_hook(settime, ts, tz);
1096 }
1097
1098 /**
1099  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1100  * @mm: mm struct
1101  * @pages: number of pages
1102  *
1103  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1104  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1105  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1106  * called with cap_sys_admin cleared.
1107  *
1108  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1109  *         caller.
1110  */
1111 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1112 {
1113         struct security_hook_list *hp;
1114         int cap_sys_admin = 1;
1115         int rc;
1116
1117         /*
1118          * The module will respond with a positive value if
1119          * it thinks the __vm_enough_memory() call should be
1120          * made with the cap_sys_admin set. If all of the modules
1121          * agree that it should be set it will. If any module
1122          * thinks it should not be set it won't.
1123          */
1124         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1125                 rc = hp->hook.vm_enough_memory(mm, pages);
1126                 if (rc <= 0) {
1127                         cap_sys_admin = 0;
1128                         break;
1129                 }
1130         }
1131         return __vm_enough_memory(mm, pages, cap_sys_admin);
1132 }
1133
1134 /**
1135  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1136  * @bprm: binary program information
1137  *
1138  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1139  * properly for executing @bprm->file, update the LSM's portion of
1140  * @bprm->cred->security to be what commit_creds needs to install for the new
1141  * program.  This hook may also optionally check permissions (e.g. for
1142  * transitions between security domains).  The hook must set @bprm->secureexec
1143  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1144  * contains the linux_binprm structure.
1145  *
1146  * Return: Returns 0 if the hook is successful and permission is granted.
1147  */
1148 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1149 {
1150         return call_int_hook(bprm_creds_for_exec, bprm);
1151 }
1152
1153 /**
1154  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1155  * @bprm: binary program information
1156  * @file: associated file
1157  *
1158  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1159  * exec, update @bprm->cred to reflect that change. This is called after
1160  * finding the binary that will be executed without an interpreter.  This
1161  * ensures that the credentials will not be derived from a script that the
1162  * binary will need to reopen, which when reopend may end up being a completely
1163  * different file.  This hook may also optionally check permissions (e.g. for
1164  * transitions between security domains).  The hook must set @bprm->secureexec
1165  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1166  * hook must add to @bprm->per_clear any personality flags that should be
1167  * cleared from current->personality.  @bprm contains the linux_binprm
1168  * structure.
1169  *
1170  * Return: Returns 0 if the hook is successful and permission is granted.
1171  */
1172 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1173 {
1174         return call_int_hook(bprm_creds_from_file, bprm, file);
1175 }
1176
1177 /**
1178  * security_bprm_check() - Mediate binary handler search
1179  * @bprm: binary program information
1180  *
1181  * This hook mediates the point when a search for a binary handler will begin.
1182  * It allows a check against the @bprm->cred->security value which was set in
1183  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1184  * available in @bprm.  This hook may be called multiple times during a single
1185  * execve.  @bprm contains the linux_binprm structure.
1186  *
1187  * Return: Returns 0 if the hook is successful and permission is granted.
1188  */
1189 int security_bprm_check(struct linux_binprm *bprm)
1190 {
1191         return call_int_hook(bprm_check_security, bprm);
1192 }
1193
1194 /**
1195  * security_bprm_committing_creds() - Install creds for a process during exec()
1196  * @bprm: binary program information
1197  *
1198  * Prepare to install the new security attributes of a process being
1199  * transformed by an execve operation, based on the old credentials pointed to
1200  * by @current->cred and the information set in @bprm->cred by the
1201  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1202  * hook is a good place to perform state changes on the process such as closing
1203  * open file descriptors to which access will no longer be granted when the
1204  * attributes are changed.  This is called immediately before commit_creds().
1205  */
1206 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207 {
1208         call_void_hook(bprm_committing_creds, bprm);
1209 }
1210
1211 /**
1212  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213  * @bprm: binary program information
1214  *
1215  * Tidy up after the installation of the new security attributes of a process
1216  * being transformed by an execve operation.  The new credentials have, by this
1217  * point, been set to @current->cred.  @bprm points to the linux_binprm
1218  * structure.  This hook is a good place to perform state changes on the
1219  * process such as clearing out non-inheritable signal state.  This is called
1220  * immediately after commit_creds().
1221  */
1222 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223 {
1224         call_void_hook(bprm_committed_creds, bprm);
1225 }
1226
1227 /**
1228  * security_fs_context_submount() - Initialise fc->security
1229  * @fc: new filesystem context
1230  * @reference: dentry reference for submount/remount
1231  *
1232  * Fill out the ->security field for a new fs_context.
1233  *
1234  * Return: Returns 0 on success or negative error code on failure.
1235  */
1236 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237 {
1238         return call_int_hook(fs_context_submount, fc, reference);
1239 }
1240
1241 /**
1242  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243  * @fc: destination filesystem context
1244  * @src_fc: source filesystem context
1245  *
1246  * Allocate and attach a security structure to sc->security.  This pointer is
1247  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1248  * @src_fc indicates the original filesystem context.
1249  *
1250  * Return: Returns 0 on success or a negative error code on failure.
1251  */
1252 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253 {
1254         return call_int_hook(fs_context_dup, fc, src_fc);
1255 }
1256
1257 /**
1258  * security_fs_context_parse_param() - Configure a filesystem context
1259  * @fc: filesystem context
1260  * @param: filesystem parameter
1261  *
1262  * Userspace provided a parameter to configure a superblock.  The LSM can
1263  * consume the parameter or return it to the caller for use elsewhere.
1264  *
1265  * Return: If the parameter is used by the LSM it should return 0, if it is
1266  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1267  *         error code is returned.
1268  */
1269 int security_fs_context_parse_param(struct fs_context *fc,
1270                                     struct fs_parameter *param)
1271 {
1272         struct security_hook_list *hp;
1273         int trc;
1274         int rc = -ENOPARAM;
1275
1276         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277                              list) {
1278                 trc = hp->hook.fs_context_parse_param(fc, param);
1279                 if (trc == 0)
1280                         rc = 0;
1281                 else if (trc != -ENOPARAM)
1282                         return trc;
1283         }
1284         return rc;
1285 }
1286
1287 /**
1288  * security_sb_alloc() - Allocate a super_block LSM blob
1289  * @sb: filesystem superblock
1290  *
1291  * Allocate and attach a security structure to the sb->s_security field.  The
1292  * s_security field is initialized to NULL when the structure is allocated.
1293  * @sb contains the super_block structure to be modified.
1294  *
1295  * Return: Returns 0 if operation was successful.
1296  */
1297 int security_sb_alloc(struct super_block *sb)
1298 {
1299         int rc = lsm_superblock_alloc(sb);
1300
1301         if (unlikely(rc))
1302                 return rc;
1303         rc = call_int_hook(sb_alloc_security, sb);
1304         if (unlikely(rc))
1305                 security_sb_free(sb);
1306         return rc;
1307 }
1308
1309 /**
1310  * security_sb_delete() - Release super_block LSM associated objects
1311  * @sb: filesystem superblock
1312  *
1313  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1314  * super_block structure being released.
1315  */
1316 void security_sb_delete(struct super_block *sb)
1317 {
1318         call_void_hook(sb_delete, sb);
1319 }
1320
1321 /**
1322  * security_sb_free() - Free a super_block LSM blob
1323  * @sb: filesystem superblock
1324  *
1325  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1326  * structure to be modified.
1327  */
1328 void security_sb_free(struct super_block *sb)
1329 {
1330         call_void_hook(sb_free_security, sb);
1331         kfree(sb->s_security);
1332         sb->s_security = NULL;
1333 }
1334
1335 /**
1336  * security_free_mnt_opts() - Free memory associated with mount options
1337  * @mnt_opts: LSM processed mount options
1338  *
1339  * Free memory associated with @mnt_ops.
1340  */
1341 void security_free_mnt_opts(void **mnt_opts)
1342 {
1343         if (!*mnt_opts)
1344                 return;
1345         call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346         *mnt_opts = NULL;
1347 }
1348 EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350 /**
1351  * security_sb_eat_lsm_opts() - Consume LSM mount options
1352  * @options: mount options
1353  * @mnt_opts: LSM processed mount options
1354  *
1355  * Eat (scan @options) and save them in @mnt_opts.
1356  *
1357  * Return: Returns 0 on success, negative values on failure.
1358  */
1359 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360 {
1361         return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1362 }
1363 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365 /**
1366  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367  * @sb: filesystem superblock
1368  * @mnt_opts: new mount options
1369  *
1370  * Determine if the new mount options in @mnt_opts are allowed given the
1371  * existing mounted filesystem at @sb.  @sb superblock being compared.
1372  *
1373  * Return: Returns 0 if options are compatible.
1374  */
1375 int security_sb_mnt_opts_compat(struct super_block *sb,
1376                                 void *mnt_opts)
1377 {
1378         return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1379 }
1380 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382 /**
1383  * security_sb_remount() - Verify no incompatible mount changes during remount
1384  * @sb: filesystem superblock
1385  * @mnt_opts: (re)mount options
1386  *
1387  * Extracts security system specific mount options and verifies no changes are
1388  * being made to those options.
1389  *
1390  * Return: Returns 0 if permission is granted.
1391  */
1392 int security_sb_remount(struct super_block *sb,
1393                         void *mnt_opts)
1394 {
1395         return call_int_hook(sb_remount, sb, mnt_opts);
1396 }
1397 EXPORT_SYMBOL(security_sb_remount);
1398
1399 /**
1400  * security_sb_kern_mount() - Check if a kernel mount is allowed
1401  * @sb: filesystem superblock
1402  *
1403  * Mount this @sb if allowed by permissions.
1404  *
1405  * Return: Returns 0 if permission is granted.
1406  */
1407 int security_sb_kern_mount(const struct super_block *sb)
1408 {
1409         return call_int_hook(sb_kern_mount, sb);
1410 }
1411
1412 /**
1413  * security_sb_show_options() - Output the mount options for a superblock
1414  * @m: output file
1415  * @sb: filesystem superblock
1416  *
1417  * Show (print on @m) mount options for this @sb.
1418  *
1419  * Return: Returns 0 on success, negative values on failure.
1420  */
1421 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422 {
1423         return call_int_hook(sb_show_options, m, sb);
1424 }
1425
1426 /**
1427  * security_sb_statfs() - Check if accessing fs stats is allowed
1428  * @dentry: superblock handle
1429  *
1430  * Check permission before obtaining filesystem statistics for the @mnt
1431  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1432  *
1433  * Return: Returns 0 if permission is granted.
1434  */
1435 int security_sb_statfs(struct dentry *dentry)
1436 {
1437         return call_int_hook(sb_statfs, dentry);
1438 }
1439
1440 /**
1441  * security_sb_mount() - Check permission for mounting a filesystem
1442  * @dev_name: filesystem backing device
1443  * @path: mount point
1444  * @type: filesystem type
1445  * @flags: mount flags
1446  * @data: filesystem specific data
1447  *
1448  * Check permission before an object specified by @dev_name is mounted on the
1449  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1450  * device if the file system type requires a device.  For a remount
1451  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1452  * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1453  * mounted.
1454  *
1455  * Return: Returns 0 if permission is granted.
1456  */
1457 int security_sb_mount(const char *dev_name, const struct path *path,
1458                       const char *type, unsigned long flags, void *data)
1459 {
1460         return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1461 }
1462
1463 /**
1464  * security_sb_umount() - Check permission for unmounting a filesystem
1465  * @mnt: mounted filesystem
1466  * @flags: unmount flags
1467  *
1468  * Check permission before the @mnt file system is unmounted.
1469  *
1470  * Return: Returns 0 if permission is granted.
1471  */
1472 int security_sb_umount(struct vfsmount *mnt, int flags)
1473 {
1474         return call_int_hook(sb_umount, mnt, flags);
1475 }
1476
1477 /**
1478  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479  * @old_path: new location for current rootfs
1480  * @new_path: location of the new rootfs
1481  *
1482  * Check permission before pivoting the root filesystem.
1483  *
1484  * Return: Returns 0 if permission is granted.
1485  */
1486 int security_sb_pivotroot(const struct path *old_path,
1487                           const struct path *new_path)
1488 {
1489         return call_int_hook(sb_pivotroot, old_path, new_path);
1490 }
1491
1492 /**
1493  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494  * @sb: filesystem superblock
1495  * @mnt_opts: binary mount options
1496  * @kern_flags: kernel flags (in)
1497  * @set_kern_flags: kernel flags (out)
1498  *
1499  * Set the security relevant mount options used for a superblock.
1500  *
1501  * Return: Returns 0 on success, error on failure.
1502  */
1503 int security_sb_set_mnt_opts(struct super_block *sb,
1504                              void *mnt_opts,
1505                              unsigned long kern_flags,
1506                              unsigned long *set_kern_flags)
1507 {
1508         struct security_hook_list *hp;
1509         int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1510
1511         hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1512                              list) {
1513                 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1514                                               set_kern_flags);
1515                 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1516                         break;
1517         }
1518         return rc;
1519 }
1520 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1521
1522 /**
1523  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1524  * @oldsb: source superblock
1525  * @newsb: destination superblock
1526  * @kern_flags: kernel flags (in)
1527  * @set_kern_flags: kernel flags (out)
1528  *
1529  * Copy all security options from a given superblock to another.
1530  *
1531  * Return: Returns 0 on success, error on failure.
1532  */
1533 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1534                                struct super_block *newsb,
1535                                unsigned long kern_flags,
1536                                unsigned long *set_kern_flags)
1537 {
1538         return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1539                              kern_flags, set_kern_flags);
1540 }
1541 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1542
1543 /**
1544  * security_move_mount() - Check permissions for moving a mount
1545  * @from_path: source mount point
1546  * @to_path: destination mount point
1547  *
1548  * Check permission before a mount is moved.
1549  *
1550  * Return: Returns 0 if permission is granted.
1551  */
1552 int security_move_mount(const struct path *from_path,
1553                         const struct path *to_path)
1554 {
1555         return call_int_hook(move_mount, from_path, to_path);
1556 }
1557
1558 /**
1559  * security_path_notify() - Check if setting a watch is allowed
1560  * @path: file path
1561  * @mask: event mask
1562  * @obj_type: file path type
1563  *
1564  * Check permissions before setting a watch on events as defined by @mask, on
1565  * an object at @path, whose type is defined by @obj_type.
1566  *
1567  * Return: Returns 0 if permission is granted.
1568  */
1569 int security_path_notify(const struct path *path, u64 mask,
1570                          unsigned int obj_type)
1571 {
1572         return call_int_hook(path_notify, path, mask, obj_type);
1573 }
1574
1575 /**
1576  * security_inode_alloc() - Allocate an inode LSM blob
1577  * @inode: the inode
1578  *
1579  * Allocate and attach a security structure to @inode->i_security.  The
1580  * i_security field is initialized to NULL when the inode structure is
1581  * allocated.
1582  *
1583  * Return: Return 0 if operation was successful.
1584  */
1585 int security_inode_alloc(struct inode *inode)
1586 {
1587         int rc = lsm_inode_alloc(inode);
1588
1589         if (unlikely(rc))
1590                 return rc;
1591         rc = call_int_hook(inode_alloc_security, inode);
1592         if (unlikely(rc))
1593                 security_inode_free(inode);
1594         return rc;
1595 }
1596
1597 static void inode_free_by_rcu(struct rcu_head *head)
1598 {
1599         /*
1600          * The rcu head is at the start of the inode blob
1601          */
1602         kmem_cache_free(lsm_inode_cache, head);
1603 }
1604
1605 /**
1606  * security_inode_free() - Free an inode's LSM blob
1607  * @inode: the inode
1608  *
1609  * Deallocate the inode security structure and set @inode->i_security to NULL.
1610  */
1611 void security_inode_free(struct inode *inode)
1612 {
1613         call_void_hook(inode_free_security, inode);
1614         /*
1615          * The inode may still be referenced in a path walk and
1616          * a call to security_inode_permission() can be made
1617          * after inode_free_security() is called. Ideally, the VFS
1618          * wouldn't do this, but fixing that is a much harder
1619          * job. For now, simply free the i_security via RCU, and
1620          * leave the current inode->i_security pointer intact.
1621          * The inode will be freed after the RCU grace period too.
1622          */
1623         if (inode->i_security)
1624                 call_rcu((struct rcu_head *)inode->i_security,
1625                          inode_free_by_rcu);
1626 }
1627
1628 /**
1629  * security_dentry_init_security() - Perform dentry initialization
1630  * @dentry: the dentry to initialize
1631  * @mode: mode used to determine resource type
1632  * @name: name of the last path component
1633  * @xattr_name: name of the security/LSM xattr
1634  * @ctx: pointer to the resulting LSM context
1635  * @ctxlen: length of @ctx
1636  *
1637  * Compute a context for a dentry as the inode is not yet available since NFSv4
1638  * has no label backed by an EA anyway.  It is important to note that
1639  * @xattr_name does not need to be free'd by the caller, it is a static string.
1640  *
1641  * Return: Returns 0 on success, negative values on failure.
1642  */
1643 int security_dentry_init_security(struct dentry *dentry, int mode,
1644                                   const struct qstr *name,
1645                                   const char **xattr_name, void **ctx,
1646                                   u32 *ctxlen)
1647 {
1648         return call_int_hook(dentry_init_security, dentry, mode, name,
1649                              xattr_name, ctx, ctxlen);
1650 }
1651 EXPORT_SYMBOL(security_dentry_init_security);
1652
1653 /**
1654  * security_dentry_create_files_as() - Perform dentry initialization
1655  * @dentry: the dentry to initialize
1656  * @mode: mode used to determine resource type
1657  * @name: name of the last path component
1658  * @old: creds to use for LSM context calculations
1659  * @new: creds to modify
1660  *
1661  * Compute a context for a dentry as the inode is not yet available and set
1662  * that context in passed in creds so that new files are created using that
1663  * context. Context is calculated using the passed in creds and not the creds
1664  * of the caller.
1665  *
1666  * Return: Returns 0 on success, error on failure.
1667  */
1668 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1669                                     struct qstr *name,
1670                                     const struct cred *old, struct cred *new)
1671 {
1672         return call_int_hook(dentry_create_files_as, dentry, mode,
1673                              name, old, new);
1674 }
1675 EXPORT_SYMBOL(security_dentry_create_files_as);
1676
1677 /**
1678  * security_inode_init_security() - Initialize an inode's LSM context
1679  * @inode: the inode
1680  * @dir: parent directory
1681  * @qstr: last component of the pathname
1682  * @initxattrs: callback function to write xattrs
1683  * @fs_data: filesystem specific data
1684  *
1685  * Obtain the security attribute name suffix and value to set on a newly
1686  * created inode and set up the incore security field for the new inode.  This
1687  * hook is called by the fs code as part of the inode creation transaction and
1688  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1689  * hooks called by the VFS.
1690  *
1691  * The hook function is expected to populate the xattrs array, by calling
1692  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1693  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1694  * slot, the hook function should set ->name to the attribute name suffix
1695  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1696  * to the attribute value, to set ->value_len to the length of the value.  If
1697  * the security module does not use security attributes or does not wish to put
1698  * a security attribute on this particular inode, then it should return
1699  * -EOPNOTSUPP to skip this processing.
1700  *
1701  * Return: Returns 0 if the LSM successfully initialized all of the inode
1702  *         security attributes that are required, negative values otherwise.
1703  */
1704 int security_inode_init_security(struct inode *inode, struct inode *dir,
1705                                  const struct qstr *qstr,
1706                                  const initxattrs initxattrs, void *fs_data)
1707 {
1708         struct security_hook_list *hp;
1709         struct xattr *new_xattrs = NULL;
1710         int ret = -EOPNOTSUPP, xattr_count = 0;
1711
1712         if (unlikely(IS_PRIVATE(inode)))
1713                 return 0;
1714
1715         if (!blob_sizes.lbs_xattr_count)
1716                 return 0;
1717
1718         if (initxattrs) {
1719                 /* Allocate +1 as terminator. */
1720                 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1721                                      sizeof(*new_xattrs), GFP_NOFS);
1722                 if (!new_xattrs)
1723                         return -ENOMEM;
1724         }
1725
1726         hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1727                              list) {
1728                 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1729                                                   &xattr_count);
1730                 if (ret && ret != -EOPNOTSUPP)
1731                         goto out;
1732                 /*
1733                  * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1734                  * means that the LSM is not willing to provide an xattr, not
1735                  * that it wants to signal an error. Thus, continue to invoke
1736                  * the remaining LSMs.
1737                  */
1738         }
1739
1740         /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1741         if (!xattr_count)
1742                 goto out;
1743
1744         ret = initxattrs(inode, new_xattrs, fs_data);
1745 out:
1746         for (; xattr_count > 0; xattr_count--)
1747                 kfree(new_xattrs[xattr_count - 1].value);
1748         kfree(new_xattrs);
1749         return (ret == -EOPNOTSUPP) ? 0 : ret;
1750 }
1751 EXPORT_SYMBOL(security_inode_init_security);
1752
1753 /**
1754  * security_inode_init_security_anon() - Initialize an anonymous inode
1755  * @inode: the inode
1756  * @name: the anonymous inode class
1757  * @context_inode: an optional related inode
1758  *
1759  * Set up the incore security field for the new anonymous inode and return
1760  * whether the inode creation is permitted by the security module or not.
1761  *
1762  * Return: Returns 0 on success, -EACCES if the security module denies the
1763  * creation of this inode, or another -errno upon other errors.
1764  */
1765 int security_inode_init_security_anon(struct inode *inode,
1766                                       const struct qstr *name,
1767                                       const struct inode *context_inode)
1768 {
1769         return call_int_hook(inode_init_security_anon, inode, name,
1770                              context_inode);
1771 }
1772
1773 #ifdef CONFIG_SECURITY_PATH
1774 /**
1775  * security_path_mknod() - Check if creating a special file is allowed
1776  * @dir: parent directory
1777  * @dentry: new file
1778  * @mode: new file mode
1779  * @dev: device number
1780  *
1781  * Check permissions when creating a file. Note that this hook is called even
1782  * if mknod operation is being done for a regular file.
1783  *
1784  * Return: Returns 0 if permission is granted.
1785  */
1786 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1787                         umode_t mode, unsigned int dev)
1788 {
1789         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1790                 return 0;
1791         return call_int_hook(path_mknod, dir, dentry, mode, dev);
1792 }
1793 EXPORT_SYMBOL(security_path_mknod);
1794
1795 /**
1796  * security_path_post_mknod() - Update inode security after reg file creation
1797  * @idmap: idmap of the mount
1798  * @dentry: new file
1799  *
1800  * Update inode security field after a regular file has been created.
1801  */
1802 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1803 {
1804         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1805                 return;
1806         call_void_hook(path_post_mknod, idmap, dentry);
1807 }
1808
1809 /**
1810  * security_path_mkdir() - Check if creating a new directory is allowed
1811  * @dir: parent directory
1812  * @dentry: new directory
1813  * @mode: new directory mode
1814  *
1815  * Check permissions to create a new directory in the existing directory.
1816  *
1817  * Return: Returns 0 if permission is granted.
1818  */
1819 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1820                         umode_t mode)
1821 {
1822         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1823                 return 0;
1824         return call_int_hook(path_mkdir, dir, dentry, mode);
1825 }
1826 EXPORT_SYMBOL(security_path_mkdir);
1827
1828 /**
1829  * security_path_rmdir() - Check if removing a directory is allowed
1830  * @dir: parent directory
1831  * @dentry: directory to remove
1832  *
1833  * Check the permission to remove a directory.
1834  *
1835  * Return: Returns 0 if permission is granted.
1836  */
1837 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1838 {
1839         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1840                 return 0;
1841         return call_int_hook(path_rmdir, dir, dentry);
1842 }
1843
1844 /**
1845  * security_path_unlink() - Check if removing a hard link is allowed
1846  * @dir: parent directory
1847  * @dentry: file
1848  *
1849  * Check the permission to remove a hard link to a file.
1850  *
1851  * Return: Returns 0 if permission is granted.
1852  */
1853 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1854 {
1855         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1856                 return 0;
1857         return call_int_hook(path_unlink, dir, dentry);
1858 }
1859 EXPORT_SYMBOL(security_path_unlink);
1860
1861 /**
1862  * security_path_symlink() - Check if creating a symbolic link is allowed
1863  * @dir: parent directory
1864  * @dentry: symbolic link
1865  * @old_name: file pathname
1866  *
1867  * Check the permission to create a symbolic link to a file.
1868  *
1869  * Return: Returns 0 if permission is granted.
1870  */
1871 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1872                           const char *old_name)
1873 {
1874         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1875                 return 0;
1876         return call_int_hook(path_symlink, dir, dentry, old_name);
1877 }
1878
1879 /**
1880  * security_path_link - Check if creating a hard link is allowed
1881  * @old_dentry: existing file
1882  * @new_dir: new parent directory
1883  * @new_dentry: new link
1884  *
1885  * Check permission before creating a new hard link to a file.
1886  *
1887  * Return: Returns 0 if permission is granted.
1888  */
1889 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1890                        struct dentry *new_dentry)
1891 {
1892         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1893                 return 0;
1894         return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1895 }
1896
1897 /**
1898  * security_path_rename() - Check if renaming a file is allowed
1899  * @old_dir: parent directory of the old file
1900  * @old_dentry: the old file
1901  * @new_dir: parent directory of the new file
1902  * @new_dentry: the new file
1903  * @flags: flags
1904  *
1905  * Check for permission to rename a file or directory.
1906  *
1907  * Return: Returns 0 if permission is granted.
1908  */
1909 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1910                          const struct path *new_dir, struct dentry *new_dentry,
1911                          unsigned int flags)
1912 {
1913         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1914                      (d_is_positive(new_dentry) &&
1915                       IS_PRIVATE(d_backing_inode(new_dentry)))))
1916                 return 0;
1917
1918         return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1919                              new_dentry, flags);
1920 }
1921 EXPORT_SYMBOL(security_path_rename);
1922
1923 /**
1924  * security_path_truncate() - Check if truncating a file is allowed
1925  * @path: file
1926  *
1927  * Check permission before truncating the file indicated by path.  Note that
1928  * truncation permissions may also be checked based on already opened files,
1929  * using the security_file_truncate() hook.
1930  *
1931  * Return: Returns 0 if permission is granted.
1932  */
1933 int security_path_truncate(const struct path *path)
1934 {
1935         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1936                 return 0;
1937         return call_int_hook(path_truncate, path);
1938 }
1939
1940 /**
1941  * security_path_chmod() - Check if changing the file's mode is allowed
1942  * @path: file
1943  * @mode: new mode
1944  *
1945  * Check for permission to change a mode of the file @path. The new mode is
1946  * specified in @mode which is a bitmask of constants from
1947  * <include/uapi/linux/stat.h>.
1948  *
1949  * Return: Returns 0 if permission is granted.
1950  */
1951 int security_path_chmod(const struct path *path, umode_t mode)
1952 {
1953         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1954                 return 0;
1955         return call_int_hook(path_chmod, path, mode);
1956 }
1957
1958 /**
1959  * security_path_chown() - Check if changing the file's owner/group is allowed
1960  * @path: file
1961  * @uid: file owner
1962  * @gid: file group
1963  *
1964  * Check for permission to change owner/group of a file or directory.
1965  *
1966  * Return: Returns 0 if permission is granted.
1967  */
1968 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1969 {
1970         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1971                 return 0;
1972         return call_int_hook(path_chown, path, uid, gid);
1973 }
1974
1975 /**
1976  * security_path_chroot() - Check if changing the root directory is allowed
1977  * @path: directory
1978  *
1979  * Check for permission to change root directory.
1980  *
1981  * Return: Returns 0 if permission is granted.
1982  */
1983 int security_path_chroot(const struct path *path)
1984 {
1985         return call_int_hook(path_chroot, path);
1986 }
1987 #endif /* CONFIG_SECURITY_PATH */
1988
1989 /**
1990  * security_inode_create() - Check if creating a file is allowed
1991  * @dir: the parent directory
1992  * @dentry: the file being created
1993  * @mode: requested file mode
1994  *
1995  * Check permission to create a regular file.
1996  *
1997  * Return: Returns 0 if permission is granted.
1998  */
1999 int security_inode_create(struct inode *dir, struct dentry *dentry,
2000                           umode_t mode)
2001 {
2002         if (unlikely(IS_PRIVATE(dir)))
2003                 return 0;
2004         return call_int_hook(inode_create, dir, dentry, mode);
2005 }
2006 EXPORT_SYMBOL_GPL(security_inode_create);
2007
2008 /**
2009  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2010  * @idmap: idmap of the mount
2011  * @inode: inode of the new tmpfile
2012  *
2013  * Update inode security data after a tmpfile has been created.
2014  */
2015 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2016                                         struct inode *inode)
2017 {
2018         if (unlikely(IS_PRIVATE(inode)))
2019                 return;
2020         call_void_hook(inode_post_create_tmpfile, idmap, inode);
2021 }
2022
2023 /**
2024  * security_inode_link() - Check if creating a hard link is allowed
2025  * @old_dentry: existing file
2026  * @dir: new parent directory
2027  * @new_dentry: new link
2028  *
2029  * Check permission before creating a new hard link to a file.
2030  *
2031  * Return: Returns 0 if permission is granted.
2032  */
2033 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2034                         struct dentry *new_dentry)
2035 {
2036         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2037                 return 0;
2038         return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2039 }
2040
2041 /**
2042  * security_inode_unlink() - Check if removing a hard link is allowed
2043  * @dir: parent directory
2044  * @dentry: file
2045  *
2046  * Check the permission to remove a hard link to a file.
2047  *
2048  * Return: Returns 0 if permission is granted.
2049  */
2050 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2051 {
2052         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2053                 return 0;
2054         return call_int_hook(inode_unlink, dir, dentry);
2055 }
2056
2057 /**
2058  * security_inode_symlink() - Check if creating a symbolic link is allowed
2059  * @dir: parent directory
2060  * @dentry: symbolic link
2061  * @old_name: existing filename
2062  *
2063  * Check the permission to create a symbolic link to a file.
2064  *
2065  * Return: Returns 0 if permission is granted.
2066  */
2067 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2068                            const char *old_name)
2069 {
2070         if (unlikely(IS_PRIVATE(dir)))
2071                 return 0;
2072         return call_int_hook(inode_symlink, dir, dentry, old_name);
2073 }
2074
2075 /**
2076  * security_inode_mkdir() - Check if creation a new director is allowed
2077  * @dir: parent directory
2078  * @dentry: new directory
2079  * @mode: new directory mode
2080  *
2081  * Check permissions to create a new directory in the existing directory
2082  * associated with inode structure @dir.
2083  *
2084  * Return: Returns 0 if permission is granted.
2085  */
2086 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2087 {
2088         if (unlikely(IS_PRIVATE(dir)))
2089                 return 0;
2090         return call_int_hook(inode_mkdir, dir, dentry, mode);
2091 }
2092 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2093
2094 /**
2095  * security_inode_rmdir() - Check if removing a directory is allowed
2096  * @dir: parent directory
2097  * @dentry: directory to be removed
2098  *
2099  * Check the permission to remove a directory.
2100  *
2101  * Return: Returns 0 if permission is granted.
2102  */
2103 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2104 {
2105         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2106                 return 0;
2107         return call_int_hook(inode_rmdir, dir, dentry);
2108 }
2109
2110 /**
2111  * security_inode_mknod() - Check if creating a special file is allowed
2112  * @dir: parent directory
2113  * @dentry: new file
2114  * @mode: new file mode
2115  * @dev: device number
2116  *
2117  * Check permissions when creating a special file (or a socket or a fifo file
2118  * created via the mknod system call).  Note that if mknod operation is being
2119  * done for a regular file, then the create hook will be called and not this
2120  * hook.
2121  *
2122  * Return: Returns 0 if permission is granted.
2123  */
2124 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2125                          umode_t mode, dev_t dev)
2126 {
2127         if (unlikely(IS_PRIVATE(dir)))
2128                 return 0;
2129         return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2130 }
2131
2132 /**
2133  * security_inode_rename() - Check if renaming a file is allowed
2134  * @old_dir: parent directory of the old file
2135  * @old_dentry: the old file
2136  * @new_dir: parent directory of the new file
2137  * @new_dentry: the new file
2138  * @flags: flags
2139  *
2140  * Check for permission to rename a file or directory.
2141  *
2142  * Return: Returns 0 if permission is granted.
2143  */
2144 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2145                           struct inode *new_dir, struct dentry *new_dentry,
2146                           unsigned int flags)
2147 {
2148         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2149                      (d_is_positive(new_dentry) &&
2150                       IS_PRIVATE(d_backing_inode(new_dentry)))))
2151                 return 0;
2152
2153         if (flags & RENAME_EXCHANGE) {
2154                 int err = call_int_hook(inode_rename, new_dir, new_dentry,
2155                                         old_dir, old_dentry);
2156                 if (err)
2157                         return err;
2158         }
2159
2160         return call_int_hook(inode_rename, old_dir, old_dentry,
2161                              new_dir, new_dentry);
2162 }
2163
2164 /**
2165  * security_inode_readlink() - Check if reading a symbolic link is allowed
2166  * @dentry: link
2167  *
2168  * Check the permission to read the symbolic link.
2169  *
2170  * Return: Returns 0 if permission is granted.
2171  */
2172 int security_inode_readlink(struct dentry *dentry)
2173 {
2174         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2175                 return 0;
2176         return call_int_hook(inode_readlink, dentry);
2177 }
2178
2179 /**
2180  * security_inode_follow_link() - Check if following a symbolic link is allowed
2181  * @dentry: link dentry
2182  * @inode: link inode
2183  * @rcu: true if in RCU-walk mode
2184  *
2185  * Check permission to follow a symbolic link when looking up a pathname.  If
2186  * @rcu is true, @inode is not stable.
2187  *
2188  * Return: Returns 0 if permission is granted.
2189  */
2190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2191                                bool rcu)
2192 {
2193         if (unlikely(IS_PRIVATE(inode)))
2194                 return 0;
2195         return call_int_hook(inode_follow_link, dentry, inode, rcu);
2196 }
2197
2198 /**
2199  * security_inode_permission() - Check if accessing an inode is allowed
2200  * @inode: inode
2201  * @mask: access mask
2202  *
2203  * Check permission before accessing an inode.  This hook is called by the
2204  * existing Linux permission function, so a security module can use it to
2205  * provide additional checking for existing Linux permission checks.  Notice
2206  * that this hook is called when a file is opened (as well as many other
2207  * operations), whereas the file_security_ops permission hook is called when
2208  * the actual read/write operations are performed.
2209  *
2210  * Return: Returns 0 if permission is granted.
2211  */
2212 int security_inode_permission(struct inode *inode, int mask)
2213 {
2214         if (unlikely(IS_PRIVATE(inode)))
2215                 return 0;
2216         return call_int_hook(inode_permission, inode, mask);
2217 }
2218
2219 /**
2220  * security_inode_setattr() - Check if setting file attributes is allowed
2221  * @idmap: idmap of the mount
2222  * @dentry: file
2223  * @attr: new attributes
2224  *
2225  * Check permission before setting file attributes.  Note that the kernel call
2226  * to notify_change is performed from several locations, whenever file
2227  * attributes change (such as when a file is truncated, chown/chmod operations,
2228  * transferring disk quotas, etc).
2229  *
2230  * Return: Returns 0 if permission is granted.
2231  */
2232 int security_inode_setattr(struct mnt_idmap *idmap,
2233                            struct dentry *dentry, struct iattr *attr)
2234 {
2235         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2236                 return 0;
2237         return call_int_hook(inode_setattr, idmap, dentry, attr);
2238 }
2239 EXPORT_SYMBOL_GPL(security_inode_setattr);
2240
2241 /**
2242  * security_inode_post_setattr() - Update the inode after a setattr operation
2243  * @idmap: idmap of the mount
2244  * @dentry: file
2245  * @ia_valid: file attributes set
2246  *
2247  * Update inode security field after successful setting file attributes.
2248  */
2249 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2250                                  int ia_valid)
2251 {
2252         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253                 return;
2254         call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2255 }
2256
2257 /**
2258  * security_inode_getattr() - Check if getting file attributes is allowed
2259  * @path: file
2260  *
2261  * Check permission before obtaining file attributes.
2262  *
2263  * Return: Returns 0 if permission is granted.
2264  */
2265 int security_inode_getattr(const struct path *path)
2266 {
2267         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2268                 return 0;
2269         return call_int_hook(inode_getattr, path);
2270 }
2271
2272 /**
2273  * security_inode_setxattr() - Check if setting file xattrs is allowed
2274  * @idmap: idmap of the mount
2275  * @dentry: file
2276  * @name: xattr name
2277  * @value: xattr value
2278  * @size: size of xattr value
2279  * @flags: flags
2280  *
2281  * Check permission before setting the extended attributes.
2282  *
2283  * Return: Returns 0 if permission is granted.
2284  */
2285 int security_inode_setxattr(struct mnt_idmap *idmap,
2286                             struct dentry *dentry, const char *name,
2287                             const void *value, size_t size, int flags)
2288 {
2289         int ret;
2290
2291         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2292                 return 0;
2293         /*
2294          * SELinux and Smack integrate the cap call,
2295          * so assume that all LSMs supplying this call do so.
2296          */
2297         ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2298                             flags);
2299
2300         if (ret == 1)
2301                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
2302         return ret;
2303 }
2304
2305 /**
2306  * security_inode_set_acl() - Check if setting posix acls is allowed
2307  * @idmap: idmap of the mount
2308  * @dentry: file
2309  * @acl_name: acl name
2310  * @kacl: acl struct
2311  *
2312  * Check permission before setting posix acls, the posix acls in @kacl are
2313  * identified by @acl_name.
2314  *
2315  * Return: Returns 0 if permission is granted.
2316  */
2317 int security_inode_set_acl(struct mnt_idmap *idmap,
2318                            struct dentry *dentry, const char *acl_name,
2319                            struct posix_acl *kacl)
2320 {
2321         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322                 return 0;
2323         return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2324 }
2325
2326 /**
2327  * security_inode_post_set_acl() - Update inode security from posix acls set
2328  * @dentry: file
2329  * @acl_name: acl name
2330  * @kacl: acl struct
2331  *
2332  * Update inode security data after successfully setting posix acls on @dentry.
2333  * The posix acls in @kacl are identified by @acl_name.
2334  */
2335 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2336                                  struct posix_acl *kacl)
2337 {
2338         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339                 return;
2340         call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2341 }
2342
2343 /**
2344  * security_inode_get_acl() - Check if reading posix acls is allowed
2345  * @idmap: idmap of the mount
2346  * @dentry: file
2347  * @acl_name: acl name
2348  *
2349  * Check permission before getting osix acls, the posix acls are identified by
2350  * @acl_name.
2351  *
2352  * Return: Returns 0 if permission is granted.
2353  */
2354 int security_inode_get_acl(struct mnt_idmap *idmap,
2355                            struct dentry *dentry, const char *acl_name)
2356 {
2357         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2358                 return 0;
2359         return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2360 }
2361
2362 /**
2363  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2364  * @idmap: idmap of the mount
2365  * @dentry: file
2366  * @acl_name: acl name
2367  *
2368  * Check permission before removing posix acls, the posix acls are identified
2369  * by @acl_name.
2370  *
2371  * Return: Returns 0 if permission is granted.
2372  */
2373 int security_inode_remove_acl(struct mnt_idmap *idmap,
2374                               struct dentry *dentry, const char *acl_name)
2375 {
2376         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2377                 return 0;
2378         return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2379 }
2380
2381 /**
2382  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2383  * @idmap: idmap of the mount
2384  * @dentry: file
2385  * @acl_name: acl name
2386  *
2387  * Update inode security data after successfully removing posix acls on
2388  * @dentry in @idmap. The posix acls are identified by @acl_name.
2389  */
2390 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2391                                     struct dentry *dentry, const char *acl_name)
2392 {
2393         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2394                 return;
2395         call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2396 }
2397
2398 /**
2399  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2400  * @dentry: file
2401  * @name: xattr name
2402  * @value: xattr value
2403  * @size: xattr value size
2404  * @flags: flags
2405  *
2406  * Update inode security field after successful setxattr operation.
2407  */
2408 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2409                                   const void *value, size_t size, int flags)
2410 {
2411         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2412                 return;
2413         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2414 }
2415
2416 /**
2417  * security_inode_getxattr() - Check if xattr access is allowed
2418  * @dentry: file
2419  * @name: xattr name
2420  *
2421  * Check permission before obtaining the extended attributes identified by
2422  * @name for @dentry.
2423  *
2424  * Return: Returns 0 if permission is granted.
2425  */
2426 int security_inode_getxattr(struct dentry *dentry, const char *name)
2427 {
2428         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2429                 return 0;
2430         return call_int_hook(inode_getxattr, dentry, name);
2431 }
2432
2433 /**
2434  * security_inode_listxattr() - Check if listing xattrs is allowed
2435  * @dentry: file
2436  *
2437  * Check permission before obtaining the list of extended attribute names for
2438  * @dentry.
2439  *
2440  * Return: Returns 0 if permission is granted.
2441  */
2442 int security_inode_listxattr(struct dentry *dentry)
2443 {
2444         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2445                 return 0;
2446         return call_int_hook(inode_listxattr, dentry);
2447 }
2448
2449 /**
2450  * security_inode_removexattr() - Check if removing an xattr is allowed
2451  * @idmap: idmap of the mount
2452  * @dentry: file
2453  * @name: xattr name
2454  *
2455  * Check permission before removing the extended attribute identified by @name
2456  * for @dentry.
2457  *
2458  * Return: Returns 0 if permission is granted.
2459  */
2460 int security_inode_removexattr(struct mnt_idmap *idmap,
2461                                struct dentry *dentry, const char *name)
2462 {
2463         int ret;
2464
2465         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2466                 return 0;
2467         /*
2468          * SELinux and Smack integrate the cap call,
2469          * so assume that all LSMs supplying this call do so.
2470          */
2471         ret = call_int_hook(inode_removexattr, idmap, dentry, name);
2472         if (ret == 1)
2473                 ret = cap_inode_removexattr(idmap, dentry, name);
2474         return ret;
2475 }
2476
2477 /**
2478  * security_inode_post_removexattr() - Update the inode after a removexattr op
2479  * @dentry: file
2480  * @name: xattr name
2481  *
2482  * Update the inode after a successful removexattr operation.
2483  */
2484 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2485 {
2486         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2487                 return;
2488         call_void_hook(inode_post_removexattr, dentry, name);
2489 }
2490
2491 /**
2492  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2493  * @dentry: associated dentry
2494  *
2495  * Called when an inode has been changed to determine if
2496  * security_inode_killpriv() should be called.
2497  *
2498  * Return: Return <0 on error to abort the inode change operation, return 0 if
2499  *         security_inode_killpriv() does not need to be called, return >0 if
2500  *         security_inode_killpriv() does need to be called.
2501  */
2502 int security_inode_need_killpriv(struct dentry *dentry)
2503 {
2504         return call_int_hook(inode_need_killpriv, dentry);
2505 }
2506
2507 /**
2508  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2509  * @idmap: idmap of the mount
2510  * @dentry: associated dentry
2511  *
2512  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2513  * Called with the dentry->d_inode->i_mutex held.
2514  *
2515  * Return: Return 0 on success.  If error is returned, then the operation
2516  *         causing setuid bit removal is failed.
2517  */
2518 int security_inode_killpriv(struct mnt_idmap *idmap,
2519                             struct dentry *dentry)
2520 {
2521         return call_int_hook(inode_killpriv, idmap, dentry);
2522 }
2523
2524 /**
2525  * security_inode_getsecurity() - Get the xattr security label of an inode
2526  * @idmap: idmap of the mount
2527  * @inode: inode
2528  * @name: xattr name
2529  * @buffer: security label buffer
2530  * @alloc: allocation flag
2531  *
2532  * Retrieve a copy of the extended attribute representation of the security
2533  * label associated with @name for @inode via @buffer.  Note that @name is the
2534  * remainder of the attribute name after the security prefix has been removed.
2535  * @alloc is used to specify if the call should return a value via the buffer
2536  * or just the value length.
2537  *
2538  * Return: Returns size of buffer on success.
2539  */
2540 int security_inode_getsecurity(struct mnt_idmap *idmap,
2541                                struct inode *inode, const char *name,
2542                                void **buffer, bool alloc)
2543 {
2544         if (unlikely(IS_PRIVATE(inode)))
2545                 return LSM_RET_DEFAULT(inode_getsecurity);
2546
2547         return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2548                              alloc);
2549 }
2550
2551 /**
2552  * security_inode_setsecurity() - Set the xattr security label of an inode
2553  * @inode: inode
2554  * @name: xattr name
2555  * @value: security label
2556  * @size: length of security label
2557  * @flags: flags
2558  *
2559  * Set the security label associated with @name for @inode from the extended
2560  * attribute value @value.  @size indicates the size of the @value in bytes.
2561  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2562  * remainder of the attribute name after the security. prefix has been removed.
2563  *
2564  * Return: Returns 0 on success.
2565  */
2566 int security_inode_setsecurity(struct inode *inode, const char *name,
2567                                const void *value, size_t size, int flags)
2568 {
2569         if (unlikely(IS_PRIVATE(inode)))
2570                 return LSM_RET_DEFAULT(inode_setsecurity);
2571
2572         return call_int_hook(inode_setsecurity, inode, name, value, size,
2573                              flags);
2574 }
2575
2576 /**
2577  * security_inode_listsecurity() - List the xattr security label names
2578  * @inode: inode
2579  * @buffer: buffer
2580  * @buffer_size: size of buffer
2581  *
2582  * Copy the extended attribute names for the security labels associated with
2583  * @inode into @buffer.  The maximum size of @buffer is specified by
2584  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2585  * required.
2586  *
2587  * Return: Returns number of bytes used/required on success.
2588  */
2589 int security_inode_listsecurity(struct inode *inode,
2590                                 char *buffer, size_t buffer_size)
2591 {
2592         if (unlikely(IS_PRIVATE(inode)))
2593                 return 0;
2594         return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2595 }
2596 EXPORT_SYMBOL(security_inode_listsecurity);
2597
2598 /**
2599  * security_inode_getsecid() - Get an inode's secid
2600  * @inode: inode
2601  * @secid: secid to return
2602  *
2603  * Get the secid associated with the node.  In case of failure, @secid will be
2604  * set to zero.
2605  */
2606 void security_inode_getsecid(struct inode *inode, u32 *secid)
2607 {
2608         call_void_hook(inode_getsecid, inode, secid);
2609 }
2610
2611 /**
2612  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2613  * @src: union dentry of copy-up file
2614  * @new: newly created creds
2615  *
2616  * A file is about to be copied up from lower layer to upper layer of overlay
2617  * filesystem. Security module can prepare a set of new creds and modify as
2618  * need be and return new creds. Caller will switch to new creds temporarily to
2619  * create new file and release newly allocated creds.
2620  *
2621  * Return: Returns 0 on success or a negative error code on error.
2622  */
2623 int security_inode_copy_up(struct dentry *src, struct cred **new)
2624 {
2625         return call_int_hook(inode_copy_up, src, new);
2626 }
2627 EXPORT_SYMBOL(security_inode_copy_up);
2628
2629 /**
2630  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2631  * @src: union dentry of copy-up file
2632  * @name: xattr name
2633  *
2634  * Filter the xattrs being copied up when a unioned file is copied up from a
2635  * lower layer to the union/overlay layer.   The caller is responsible for
2636  * reading and writing the xattrs, this hook is merely a filter.
2637  *
2638  * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2639  *         if the security module does not know about attribute, or a negative
2640  *         error code to abort the copy up.
2641  */
2642 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2643 {
2644         int rc;
2645
2646         /*
2647          * The implementation can return 0 (accept the xattr), 1 (discard the
2648          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2649          * any other error code in case of an error.
2650          */
2651         rc = call_int_hook(inode_copy_up_xattr, src, name);
2652         if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2653                 return rc;
2654
2655         return LSM_RET_DEFAULT(inode_copy_up_xattr);
2656 }
2657 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2658
2659 /**
2660  * security_kernfs_init_security() - Init LSM context for a kernfs node
2661  * @kn_dir: parent kernfs node
2662  * @kn: the kernfs node to initialize
2663  *
2664  * Initialize the security context of a newly created kernfs node based on its
2665  * own and its parent's attributes.
2666  *
2667  * Return: Returns 0 if permission is granted.
2668  */
2669 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2670                                   struct kernfs_node *kn)
2671 {
2672         return call_int_hook(kernfs_init_security, kn_dir, kn);
2673 }
2674
2675 /**
2676  * security_file_permission() - Check file permissions
2677  * @file: file
2678  * @mask: requested permissions
2679  *
2680  * Check file permissions before accessing an open file.  This hook is called
2681  * by various operations that read or write files.  A security module can use
2682  * this hook to perform additional checking on these operations, e.g. to
2683  * revalidate permissions on use to support privilege bracketing or policy
2684  * changes.  Notice that this hook is used when the actual read/write
2685  * operations are performed, whereas the inode_security_ops hook is called when
2686  * a file is opened (as well as many other operations).  Although this hook can
2687  * be used to revalidate permissions for various system call operations that
2688  * read or write files, it does not address the revalidation of permissions for
2689  * memory-mapped files.  Security modules must handle this separately if they
2690  * need such revalidation.
2691  *
2692  * Return: Returns 0 if permission is granted.
2693  */
2694 int security_file_permission(struct file *file, int mask)
2695 {
2696         return call_int_hook(file_permission, file, mask);
2697 }
2698
2699 /**
2700  * security_file_alloc() - Allocate and init a file's LSM blob
2701  * @file: the file
2702  *
2703  * Allocate and attach a security structure to the file->f_security field.  The
2704  * security field is initialized to NULL when the structure is first created.
2705  *
2706  * Return: Return 0 if the hook is successful and permission is granted.
2707  */
2708 int security_file_alloc(struct file *file)
2709 {
2710         int rc = lsm_file_alloc(file);
2711
2712         if (rc)
2713                 return rc;
2714         rc = call_int_hook(file_alloc_security, file);
2715         if (unlikely(rc))
2716                 security_file_free(file);
2717         return rc;
2718 }
2719
2720 /**
2721  * security_file_release() - Perform actions before releasing the file ref
2722  * @file: the file
2723  *
2724  * Perform actions before releasing the last reference to a file.
2725  */
2726 void security_file_release(struct file *file)
2727 {
2728         call_void_hook(file_release, file);
2729 }
2730
2731 /**
2732  * security_file_free() - Free a file's LSM blob
2733  * @file: the file
2734  *
2735  * Deallocate and free any security structures stored in file->f_security.
2736  */
2737 void security_file_free(struct file *file)
2738 {
2739         void *blob;
2740
2741         call_void_hook(file_free_security, file);
2742
2743         blob = file->f_security;
2744         if (blob) {
2745                 file->f_security = NULL;
2746                 kmem_cache_free(lsm_file_cache, blob);
2747         }
2748 }
2749
2750 /**
2751  * security_file_ioctl() - Check if an ioctl is allowed
2752  * @file: associated file
2753  * @cmd: ioctl cmd
2754  * @arg: ioctl arguments
2755  *
2756  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2757  * represents a user space pointer; in other cases, it may be a simple integer
2758  * value.  When @arg represents a user space pointer, it should never be used
2759  * by the security module.
2760  *
2761  * Return: Returns 0 if permission is granted.
2762  */
2763 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2764 {
2765         return call_int_hook(file_ioctl, file, cmd, arg);
2766 }
2767 EXPORT_SYMBOL_GPL(security_file_ioctl);
2768
2769 /**
2770  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2771  * @file: associated file
2772  * @cmd: ioctl cmd
2773  * @arg: ioctl arguments
2774  *
2775  * Compat version of security_file_ioctl() that correctly handles 32-bit
2776  * processes running on 64-bit kernels.
2777  *
2778  * Return: Returns 0 if permission is granted.
2779  */
2780 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2781                                unsigned long arg)
2782 {
2783         return call_int_hook(file_ioctl_compat, file, cmd, arg);
2784 }
2785 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2786
2787 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2788 {
2789         /*
2790          * Does we have PROT_READ and does the application expect
2791          * it to imply PROT_EXEC?  If not, nothing to talk about...
2792          */
2793         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2794                 return prot;
2795         if (!(current->personality & READ_IMPLIES_EXEC))
2796                 return prot;
2797         /*
2798          * if that's an anonymous mapping, let it.
2799          */
2800         if (!file)
2801                 return prot | PROT_EXEC;
2802         /*
2803          * ditto if it's not on noexec mount, except that on !MMU we need
2804          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2805          */
2806         if (!path_noexec(&file->f_path)) {
2807 #ifndef CONFIG_MMU
2808                 if (file->f_op->mmap_capabilities) {
2809                         unsigned caps = file->f_op->mmap_capabilities(file);
2810                         if (!(caps & NOMMU_MAP_EXEC))
2811                                 return prot;
2812                 }
2813 #endif
2814                 return prot | PROT_EXEC;
2815         }
2816         /* anything on noexec mount won't get PROT_EXEC */
2817         return prot;
2818 }
2819
2820 /**
2821  * security_mmap_file() - Check if mmap'ing a file is allowed
2822  * @file: file
2823  * @prot: protection applied by the kernel
2824  * @flags: flags
2825  *
2826  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2827  * mapping anonymous memory.
2828  *
2829  * Return: Returns 0 if permission is granted.
2830  */
2831 int security_mmap_file(struct file *file, unsigned long prot,
2832                        unsigned long flags)
2833 {
2834         return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2835                              flags);
2836 }
2837
2838 /**
2839  * security_mmap_addr() - Check if mmap'ing an address is allowed
2840  * @addr: address
2841  *
2842  * Check permissions for a mmap operation at @addr.
2843  *
2844  * Return: Returns 0 if permission is granted.
2845  */
2846 int security_mmap_addr(unsigned long addr)
2847 {
2848         return call_int_hook(mmap_addr, addr);
2849 }
2850
2851 /**
2852  * security_file_mprotect() - Check if changing memory protections is allowed
2853  * @vma: memory region
2854  * @reqprot: application requested protection
2855  * @prot: protection applied by the kernel
2856  *
2857  * Check permissions before changing memory access permissions.
2858  *
2859  * Return: Returns 0 if permission is granted.
2860  */
2861 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2862                            unsigned long prot)
2863 {
2864         return call_int_hook(file_mprotect, vma, reqprot, prot);
2865 }
2866
2867 /**
2868  * security_file_lock() - Check if a file lock is allowed
2869  * @file: file
2870  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2871  *
2872  * Check permission before performing file locking operations.  Note the hook
2873  * mediates both flock and fcntl style locks.
2874  *
2875  * Return: Returns 0 if permission is granted.
2876  */
2877 int security_file_lock(struct file *file, unsigned int cmd)
2878 {
2879         return call_int_hook(file_lock, file, cmd);
2880 }
2881
2882 /**
2883  * security_file_fcntl() - Check if fcntl() op is allowed
2884  * @file: file
2885  * @cmd: fcntl command
2886  * @arg: command argument
2887  *
2888  * Check permission before allowing the file operation specified by @cmd from
2889  * being performed on the file @file.  Note that @arg sometimes represents a
2890  * user space pointer; in other cases, it may be a simple integer value.  When
2891  * @arg represents a user space pointer, it should never be used by the
2892  * security module.
2893  *
2894  * Return: Returns 0 if permission is granted.
2895  */
2896 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2897 {
2898         return call_int_hook(file_fcntl, file, cmd, arg);
2899 }
2900
2901 /**
2902  * security_file_set_fowner() - Set the file owner info in the LSM blob
2903  * @file: the file
2904  *
2905  * Save owner security information (typically from current->security) in
2906  * file->f_security for later use by the send_sigiotask hook.
2907  *
2908  * Return: Returns 0 on success.
2909  */
2910 void security_file_set_fowner(struct file *file)
2911 {
2912         call_void_hook(file_set_fowner, file);
2913 }
2914
2915 /**
2916  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2917  * @tsk: target task
2918  * @fown: signal sender
2919  * @sig: signal to be sent, SIGIO is sent if 0
2920  *
2921  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2922  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2923  * that the fown_struct, @fown, is never outside the context of a struct file,
2924  * so the file structure (and associated security information) can always be
2925  * obtained: container_of(fown, struct file, f_owner).
2926  *
2927  * Return: Returns 0 if permission is granted.
2928  */
2929 int security_file_send_sigiotask(struct task_struct *tsk,
2930                                  struct fown_struct *fown, int sig)
2931 {
2932         return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2933 }
2934
2935 /**
2936  * security_file_receive() - Check if receiving a file via IPC is allowed
2937  * @file: file being received
2938  *
2939  * This hook allows security modules to control the ability of a process to
2940  * receive an open file descriptor via socket IPC.
2941  *
2942  * Return: Returns 0 if permission is granted.
2943  */
2944 int security_file_receive(struct file *file)
2945 {
2946         return call_int_hook(file_receive, file);
2947 }
2948
2949 /**
2950  * security_file_open() - Save open() time state for late use by the LSM
2951  * @file:
2952  *
2953  * Save open-time permission checking state for later use upon file_permission,
2954  * and recheck access if anything has changed since inode_permission.
2955  *
2956  * Return: Returns 0 if permission is granted.
2957  */
2958 int security_file_open(struct file *file)
2959 {
2960         int ret;
2961
2962         ret = call_int_hook(file_open, file);
2963         if (ret)
2964                 return ret;
2965
2966         return fsnotify_open_perm(file);
2967 }
2968
2969 /**
2970  * security_file_post_open() - Evaluate a file after it has been opened
2971  * @file: the file
2972  * @mask: access mask
2973  *
2974  * Evaluate an opened file and the access mask requested with open(). The hook
2975  * is useful for LSMs that require the file content to be available in order to
2976  * make decisions.
2977  *
2978  * Return: Returns 0 if permission is granted.
2979  */
2980 int security_file_post_open(struct file *file, int mask)
2981 {
2982         return call_int_hook(file_post_open, file, mask);
2983 }
2984 EXPORT_SYMBOL_GPL(security_file_post_open);
2985
2986 /**
2987  * security_file_truncate() - Check if truncating a file is allowed
2988  * @file: file
2989  *
2990  * Check permission before truncating a file, i.e. using ftruncate.  Note that
2991  * truncation permission may also be checked based on the path, using the
2992  * @path_truncate hook.
2993  *
2994  * Return: Returns 0 if permission is granted.
2995  */
2996 int security_file_truncate(struct file *file)
2997 {
2998         return call_int_hook(file_truncate, file);
2999 }
3000
3001 /**
3002  * security_task_alloc() - Allocate a task's LSM blob
3003  * @task: the task
3004  * @clone_flags: flags indicating what is being shared
3005  *
3006  * Handle allocation of task-related resources.
3007  *
3008  * Return: Returns a zero on success, negative values on failure.
3009  */
3010 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3011 {
3012         int rc = lsm_task_alloc(task);
3013
3014         if (rc)
3015                 return rc;
3016         rc = call_int_hook(task_alloc, task, clone_flags);
3017         if (unlikely(rc))
3018                 security_task_free(task);
3019         return rc;
3020 }
3021
3022 /**
3023  * security_task_free() - Free a task's LSM blob and related resources
3024  * @task: task
3025  *
3026  * Handle release of task-related resources.  Note that this can be called from
3027  * interrupt context.
3028  */
3029 void security_task_free(struct task_struct *task)
3030 {
3031         call_void_hook(task_free, task);
3032
3033         kfree(task->security);
3034         task->security = NULL;
3035 }
3036
3037 /**
3038  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3039  * @cred: credentials
3040  * @gfp: gfp flags
3041  *
3042  * Only allocate sufficient memory and attach to @cred such that
3043  * cred_transfer() will not get ENOMEM.
3044  *
3045  * Return: Returns 0 on success, negative values on failure.
3046  */
3047 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3048 {
3049         int rc = lsm_cred_alloc(cred, gfp);
3050
3051         if (rc)
3052                 return rc;
3053
3054         rc = call_int_hook(cred_alloc_blank, cred, gfp);
3055         if (unlikely(rc))
3056                 security_cred_free(cred);
3057         return rc;
3058 }
3059
3060 /**
3061  * security_cred_free() - Free the cred's LSM blob and associated resources
3062  * @cred: credentials
3063  *
3064  * Deallocate and clear the cred->security field in a set of credentials.
3065  */
3066 void security_cred_free(struct cred *cred)
3067 {
3068         /*
3069          * There is a failure case in prepare_creds() that
3070          * may result in a call here with ->security being NULL.
3071          */
3072         if (unlikely(cred->security == NULL))
3073                 return;
3074
3075         call_void_hook(cred_free, cred);
3076
3077         kfree(cred->security);
3078         cred->security = NULL;
3079 }
3080
3081 /**
3082  * security_prepare_creds() - Prepare a new set of credentials
3083  * @new: new credentials
3084  * @old: original credentials
3085  * @gfp: gfp flags
3086  *
3087  * Prepare a new set of credentials by copying the data from the old set.
3088  *
3089  * Return: Returns 0 on success, negative values on failure.
3090  */
3091 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3092 {
3093         int rc = lsm_cred_alloc(new, gfp);
3094
3095         if (rc)
3096                 return rc;
3097
3098         rc = call_int_hook(cred_prepare, new, old, gfp);
3099         if (unlikely(rc))
3100                 security_cred_free(new);
3101         return rc;
3102 }
3103
3104 /**
3105  * security_transfer_creds() - Transfer creds
3106  * @new: target credentials
3107  * @old: original credentials
3108  *
3109  * Transfer data from original creds to new creds.
3110  */
3111 void security_transfer_creds(struct cred *new, const struct cred *old)
3112 {
3113         call_void_hook(cred_transfer, new, old);
3114 }
3115
3116 /**
3117  * security_cred_getsecid() - Get the secid from a set of credentials
3118  * @c: credentials
3119  * @secid: secid value
3120  *
3121  * Retrieve the security identifier of the cred structure @c.  In case of
3122  * failure, @secid will be set to zero.
3123  */
3124 void security_cred_getsecid(const struct cred *c, u32 *secid)
3125 {
3126         *secid = 0;
3127         call_void_hook(cred_getsecid, c, secid);
3128 }
3129 EXPORT_SYMBOL(security_cred_getsecid);
3130
3131 /**
3132  * security_kernel_act_as() - Set the kernel credentials to act as secid
3133  * @new: credentials
3134  * @secid: secid
3135  *
3136  * Set the credentials for a kernel service to act as (subjective context).
3137  * The current task must be the one that nominated @secid.
3138  *
3139  * Return: Returns 0 if successful.
3140  */
3141 int security_kernel_act_as(struct cred *new, u32 secid)
3142 {
3143         return call_int_hook(kernel_act_as, new, secid);
3144 }
3145
3146 /**
3147  * security_kernel_create_files_as() - Set file creation context using an inode
3148  * @new: target credentials
3149  * @inode: reference inode
3150  *
3151  * Set the file creation context in a set of credentials to be the same as the
3152  * objective context of the specified inode.  The current task must be the one
3153  * that nominated @inode.
3154  *
3155  * Return: Returns 0 if successful.
3156  */
3157 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3158 {
3159         return call_int_hook(kernel_create_files_as, new, inode);
3160 }
3161
3162 /**
3163  * security_kernel_module_request() - Check if loading a module is allowed
3164  * @kmod_name: module name
3165  *
3166  * Ability to trigger the kernel to automatically upcall to userspace for
3167  * userspace to load a kernel module with the given name.
3168  *
3169  * Return: Returns 0 if successful.
3170  */
3171 int security_kernel_module_request(char *kmod_name)
3172 {
3173         return call_int_hook(kernel_module_request, kmod_name);
3174 }
3175
3176 /**
3177  * security_kernel_read_file() - Read a file specified by userspace
3178  * @file: file
3179  * @id: file identifier
3180  * @contents: trust if security_kernel_post_read_file() will be called
3181  *
3182  * Read a file specified by userspace.
3183  *
3184  * Return: Returns 0 if permission is granted.
3185  */
3186 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3187                               bool contents)
3188 {
3189         return call_int_hook(kernel_read_file, file, id, contents);
3190 }
3191 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3192
3193 /**
3194  * security_kernel_post_read_file() - Read a file specified by userspace
3195  * @file: file
3196  * @buf: file contents
3197  * @size: size of file contents
3198  * @id: file identifier
3199  *
3200  * Read a file specified by userspace.  This must be paired with a prior call
3201  * to security_kernel_read_file() call that indicated this hook would also be
3202  * called, see security_kernel_read_file() for more information.
3203  *
3204  * Return: Returns 0 if permission is granted.
3205  */
3206 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3207                                    enum kernel_read_file_id id)
3208 {
3209         return call_int_hook(kernel_post_read_file, file, buf, size, id);
3210 }
3211 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3212
3213 /**
3214  * security_kernel_load_data() - Load data provided by userspace
3215  * @id: data identifier
3216  * @contents: true if security_kernel_post_load_data() will be called
3217  *
3218  * Load data provided by userspace.
3219  *
3220  * Return: Returns 0 if permission is granted.
3221  */
3222 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3223 {
3224         return call_int_hook(kernel_load_data, id, contents);
3225 }
3226 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3227
3228 /**
3229  * security_kernel_post_load_data() - Load userspace data from a non-file source
3230  * @buf: data
3231  * @size: size of data
3232  * @id: data identifier
3233  * @description: text description of data, specific to the id value
3234  *
3235  * Load data provided by a non-file source (usually userspace buffer).  This
3236  * must be paired with a prior security_kernel_load_data() call that indicated
3237  * this hook would also be called, see security_kernel_load_data() for more
3238  * information.
3239  *
3240  * Return: Returns 0 if permission is granted.
3241  */
3242 int security_kernel_post_load_data(char *buf, loff_t size,
3243                                    enum kernel_load_data_id id,
3244                                    char *description)
3245 {
3246         return call_int_hook(kernel_post_load_data, buf, size, id, description);
3247 }
3248 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3249
3250 /**
3251  * security_task_fix_setuid() - Update LSM with new user id attributes
3252  * @new: updated credentials
3253  * @old: credentials being replaced
3254  * @flags: LSM_SETID_* flag values
3255  *
3256  * Update the module's state after setting one or more of the user identity
3257  * attributes of the current process.  The @flags parameter indicates which of
3258  * the set*uid system calls invoked this hook.  If @new is the set of
3259  * credentials that will be installed.  Modifications should be made to this
3260  * rather than to @current->cred.
3261  *
3262  * Return: Returns 0 on success.
3263  */
3264 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3265                              int flags)
3266 {
3267         return call_int_hook(task_fix_setuid, new, old, flags);
3268 }
3269
3270 /**
3271  * security_task_fix_setgid() - Update LSM with new group id attributes
3272  * @new: updated credentials
3273  * @old: credentials being replaced
3274  * @flags: LSM_SETID_* flag value
3275  *
3276  * Update the module's state after setting one or more of the group identity
3277  * attributes of the current process.  The @flags parameter indicates which of
3278  * the set*gid system calls invoked this hook.  @new is the set of credentials
3279  * that will be installed.  Modifications should be made to this rather than to
3280  * @current->cred.
3281  *
3282  * Return: Returns 0 on success.
3283  */
3284 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3285                              int flags)
3286 {
3287         return call_int_hook(task_fix_setgid, new, old, flags);
3288 }
3289
3290 /**
3291  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3292  * @new: updated credentials
3293  * @old: credentials being replaced
3294  *
3295  * Update the module's state after setting the supplementary group identity
3296  * attributes of the current process.  @new is the set of credentials that will
3297  * be installed.  Modifications should be made to this rather than to
3298  * @current->cred.
3299  *
3300  * Return: Returns 0 on success.
3301  */
3302 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3303 {
3304         return call_int_hook(task_fix_setgroups, new, old);
3305 }
3306
3307 /**
3308  * security_task_setpgid() - Check if setting the pgid is allowed
3309  * @p: task being modified
3310  * @pgid: new pgid
3311  *
3312  * Check permission before setting the process group identifier of the process
3313  * @p to @pgid.
3314  *
3315  * Return: Returns 0 if permission is granted.
3316  */
3317 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3318 {
3319         return call_int_hook(task_setpgid, p, pgid);
3320 }
3321
3322 /**
3323  * security_task_getpgid() - Check if getting the pgid is allowed
3324  * @p: task
3325  *
3326  * Check permission before getting the process group identifier of the process
3327  * @p.
3328  *
3329  * Return: Returns 0 if permission is granted.
3330  */
3331 int security_task_getpgid(struct task_struct *p)
3332 {
3333         return call_int_hook(task_getpgid, p);
3334 }
3335
3336 /**
3337  * security_task_getsid() - Check if getting the session id is allowed
3338  * @p: task
3339  *
3340  * Check permission before getting the session identifier of the process @p.
3341  *
3342  * Return: Returns 0 if permission is granted.
3343  */
3344 int security_task_getsid(struct task_struct *p)
3345 {
3346         return call_int_hook(task_getsid, p);
3347 }
3348
3349 /**
3350  * security_current_getsecid_subj() - Get the current task's subjective secid
3351  * @secid: secid value
3352  *
3353  * Retrieve the subjective security identifier of the current task and return
3354  * it in @secid.  In case of failure, @secid will be set to zero.
3355  */
3356 void security_current_getsecid_subj(u32 *secid)
3357 {
3358         *secid = 0;
3359         call_void_hook(current_getsecid_subj, secid);
3360 }
3361 EXPORT_SYMBOL(security_current_getsecid_subj);
3362
3363 /**
3364  * security_task_getsecid_obj() - Get a task's objective secid
3365  * @p: target task
3366  * @secid: secid value
3367  *
3368  * Retrieve the objective security identifier of the task_struct in @p and
3369  * return it in @secid. In case of failure, @secid will be set to zero.
3370  */
3371 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3372 {
3373         *secid = 0;
3374         call_void_hook(task_getsecid_obj, p, secid);
3375 }
3376 EXPORT_SYMBOL(security_task_getsecid_obj);
3377
3378 /**
3379  * security_task_setnice() - Check if setting a task's nice value is allowed
3380  * @p: target task
3381  * @nice: nice value
3382  *
3383  * Check permission before setting the nice value of @p to @nice.
3384  *
3385  * Return: Returns 0 if permission is granted.
3386  */
3387 int security_task_setnice(struct task_struct *p, int nice)
3388 {
3389         return call_int_hook(task_setnice, p, nice);
3390 }
3391
3392 /**
3393  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3394  * @p: target task
3395  * @ioprio: ioprio value
3396  *
3397  * Check permission before setting the ioprio value of @p to @ioprio.
3398  *
3399  * Return: Returns 0 if permission is granted.
3400  */
3401 int security_task_setioprio(struct task_struct *p, int ioprio)
3402 {
3403         return call_int_hook(task_setioprio, p, ioprio);
3404 }
3405
3406 /**
3407  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3408  * @p: task
3409  *
3410  * Check permission before getting the ioprio value of @p.
3411  *
3412  * Return: Returns 0 if permission is granted.
3413  */
3414 int security_task_getioprio(struct task_struct *p)
3415 {
3416         return call_int_hook(task_getioprio, p);
3417 }
3418
3419 /**
3420  * security_task_prlimit() - Check if get/setting resources limits is allowed
3421  * @cred: current task credentials
3422  * @tcred: target task credentials
3423  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3424  *
3425  * Check permission before getting and/or setting the resource limits of
3426  * another task.
3427  *
3428  * Return: Returns 0 if permission is granted.
3429  */
3430 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3431                           unsigned int flags)
3432 {
3433         return call_int_hook(task_prlimit, cred, tcred, flags);
3434 }
3435
3436 /**
3437  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3438  * @p: target task's group leader
3439  * @resource: resource whose limit is being set
3440  * @new_rlim: new resource limit
3441  *
3442  * Check permission before setting the resource limits of process @p for
3443  * @resource to @new_rlim.  The old resource limit values can be examined by
3444  * dereferencing (p->signal->rlim + resource).
3445  *
3446  * Return: Returns 0 if permission is granted.
3447  */
3448 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3449                             struct rlimit *new_rlim)
3450 {
3451         return call_int_hook(task_setrlimit, p, resource, new_rlim);
3452 }
3453
3454 /**
3455  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3456  * @p: target task
3457  *
3458  * Check permission before setting scheduling policy and/or parameters of
3459  * process @p.
3460  *
3461  * Return: Returns 0 if permission is granted.
3462  */
3463 int security_task_setscheduler(struct task_struct *p)
3464 {
3465         return call_int_hook(task_setscheduler, p);
3466 }
3467
3468 /**
3469  * security_task_getscheduler() - Check if getting scheduling info is allowed
3470  * @p: target task
3471  *
3472  * Check permission before obtaining scheduling information for process @p.
3473  *
3474  * Return: Returns 0 if permission is granted.
3475  */
3476 int security_task_getscheduler(struct task_struct *p)
3477 {
3478         return call_int_hook(task_getscheduler, p);
3479 }
3480
3481 /**
3482  * security_task_movememory() - Check if moving memory is allowed
3483  * @p: task
3484  *
3485  * Check permission before moving memory owned by process @p.
3486  *
3487  * Return: Returns 0 if permission is granted.
3488  */
3489 int security_task_movememory(struct task_struct *p)
3490 {
3491         return call_int_hook(task_movememory, p);
3492 }
3493
3494 /**
3495  * security_task_kill() - Check if sending a signal is allowed
3496  * @p: target process
3497  * @info: signal information
3498  * @sig: signal value
3499  * @cred: credentials of the signal sender, NULL if @current
3500  *
3501  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3502  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3503  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3504  * the kernel and should typically be permitted.  SIGIO signals are handled
3505  * separately by the send_sigiotask hook in file_security_ops.
3506  *
3507  * Return: Returns 0 if permission is granted.
3508  */
3509 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3510                        int sig, const struct cred *cred)
3511 {
3512         return call_int_hook(task_kill, p, info, sig, cred);
3513 }
3514
3515 /**
3516  * security_task_prctl() - Check if a prctl op is allowed
3517  * @option: operation
3518  * @arg2: argument
3519  * @arg3: argument
3520  * @arg4: argument
3521  * @arg5: argument
3522  *
3523  * Check permission before performing a process control operation on the
3524  * current process.
3525  *
3526  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3527  *         to cause prctl() to return immediately with that value.
3528  */
3529 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3530                         unsigned long arg4, unsigned long arg5)
3531 {
3532         int thisrc;
3533         int rc = LSM_RET_DEFAULT(task_prctl);
3534         struct security_hook_list *hp;
3535
3536         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3537                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3538                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3539                         rc = thisrc;
3540                         if (thisrc != 0)
3541                                 break;
3542                 }
3543         }
3544         return rc;
3545 }
3546
3547 /**
3548  * security_task_to_inode() - Set the security attributes of a task's inode
3549  * @p: task
3550  * @inode: inode
3551  *
3552  * Set the security attributes for an inode based on an associated task's
3553  * security attributes, e.g. for /proc/pid inodes.
3554  */
3555 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3556 {
3557         call_void_hook(task_to_inode, p, inode);
3558 }
3559
3560 /**
3561  * security_create_user_ns() - Check if creating a new userns is allowed
3562  * @cred: prepared creds
3563  *
3564  * Check permission prior to creating a new user namespace.
3565  *
3566  * Return: Returns 0 if successful, otherwise < 0 error code.
3567  */
3568 int security_create_user_ns(const struct cred *cred)
3569 {
3570         return call_int_hook(userns_create, cred);
3571 }
3572
3573 /**
3574  * security_ipc_permission() - Check if sysv ipc access is allowed
3575  * @ipcp: ipc permission structure
3576  * @flag: requested permissions
3577  *
3578  * Check permissions for access to IPC.
3579  *
3580  * Return: Returns 0 if permission is granted.
3581  */
3582 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3583 {
3584         return call_int_hook(ipc_permission, ipcp, flag);
3585 }
3586
3587 /**
3588  * security_ipc_getsecid() - Get the sysv ipc object's secid
3589  * @ipcp: ipc permission structure
3590  * @secid: secid pointer
3591  *
3592  * Get the secid associated with the ipc object.  In case of failure, @secid
3593  * will be set to zero.
3594  */
3595 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3596 {
3597         *secid = 0;
3598         call_void_hook(ipc_getsecid, ipcp, secid);
3599 }
3600
3601 /**
3602  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3603  * @msg: message structure
3604  *
3605  * Allocate and attach a security structure to the msg->security field.  The
3606  * security field is initialized to NULL when the structure is first created.
3607  *
3608  * Return: Return 0 if operation was successful and permission is granted.
3609  */
3610 int security_msg_msg_alloc(struct msg_msg *msg)
3611 {
3612         int rc = lsm_msg_msg_alloc(msg);
3613
3614         if (unlikely(rc))
3615                 return rc;
3616         rc = call_int_hook(msg_msg_alloc_security, msg);
3617         if (unlikely(rc))
3618                 security_msg_msg_free(msg);
3619         return rc;
3620 }
3621
3622 /**
3623  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3624  * @msg: message structure
3625  *
3626  * Deallocate the security structure for this message.
3627  */
3628 void security_msg_msg_free(struct msg_msg *msg)
3629 {
3630         call_void_hook(msg_msg_free_security, msg);
3631         kfree(msg->security);
3632         msg->security = NULL;
3633 }
3634
3635 /**
3636  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3637  * @msq: sysv ipc permission structure
3638  *
3639  * Allocate and attach a security structure to @msg. The security field is
3640  * initialized to NULL when the structure is first created.
3641  *
3642  * Return: Returns 0 if operation was successful and permission is granted.
3643  */
3644 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3645 {
3646         int rc = lsm_ipc_alloc(msq);
3647
3648         if (unlikely(rc))
3649                 return rc;
3650         rc = call_int_hook(msg_queue_alloc_security, msq);
3651         if (unlikely(rc))
3652                 security_msg_queue_free(msq);
3653         return rc;
3654 }
3655
3656 /**
3657  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3658  * @msq: sysv ipc permission structure
3659  *
3660  * Deallocate security field @perm->security for the message queue.
3661  */
3662 void security_msg_queue_free(struct kern_ipc_perm *msq)
3663 {
3664         call_void_hook(msg_queue_free_security, msq);
3665         kfree(msq->security);
3666         msq->security = NULL;
3667 }
3668
3669 /**
3670  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3671  * @msq: sysv ipc permission structure
3672  * @msqflg: operation flags
3673  *
3674  * Check permission when a message queue is requested through the msgget system
3675  * call. This hook is only called when returning the message queue identifier
3676  * for an existing message queue, not when a new message queue is created.
3677  *
3678  * Return: Return 0 if permission is granted.
3679  */
3680 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3681 {
3682         return call_int_hook(msg_queue_associate, msq, msqflg);
3683 }
3684
3685 /**
3686  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3687  * @msq: sysv ipc permission structure
3688  * @cmd: operation
3689  *
3690  * Check permission when a message control operation specified by @cmd is to be
3691  * performed on the message queue with permissions.
3692  *
3693  * Return: Returns 0 if permission is granted.
3694  */
3695 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3696 {
3697         return call_int_hook(msg_queue_msgctl, msq, cmd);
3698 }
3699
3700 /**
3701  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3702  * @msq: sysv ipc permission structure
3703  * @msg: message
3704  * @msqflg: operation flags
3705  *
3706  * Check permission before a message, @msg, is enqueued on the message queue
3707  * with permissions specified in @msq.
3708  *
3709  * Return: Returns 0 if permission is granted.
3710  */
3711 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3712                               struct msg_msg *msg, int msqflg)
3713 {
3714         return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3715 }
3716
3717 /**
3718  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3719  * @msq: sysv ipc permission structure
3720  * @msg: message
3721  * @target: target task
3722  * @type: type of message requested
3723  * @mode: operation flags
3724  *
3725  * Check permission before a message, @msg, is removed from the message queue.
3726  * The @target task structure contains a pointer to the process that will be
3727  * receiving the message (not equal to the current process when inline receives
3728  * are being performed).
3729  *
3730  * Return: Returns 0 if permission is granted.
3731  */
3732 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3733                               struct task_struct *target, long type, int mode)
3734 {
3735         return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3736 }
3737
3738 /**
3739  * security_shm_alloc() - Allocate a sysv shm LSM blob
3740  * @shp: sysv ipc permission structure
3741  *
3742  * Allocate and attach a security structure to the @shp security field.  The
3743  * security field is initialized to NULL when the structure is first created.
3744  *
3745  * Return: Returns 0 if operation was successful and permission is granted.
3746  */
3747 int security_shm_alloc(struct kern_ipc_perm *shp)
3748 {
3749         int rc = lsm_ipc_alloc(shp);
3750
3751         if (unlikely(rc))
3752                 return rc;
3753         rc = call_int_hook(shm_alloc_security, shp);
3754         if (unlikely(rc))
3755                 security_shm_free(shp);
3756         return rc;
3757 }
3758
3759 /**
3760  * security_shm_free() - Free a sysv shm LSM blob
3761  * @shp: sysv ipc permission structure
3762  *
3763  * Deallocate the security structure @perm->security for the memory segment.
3764  */
3765 void security_shm_free(struct kern_ipc_perm *shp)
3766 {
3767         call_void_hook(shm_free_security, shp);
3768         kfree(shp->security);
3769         shp->security = NULL;
3770 }
3771
3772 /**
3773  * security_shm_associate() - Check if a sysv shm operation is allowed
3774  * @shp: sysv ipc permission structure
3775  * @shmflg: operation flags
3776  *
3777  * Check permission when a shared memory region is requested through the shmget
3778  * system call. This hook is only called when returning the shared memory
3779  * region identifier for an existing region, not when a new shared memory
3780  * region is created.
3781  *
3782  * Return: Returns 0 if permission is granted.
3783  */
3784 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3785 {
3786         return call_int_hook(shm_associate, shp, shmflg);
3787 }
3788
3789 /**
3790  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3791  * @shp: sysv ipc permission structure
3792  * @cmd: operation
3793  *
3794  * Check permission when a shared memory control operation specified by @cmd is
3795  * to be performed on the shared memory region with permissions in @shp.
3796  *
3797  * Return: Return 0 if permission is granted.
3798  */
3799 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3800 {
3801         return call_int_hook(shm_shmctl, shp, cmd);
3802 }
3803
3804 /**
3805  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3806  * @shp: sysv ipc permission structure
3807  * @shmaddr: address of memory region to attach
3808  * @shmflg: operation flags
3809  *
3810  * Check permissions prior to allowing the shmat system call to attach the
3811  * shared memory segment with permissions @shp to the data segment of the
3812  * calling process. The attaching address is specified by @shmaddr.
3813  *
3814  * Return: Returns 0 if permission is granted.
3815  */
3816 int security_shm_shmat(struct kern_ipc_perm *shp,
3817                        char __user *shmaddr, int shmflg)
3818 {
3819         return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3820 }
3821
3822 /**
3823  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3824  * @sma: sysv ipc permission structure
3825  *
3826  * Allocate and attach a security structure to the @sma security field. The
3827  * security field is initialized to NULL when the structure is first created.
3828  *
3829  * Return: Returns 0 if operation was successful and permission is granted.
3830  */
3831 int security_sem_alloc(struct kern_ipc_perm *sma)
3832 {
3833         int rc = lsm_ipc_alloc(sma);
3834
3835         if (unlikely(rc))
3836                 return rc;
3837         rc = call_int_hook(sem_alloc_security, sma);
3838         if (unlikely(rc))
3839                 security_sem_free(sma);
3840         return rc;
3841 }
3842
3843 /**
3844  * security_sem_free() - Free a sysv semaphore LSM blob
3845  * @sma: sysv ipc permission structure
3846  *
3847  * Deallocate security structure @sma->security for the semaphore.
3848  */
3849 void security_sem_free(struct kern_ipc_perm *sma)
3850 {
3851         call_void_hook(sem_free_security, sma);
3852         kfree(sma->security);
3853         sma->security = NULL;
3854 }
3855
3856 /**
3857  * security_sem_associate() - Check if a sysv semaphore operation is allowed
3858  * @sma: sysv ipc permission structure
3859  * @semflg: operation flags
3860  *
3861  * Check permission when a semaphore is requested through the semget system
3862  * call. This hook is only called when returning the semaphore identifier for
3863  * an existing semaphore, not when a new one must be created.
3864  *
3865  * Return: Returns 0 if permission is granted.
3866  */
3867 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3868 {
3869         return call_int_hook(sem_associate, sma, semflg);
3870 }
3871
3872 /**
3873  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3874  * @sma: sysv ipc permission structure
3875  * @cmd: operation
3876  *
3877  * Check permission when a semaphore operation specified by @cmd is to be
3878  * performed on the semaphore.
3879  *
3880  * Return: Returns 0 if permission is granted.
3881  */
3882 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3883 {
3884         return call_int_hook(sem_semctl, sma, cmd);
3885 }
3886
3887 /**
3888  * security_sem_semop() - Check if a sysv semaphore operation is allowed
3889  * @sma: sysv ipc permission structure
3890  * @sops: operations to perform
3891  * @nsops: number of operations
3892  * @alter: flag indicating changes will be made
3893  *
3894  * Check permissions before performing operations on members of the semaphore
3895  * set. If the @alter flag is nonzero, the semaphore set may be modified.
3896  *
3897  * Return: Returns 0 if permission is granted.
3898  */
3899 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3900                        unsigned nsops, int alter)
3901 {
3902         return call_int_hook(sem_semop, sma, sops, nsops, alter);
3903 }
3904
3905 /**
3906  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3907  * @dentry: dentry
3908  * @inode: inode
3909  *
3910  * Fill in @inode security information for a @dentry if allowed.
3911  */
3912 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3913 {
3914         if (unlikely(inode && IS_PRIVATE(inode)))
3915                 return;
3916         call_void_hook(d_instantiate, dentry, inode);
3917 }
3918 EXPORT_SYMBOL(security_d_instantiate);
3919
3920 /*
3921  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3922  */
3923
3924 /**
3925  * security_getselfattr - Read an LSM attribute of the current process.
3926  * @attr: which attribute to return
3927  * @uctx: the user-space destination for the information, or NULL
3928  * @size: pointer to the size of space available to receive the data
3929  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3930  * attributes associated with the LSM identified in the passed @ctx be
3931  * reported.
3932  *
3933  * A NULL value for @uctx can be used to get both the number of attributes
3934  * and the size of the data.
3935  *
3936  * Returns the number of attributes found on success, negative value
3937  * on error. @size is reset to the total size of the data.
3938  * If @size is insufficient to contain the data -E2BIG is returned.
3939  */
3940 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3941                          u32 __user *size, u32 flags)
3942 {
3943         struct security_hook_list *hp;
3944         struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3945         u8 __user *base = (u8 __user *)uctx;
3946         u32 entrysize;
3947         u32 total = 0;
3948         u32 left;
3949         bool toobig = false;
3950         bool single = false;
3951         int count = 0;
3952         int rc;
3953
3954         if (attr == LSM_ATTR_UNDEF)
3955                 return -EINVAL;
3956         if (size == NULL)
3957                 return -EINVAL;
3958         if (get_user(left, size))
3959                 return -EFAULT;
3960
3961         if (flags) {
3962                 /*
3963                  * Only flag supported is LSM_FLAG_SINGLE
3964                  */
3965                 if (flags != LSM_FLAG_SINGLE || !uctx)
3966                         return -EINVAL;
3967                 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3968                         return -EFAULT;
3969                 /*
3970                  * If the LSM ID isn't specified it is an error.
3971                  */
3972                 if (lctx.id == LSM_ID_UNDEF)
3973                         return -EINVAL;
3974                 single = true;
3975         }
3976
3977         /*
3978          * In the usual case gather all the data from the LSMs.
3979          * In the single case only get the data from the LSM specified.
3980          */
3981         hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3982                 if (single && lctx.id != hp->lsmid->id)
3983                         continue;
3984                 entrysize = left;
3985                 if (base)
3986                         uctx = (struct lsm_ctx __user *)(base + total);
3987                 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3988                 if (rc == -EOPNOTSUPP) {
3989                         rc = 0;
3990                         continue;
3991                 }
3992                 if (rc == -E2BIG) {
3993                         rc = 0;
3994                         left = 0;
3995                         toobig = true;
3996                 } else if (rc < 0)
3997                         return rc;
3998                 else
3999                         left -= entrysize;
4000
4001                 total += entrysize;
4002                 count += rc;
4003                 if (single)
4004                         break;
4005         }
4006         if (put_user(total, size))
4007                 return -EFAULT;
4008         if (toobig)
4009                 return -E2BIG;
4010         if (count == 0)
4011                 return LSM_RET_DEFAULT(getselfattr);
4012         return count;
4013 }
4014
4015 /*
4016  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4017  */
4018
4019 /**
4020  * security_setselfattr - Set an LSM attribute on the current process.
4021  * @attr: which attribute to set
4022  * @uctx: the user-space source for the information
4023  * @size: the size of the data
4024  * @flags: reserved for future use, must be 0
4025  *
4026  * Set an LSM attribute for the current process. The LSM, attribute
4027  * and new value are included in @uctx.
4028  *
4029  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4030  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4031  * LSM specific failure.
4032  */
4033 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4034                          u32 size, u32 flags)
4035 {
4036         struct security_hook_list *hp;
4037         struct lsm_ctx *lctx;
4038         int rc = LSM_RET_DEFAULT(setselfattr);
4039         u64 required_len;
4040
4041         if (flags)
4042                 return -EINVAL;
4043         if (size < sizeof(*lctx))
4044                 return -EINVAL;
4045         if (size > PAGE_SIZE)
4046                 return -E2BIG;
4047
4048         lctx = memdup_user(uctx, size);
4049         if (IS_ERR(lctx))
4050                 return PTR_ERR(lctx);
4051
4052         if (size < lctx->len ||
4053             check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4054             lctx->len < required_len) {
4055                 rc = -EINVAL;
4056                 goto free_out;
4057         }
4058
4059         hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4060                 if ((hp->lsmid->id) == lctx->id) {
4061                         rc = hp->hook.setselfattr(attr, lctx, size, flags);
4062                         break;
4063                 }
4064
4065 free_out:
4066         kfree(lctx);
4067         return rc;
4068 }
4069
4070 /**
4071  * security_getprocattr() - Read an attribute for a task
4072  * @p: the task
4073  * @lsmid: LSM identification
4074  * @name: attribute name
4075  * @value: attribute value
4076  *
4077  * Read attribute @name for task @p and store it into @value if allowed.
4078  *
4079  * Return: Returns the length of @value on success, a negative value otherwise.
4080  */
4081 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4082                          char **value)
4083 {
4084         struct security_hook_list *hp;
4085
4086         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4087                 if (lsmid != 0 && lsmid != hp->lsmid->id)
4088                         continue;
4089                 return hp->hook.getprocattr(p, name, value);
4090         }
4091         return LSM_RET_DEFAULT(getprocattr);
4092 }
4093
4094 /**
4095  * security_setprocattr() - Set an attribute for a task
4096  * @lsmid: LSM identification
4097  * @name: attribute name
4098  * @value: attribute value
4099  * @size: attribute value size
4100  *
4101  * Write (set) the current task's attribute @name to @value, size @size if
4102  * allowed.
4103  *
4104  * Return: Returns bytes written on success, a negative value otherwise.
4105  */
4106 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4107 {
4108         struct security_hook_list *hp;
4109
4110         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4111                 if (lsmid != 0 && lsmid != hp->lsmid->id)
4112                         continue;
4113                 return hp->hook.setprocattr(name, value, size);
4114         }
4115         return LSM_RET_DEFAULT(setprocattr);
4116 }
4117
4118 /**
4119  * security_netlink_send() - Save info and check if netlink sending is allowed
4120  * @sk: sending socket
4121  * @skb: netlink message
4122  *
4123  * Save security information for a netlink message so that permission checking
4124  * can be performed when the message is processed.  The security information
4125  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4126  * Also may be used to provide fine grained control over message transmission.
4127  *
4128  * Return: Returns 0 if the information was successfully saved and message is
4129  *         allowed to be transmitted.
4130  */
4131 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4132 {
4133         return call_int_hook(netlink_send, sk, skb);
4134 }
4135
4136 /**
4137  * security_ismaclabel() - Check if the named attribute is a MAC label
4138  * @name: full extended attribute name
4139  *
4140  * Check if the extended attribute specified by @name represents a MAC label.
4141  *
4142  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4143  */
4144 int security_ismaclabel(const char *name)
4145 {
4146         return call_int_hook(ismaclabel, name);
4147 }
4148 EXPORT_SYMBOL(security_ismaclabel);
4149
4150 /**
4151  * security_secid_to_secctx() - Convert a secid to a secctx
4152  * @secid: secid
4153  * @secdata: secctx
4154  * @seclen: secctx length
4155  *
4156  * Convert secid to security context.  If @secdata is NULL the length of the
4157  * result will be returned in @seclen, but no @secdata will be returned.  This
4158  * does mean that the length could change between calls to check the length and
4159  * the next call which actually allocates and returns the @secdata.
4160  *
4161  * Return: Return 0 on success, error on failure.
4162  */
4163 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4164 {
4165         return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4166 }
4167 EXPORT_SYMBOL(security_secid_to_secctx);
4168
4169 /**
4170  * security_secctx_to_secid() - Convert a secctx to a secid
4171  * @secdata: secctx
4172  * @seclen: length of secctx
4173  * @secid: secid
4174  *
4175  * Convert security context to secid.
4176  *
4177  * Return: Returns 0 on success, error on failure.
4178  */
4179 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4180 {
4181         *secid = 0;
4182         return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4183 }
4184 EXPORT_SYMBOL(security_secctx_to_secid);
4185
4186 /**
4187  * security_release_secctx() - Free a secctx buffer
4188  * @secdata: secctx
4189  * @seclen: length of secctx
4190  *
4191  * Release the security context.
4192  */
4193 void security_release_secctx(char *secdata, u32 seclen)
4194 {
4195         call_void_hook(release_secctx, secdata, seclen);
4196 }
4197 EXPORT_SYMBOL(security_release_secctx);
4198
4199 /**
4200  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4201  * @inode: inode
4202  *
4203  * Notify the security module that it must revalidate the security context of
4204  * an inode.
4205  */
4206 void security_inode_invalidate_secctx(struct inode *inode)
4207 {
4208         call_void_hook(inode_invalidate_secctx, inode);
4209 }
4210 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4211
4212 /**
4213  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4214  * @inode: inode
4215  * @ctx: secctx
4216  * @ctxlen: length of secctx
4217  *
4218  * Notify the security module of what the security context of an inode should
4219  * be.  Initializes the incore security context managed by the security module
4220  * for this inode.  Example usage: NFS client invokes this hook to initialize
4221  * the security context in its incore inode to the value provided by the server
4222  * for the file when the server returned the file's attributes to the client.
4223  * Must be called with inode->i_mutex locked.
4224  *
4225  * Return: Returns 0 on success, error on failure.
4226  */
4227 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4228 {
4229         return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4230 }
4231 EXPORT_SYMBOL(security_inode_notifysecctx);
4232
4233 /**
4234  * security_inode_setsecctx() - Change the security label of an inode
4235  * @dentry: inode
4236  * @ctx: secctx
4237  * @ctxlen: length of secctx
4238  *
4239  * Change the security context of an inode.  Updates the incore security
4240  * context managed by the security module and invokes the fs code as needed
4241  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4242  * context.  Example usage: NFS server invokes this hook to change the security
4243  * context in its incore inode and on the backing filesystem to a value
4244  * provided by the client on a SETATTR operation.  Must be called with
4245  * inode->i_mutex locked.
4246  *
4247  * Return: Returns 0 on success, error on failure.
4248  */
4249 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4250 {
4251         return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4252 }
4253 EXPORT_SYMBOL(security_inode_setsecctx);
4254
4255 /**
4256  * security_inode_getsecctx() - Get the security label of an inode
4257  * @inode: inode
4258  * @ctx: secctx
4259  * @ctxlen: length of secctx
4260  *
4261  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4262  * context for the given @inode.
4263  *
4264  * Return: Returns 0 on success, error on failure.
4265  */
4266 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4267 {
4268         return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4269 }
4270 EXPORT_SYMBOL(security_inode_getsecctx);
4271
4272 #ifdef CONFIG_WATCH_QUEUE
4273 /**
4274  * security_post_notification() - Check if a watch notification can be posted
4275  * @w_cred: credentials of the task that set the watch
4276  * @cred: credentials of the task which triggered the watch
4277  * @n: the notification
4278  *
4279  * Check to see if a watch notification can be posted to a particular queue.
4280  *
4281  * Return: Returns 0 if permission is granted.
4282  */
4283 int security_post_notification(const struct cred *w_cred,
4284                                const struct cred *cred,
4285                                struct watch_notification *n)
4286 {
4287         return call_int_hook(post_notification, w_cred, cred, n);
4288 }
4289 #endif /* CONFIG_WATCH_QUEUE */
4290
4291 #ifdef CONFIG_KEY_NOTIFICATIONS
4292 /**
4293  * security_watch_key() - Check if a task is allowed to watch for key events
4294  * @key: the key to watch
4295  *
4296  * Check to see if a process is allowed to watch for event notifications from
4297  * a key or keyring.
4298  *
4299  * Return: Returns 0 if permission is granted.
4300  */
4301 int security_watch_key(struct key *key)
4302 {
4303         return call_int_hook(watch_key, key);
4304 }
4305 #endif /* CONFIG_KEY_NOTIFICATIONS */
4306
4307 #ifdef CONFIG_SECURITY_NETWORK
4308 /**
4309  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4310  * @sock: originating sock
4311  * @other: peer sock
4312  * @newsk: new sock
4313  *
4314  * Check permissions before establishing a Unix domain stream connection
4315  * between @sock and @other.
4316  *
4317  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4318  * Linux provides an alternative to the conventional file name space for Unix
4319  * domain sockets.  Whereas binding and connecting to sockets in the file name
4320  * space is mediated by the typical file permissions (and caught by the mknod
4321  * and permission hooks in inode_security_ops), binding and connecting to
4322  * sockets in the abstract name space is completely unmediated.  Sufficient
4323  * control of Unix domain sockets in the abstract name space isn't possible
4324  * using only the socket layer hooks, since we need to know the actual target
4325  * socket, which is not looked up until we are inside the af_unix code.
4326  *
4327  * Return: Returns 0 if permission is granted.
4328  */
4329 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4330                                  struct sock *newsk)
4331 {
4332         return call_int_hook(unix_stream_connect, sock, other, newsk);
4333 }
4334 EXPORT_SYMBOL(security_unix_stream_connect);
4335
4336 /**
4337  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4338  * @sock: originating sock
4339  * @other: peer sock
4340  *
4341  * Check permissions before connecting or sending datagrams from @sock to
4342  * @other.
4343  *
4344  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4345  * Linux provides an alternative to the conventional file name space for Unix
4346  * domain sockets.  Whereas binding and connecting to sockets in the file name
4347  * space is mediated by the typical file permissions (and caught by the mknod
4348  * and permission hooks in inode_security_ops), binding and connecting to
4349  * sockets in the abstract name space is completely unmediated.  Sufficient
4350  * control of Unix domain sockets in the abstract name space isn't possible
4351  * using only the socket layer hooks, since we need to know the actual target
4352  * socket, which is not looked up until we are inside the af_unix code.
4353  *
4354  * Return: Returns 0 if permission is granted.
4355  */
4356 int security_unix_may_send(struct socket *sock,  struct socket *other)
4357 {
4358         return call_int_hook(unix_may_send, sock, other);
4359 }
4360 EXPORT_SYMBOL(security_unix_may_send);
4361
4362 /**
4363  * security_socket_create() - Check if creating a new socket is allowed
4364  * @family: protocol family
4365  * @type: communications type
4366  * @protocol: requested protocol
4367  * @kern: set to 1 if a kernel socket is requested
4368  *
4369  * Check permissions prior to creating a new socket.
4370  *
4371  * Return: Returns 0 if permission is granted.
4372  */
4373 int security_socket_create(int family, int type, int protocol, int kern)
4374 {
4375         return call_int_hook(socket_create, family, type, protocol, kern);
4376 }
4377
4378 /**
4379  * security_socket_post_create() - Initialize a newly created socket
4380  * @sock: socket
4381  * @family: protocol family
4382  * @type: communications type
4383  * @protocol: requested protocol
4384  * @kern: set to 1 if a kernel socket is requested
4385  *
4386  * This hook allows a module to update or allocate a per-socket security
4387  * structure. Note that the security field was not added directly to the socket
4388  * structure, but rather, the socket security information is stored in the
4389  * associated inode.  Typically, the inode alloc_security hook will allocate
4390  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4391  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4392  * information that wasn't available when the inode was allocated.
4393  *
4394  * Return: Returns 0 if permission is granted.
4395  */
4396 int security_socket_post_create(struct socket *sock, int family,
4397                                 int type, int protocol, int kern)
4398 {
4399         return call_int_hook(socket_post_create, sock, family, type,
4400                              protocol, kern);
4401 }
4402
4403 /**
4404  * security_socket_socketpair() - Check if creating a socketpair is allowed
4405  * @socka: first socket
4406  * @sockb: second socket
4407  *
4408  * Check permissions before creating a fresh pair of sockets.
4409  *
4410  * Return: Returns 0 if permission is granted and the connection was
4411  *         established.
4412  */
4413 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4414 {
4415         return call_int_hook(socket_socketpair, socka, sockb);
4416 }
4417 EXPORT_SYMBOL(security_socket_socketpair);
4418
4419 /**
4420  * security_socket_bind() - Check if a socket bind operation is allowed
4421  * @sock: socket
4422  * @address: requested bind address
4423  * @addrlen: length of address
4424  *
4425  * Check permission before socket protocol layer bind operation is performed
4426  * and the socket @sock is bound to the address specified in the @address
4427  * parameter.
4428  *
4429  * Return: Returns 0 if permission is granted.
4430  */
4431 int security_socket_bind(struct socket *sock,
4432                          struct sockaddr *address, int addrlen)
4433 {
4434         return call_int_hook(socket_bind, sock, address, addrlen);
4435 }
4436
4437 /**
4438  * security_socket_connect() - Check if a socket connect operation is allowed
4439  * @sock: socket
4440  * @address: address of remote connection point
4441  * @addrlen: length of address
4442  *
4443  * Check permission before socket protocol layer connect operation attempts to
4444  * connect socket @sock to a remote address, @address.
4445  *
4446  * Return: Returns 0 if permission is granted.
4447  */
4448 int security_socket_connect(struct socket *sock,
4449                             struct sockaddr *address, int addrlen)
4450 {
4451         return call_int_hook(socket_connect, sock, address, addrlen);
4452 }
4453
4454 /**
4455  * security_socket_listen() - Check if a socket is allowed to listen
4456  * @sock: socket
4457  * @backlog: connection queue size
4458  *
4459  * Check permission before socket protocol layer listen operation.
4460  *
4461  * Return: Returns 0 if permission is granted.
4462  */
4463 int security_socket_listen(struct socket *sock, int backlog)
4464 {
4465         return call_int_hook(socket_listen, sock, backlog);
4466 }
4467
4468 /**
4469  * security_socket_accept() - Check if a socket is allowed to accept connections
4470  * @sock: listening socket
4471  * @newsock: newly creation connection socket
4472  *
4473  * Check permission before accepting a new connection.  Note that the new
4474  * socket, @newsock, has been created and some information copied to it, but
4475  * the accept operation has not actually been performed.
4476  *
4477  * Return: Returns 0 if permission is granted.
4478  */
4479 int security_socket_accept(struct socket *sock, struct socket *newsock)
4480 {
4481         return call_int_hook(socket_accept, sock, newsock);
4482 }
4483
4484 /**
4485  * security_socket_sendmsg() - Check if sending a message is allowed
4486  * @sock: sending socket
4487  * @msg: message to send
4488  * @size: size of message
4489  *
4490  * Check permission before transmitting a message to another socket.
4491  *
4492  * Return: Returns 0 if permission is granted.
4493  */
4494 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4495 {
4496         return call_int_hook(socket_sendmsg, sock, msg, size);
4497 }
4498
4499 /**
4500  * security_socket_recvmsg() - Check if receiving a message is allowed
4501  * @sock: receiving socket
4502  * @msg: message to receive
4503  * @size: size of message
4504  * @flags: operational flags
4505  *
4506  * Check permission before receiving a message from a socket.
4507  *
4508  * Return: Returns 0 if permission is granted.
4509  */
4510 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4511                             int size, int flags)
4512 {
4513         return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4514 }
4515
4516 /**
4517  * security_socket_getsockname() - Check if reading the socket addr is allowed
4518  * @sock: socket
4519  *
4520  * Check permission before reading the local address (name) of the socket
4521  * object.
4522  *
4523  * Return: Returns 0 if permission is granted.
4524  */
4525 int security_socket_getsockname(struct socket *sock)
4526 {
4527         return call_int_hook(socket_getsockname, sock);
4528 }
4529
4530 /**
4531  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4532  * @sock: socket
4533  *
4534  * Check permission before the remote address (name) of a socket object.
4535  *
4536  * Return: Returns 0 if permission is granted.
4537  */
4538 int security_socket_getpeername(struct socket *sock)
4539 {
4540         return call_int_hook(socket_getpeername, sock);
4541 }
4542
4543 /**
4544  * security_socket_getsockopt() - Check if reading a socket option is allowed
4545  * @sock: socket
4546  * @level: option's protocol level
4547  * @optname: option name
4548  *
4549  * Check permissions before retrieving the options associated with socket
4550  * @sock.
4551  *
4552  * Return: Returns 0 if permission is granted.
4553  */
4554 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4555 {
4556         return call_int_hook(socket_getsockopt, sock, level, optname);
4557 }
4558
4559 /**
4560  * security_socket_setsockopt() - Check if setting a socket option is allowed
4561  * @sock: socket
4562  * @level: option's protocol level
4563  * @optname: option name
4564  *
4565  * Check permissions before setting the options associated with socket @sock.
4566  *
4567  * Return: Returns 0 if permission is granted.
4568  */
4569 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4570 {
4571         return call_int_hook(socket_setsockopt, sock, level, optname);
4572 }
4573
4574 /**
4575  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4576  * @sock: socket
4577  * @how: flag indicating how sends and receives are handled
4578  *
4579  * Checks permission before all or part of a connection on the socket @sock is
4580  * shut down.
4581  *
4582  * Return: Returns 0 if permission is granted.
4583  */
4584 int security_socket_shutdown(struct socket *sock, int how)
4585 {
4586         return call_int_hook(socket_shutdown, sock, how);
4587 }
4588
4589 /**
4590  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4591  * @sk: destination sock
4592  * @skb: incoming packet
4593  *
4594  * Check permissions on incoming network packets.  This hook is distinct from
4595  * Netfilter's IP input hooks since it is the first time that the incoming
4596  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4597  * sleep inside this hook because some callers hold spinlocks.
4598  *
4599  * Return: Returns 0 if permission is granted.
4600  */
4601 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4602 {
4603         return call_int_hook(socket_sock_rcv_skb, sk, skb);
4604 }
4605 EXPORT_SYMBOL(security_sock_rcv_skb);
4606
4607 /**
4608  * security_socket_getpeersec_stream() - Get the remote peer label
4609  * @sock: socket
4610  * @optval: destination buffer
4611  * @optlen: size of peer label copied into the buffer
4612  * @len: maximum size of the destination buffer
4613  *
4614  * This hook allows the security module to provide peer socket security state
4615  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4616  * For tcp sockets this can be meaningful if the socket is associated with an
4617  * ipsec SA.
4618  *
4619  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4620  *         values.
4621  */
4622 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4623                                       sockptr_t optlen, unsigned int len)
4624 {
4625         return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4626                              len);
4627 }
4628
4629 /**
4630  * security_socket_getpeersec_dgram() - Get the remote peer label
4631  * @sock: socket
4632  * @skb: datagram packet
4633  * @secid: remote peer label secid
4634  *
4635  * This hook allows the security module to provide peer socket security state
4636  * for udp sockets on a per-packet basis to userspace via getsockopt
4637  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4638  * option via getsockopt. It can then retrieve the security state returned by
4639  * this hook for a packet via the SCM_SECURITY ancillary message type.
4640  *
4641  * Return: Returns 0 on success, error on failure.
4642  */
4643 int security_socket_getpeersec_dgram(struct socket *sock,
4644                                      struct sk_buff *skb, u32 *secid)
4645 {
4646         return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4647 }
4648 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4649
4650 /**
4651  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4652  * @sk: sock
4653  * @family: protocol family
4654  * @priority: gfp flags
4655  *
4656  * Allocate and attach a security structure to the sk->sk_security field, which
4657  * is used to copy security attributes between local stream sockets.
4658  *
4659  * Return: Returns 0 on success, error on failure.
4660  */
4661 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4662 {
4663         return call_int_hook(sk_alloc_security, sk, family, priority);
4664 }
4665
4666 /**
4667  * security_sk_free() - Free the sock's LSM blob
4668  * @sk: sock
4669  *
4670  * Deallocate security structure.
4671  */
4672 void security_sk_free(struct sock *sk)
4673 {
4674         call_void_hook(sk_free_security, sk);
4675 }
4676
4677 /**
4678  * security_sk_clone() - Clone a sock's LSM state
4679  * @sk: original sock
4680  * @newsk: target sock
4681  *
4682  * Clone/copy security structure.
4683  */
4684 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4685 {
4686         call_void_hook(sk_clone_security, sk, newsk);
4687 }
4688 EXPORT_SYMBOL(security_sk_clone);
4689
4690 /**
4691  * security_sk_classify_flow() - Set a flow's secid based on socket
4692  * @sk: original socket
4693  * @flic: target flow
4694  *
4695  * Set the target flow's secid to socket's secid.
4696  */
4697 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4698 {
4699         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4700 }
4701 EXPORT_SYMBOL(security_sk_classify_flow);
4702
4703 /**
4704  * security_req_classify_flow() - Set a flow's secid based on request_sock
4705  * @req: request_sock
4706  * @flic: target flow
4707  *
4708  * Sets @flic's secid to @req's secid.
4709  */
4710 void security_req_classify_flow(const struct request_sock *req,
4711                                 struct flowi_common *flic)
4712 {
4713         call_void_hook(req_classify_flow, req, flic);
4714 }
4715 EXPORT_SYMBOL(security_req_classify_flow);
4716
4717 /**
4718  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4719  * @sk: sock being grafted
4720  * @parent: target parent socket
4721  *
4722  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4723  * LSM state from @parent.
4724  */
4725 void security_sock_graft(struct sock *sk, struct socket *parent)
4726 {
4727         call_void_hook(sock_graft, sk, parent);
4728 }
4729 EXPORT_SYMBOL(security_sock_graft);
4730
4731 /**
4732  * security_inet_conn_request() - Set request_sock state using incoming connect
4733  * @sk: parent listening sock
4734  * @skb: incoming connection
4735  * @req: new request_sock
4736  *
4737  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4738  *
4739  * Return: Returns 0 if permission is granted.
4740  */
4741 int security_inet_conn_request(const struct sock *sk,
4742                                struct sk_buff *skb, struct request_sock *req)
4743 {
4744         return call_int_hook(inet_conn_request, sk, skb, req);
4745 }
4746 EXPORT_SYMBOL(security_inet_conn_request);
4747
4748 /**
4749  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4750  * @newsk: new sock
4751  * @req: connection request_sock
4752  *
4753  * Set that LSM state of @sock using the LSM state from @req.
4754  */
4755 void security_inet_csk_clone(struct sock *newsk,
4756                              const struct request_sock *req)
4757 {
4758         call_void_hook(inet_csk_clone, newsk, req);
4759 }
4760
4761 /**
4762  * security_inet_conn_established() - Update sock's LSM state with connection
4763  * @sk: sock
4764  * @skb: connection packet
4765  *
4766  * Update @sock's LSM state to represent a new connection from @skb.
4767  */
4768 void security_inet_conn_established(struct sock *sk,
4769                                     struct sk_buff *skb)
4770 {
4771         call_void_hook(inet_conn_established, sk, skb);
4772 }
4773 EXPORT_SYMBOL(security_inet_conn_established);
4774
4775 /**
4776  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4777  * @secid: new secmark value
4778  *
4779  * Check if the process should be allowed to relabel packets to @secid.
4780  *
4781  * Return: Returns 0 if permission is granted.
4782  */
4783 int security_secmark_relabel_packet(u32 secid)
4784 {
4785         return call_int_hook(secmark_relabel_packet, secid);
4786 }
4787 EXPORT_SYMBOL(security_secmark_relabel_packet);
4788
4789 /**
4790  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4791  *
4792  * Tells the LSM to increment the number of secmark labeling rules loaded.
4793  */
4794 void security_secmark_refcount_inc(void)
4795 {
4796         call_void_hook(secmark_refcount_inc);
4797 }
4798 EXPORT_SYMBOL(security_secmark_refcount_inc);
4799
4800 /**
4801  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4802  *
4803  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4804  */
4805 void security_secmark_refcount_dec(void)
4806 {
4807         call_void_hook(secmark_refcount_dec);
4808 }
4809 EXPORT_SYMBOL(security_secmark_refcount_dec);
4810
4811 /**
4812  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4813  * @security: pointer to the LSM blob
4814  *
4815  * This hook allows a module to allocate a security structure for a TUN device,
4816  * returning the pointer in @security.
4817  *
4818  * Return: Returns a zero on success, negative values on failure.
4819  */
4820 int security_tun_dev_alloc_security(void **security)
4821 {
4822         return call_int_hook(tun_dev_alloc_security, security);
4823 }
4824 EXPORT_SYMBOL(security_tun_dev_alloc_security);
4825
4826 /**
4827  * security_tun_dev_free_security() - Free a TUN device LSM blob
4828  * @security: LSM blob
4829  *
4830  * This hook allows a module to free the security structure for a TUN device.
4831  */
4832 void security_tun_dev_free_security(void *security)
4833 {
4834         call_void_hook(tun_dev_free_security, security);
4835 }
4836 EXPORT_SYMBOL(security_tun_dev_free_security);
4837
4838 /**
4839  * security_tun_dev_create() - Check if creating a TUN device is allowed
4840  *
4841  * Check permissions prior to creating a new TUN device.
4842  *
4843  * Return: Returns 0 if permission is granted.
4844  */
4845 int security_tun_dev_create(void)
4846 {
4847         return call_int_hook(tun_dev_create);
4848 }
4849 EXPORT_SYMBOL(security_tun_dev_create);
4850
4851 /**
4852  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4853  * @security: TUN device LSM blob
4854  *
4855  * Check permissions prior to attaching to a TUN device queue.
4856  *
4857  * Return: Returns 0 if permission is granted.
4858  */
4859 int security_tun_dev_attach_queue(void *security)
4860 {
4861         return call_int_hook(tun_dev_attach_queue, security);
4862 }
4863 EXPORT_SYMBOL(security_tun_dev_attach_queue);
4864
4865 /**
4866  * security_tun_dev_attach() - Update TUN device LSM state on attach
4867  * @sk: associated sock
4868  * @security: TUN device LSM blob
4869  *
4870  * This hook can be used by the module to update any security state associated
4871  * with the TUN device's sock structure.
4872  *
4873  * Return: Returns 0 if permission is granted.
4874  */
4875 int security_tun_dev_attach(struct sock *sk, void *security)
4876 {
4877         return call_int_hook(tun_dev_attach, sk, security);
4878 }
4879 EXPORT_SYMBOL(security_tun_dev_attach);
4880
4881 /**
4882  * security_tun_dev_open() - Update TUN device LSM state on open
4883  * @security: TUN device LSM blob
4884  *
4885  * This hook can be used by the module to update any security state associated
4886  * with the TUN device's security structure.
4887  *
4888  * Return: Returns 0 if permission is granted.
4889  */
4890 int security_tun_dev_open(void *security)
4891 {
4892         return call_int_hook(tun_dev_open, security);
4893 }
4894 EXPORT_SYMBOL(security_tun_dev_open);
4895
4896 /**
4897  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4898  * @asoc: SCTP association
4899  * @skb: packet requesting the association
4900  *
4901  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4902  *
4903  * Return: Returns 0 on success, error on failure.
4904  */
4905 int security_sctp_assoc_request(struct sctp_association *asoc,
4906                                 struct sk_buff *skb)
4907 {
4908         return call_int_hook(sctp_assoc_request, asoc, skb);
4909 }
4910 EXPORT_SYMBOL(security_sctp_assoc_request);
4911
4912 /**
4913  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4914  * @sk: socket
4915  * @optname: SCTP option to validate
4916  * @address: list of IP addresses to validate
4917  * @addrlen: length of the address list
4918  *
4919  * Validiate permissions required for each address associated with sock @sk.
4920  * Depending on @optname, the addresses will be treated as either a connect or
4921  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4922  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4923  *
4924  * Return: Returns 0 on success, error on failure.
4925  */
4926 int security_sctp_bind_connect(struct sock *sk, int optname,
4927                                struct sockaddr *address, int addrlen)
4928 {
4929         return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4930 }
4931 EXPORT_SYMBOL(security_sctp_bind_connect);
4932
4933 /**
4934  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4935  * @asoc: SCTP association
4936  * @sk: original sock
4937  * @newsk: target sock
4938  *
4939  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4940  * socket) or when a socket is 'peeled off' e.g userspace calls
4941  * sctp_peeloff(3).
4942  */
4943 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4944                             struct sock *newsk)
4945 {
4946         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4947 }
4948 EXPORT_SYMBOL(security_sctp_sk_clone);
4949
4950 /**
4951  * security_sctp_assoc_established() - Update LSM state when assoc established
4952  * @asoc: SCTP association
4953  * @skb: packet establishing the association
4954  *
4955  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4956  * security module.
4957  *
4958  * Return: Returns 0 if permission is granted.
4959  */
4960 int security_sctp_assoc_established(struct sctp_association *asoc,
4961                                     struct sk_buff *skb)
4962 {
4963         return call_int_hook(sctp_assoc_established, asoc, skb);
4964 }
4965 EXPORT_SYMBOL(security_sctp_assoc_established);
4966
4967 /**
4968  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4969  * @sk: the owning MPTCP socket
4970  * @ssk: the new subflow
4971  *
4972  * Update the labeling for the given MPTCP subflow, to match the one of the
4973  * owning MPTCP socket. This hook has to be called after the socket creation and
4974  * initialization via the security_socket_create() and
4975  * security_socket_post_create() LSM hooks.
4976  *
4977  * Return: Returns 0 on success or a negative error code on failure.
4978  */
4979 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4980 {
4981         return call_int_hook(mptcp_add_subflow, sk, ssk);
4982 }
4983
4984 #endif  /* CONFIG_SECURITY_NETWORK */
4985
4986 #ifdef CONFIG_SECURITY_INFINIBAND
4987 /**
4988  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4989  * @sec: LSM blob
4990  * @subnet_prefix: subnet prefix of the port
4991  * @pkey: IB pkey
4992  *
4993  * Check permission to access a pkey when modifying a QP.
4994  *
4995  * Return: Returns 0 if permission is granted.
4996  */
4997 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4998 {
4999         return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5000 }
5001 EXPORT_SYMBOL(security_ib_pkey_access);
5002
5003 /**
5004  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5005  * @sec: LSM blob
5006  * @dev_name: IB device name
5007  * @port_num: port number
5008  *
5009  * Check permissions to send and receive SMPs on a end port.
5010  *
5011  * Return: Returns 0 if permission is granted.
5012  */
5013 int security_ib_endport_manage_subnet(void *sec,
5014                                       const char *dev_name, u8 port_num)
5015 {
5016         return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5017 }
5018 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5019
5020 /**
5021  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5022  * @sec: LSM blob
5023  *
5024  * Allocate a security structure for Infiniband objects.
5025  *
5026  * Return: Returns 0 on success, non-zero on failure.
5027  */
5028 int security_ib_alloc_security(void **sec)
5029 {
5030         return call_int_hook(ib_alloc_security, sec);
5031 }
5032 EXPORT_SYMBOL(security_ib_alloc_security);
5033
5034 /**
5035  * security_ib_free_security() - Free an Infiniband LSM blob
5036  * @sec: LSM blob
5037  *
5038  * Deallocate an Infiniband security structure.
5039  */
5040 void security_ib_free_security(void *sec)
5041 {
5042         call_void_hook(ib_free_security, sec);
5043 }
5044 EXPORT_SYMBOL(security_ib_free_security);
5045 #endif  /* CONFIG_SECURITY_INFINIBAND */
5046
5047 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5048 /**
5049  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5050  * @ctxp: xfrm security context being added to the SPD
5051  * @sec_ctx: security label provided by userspace
5052  * @gfp: gfp flags
5053  *
5054  * Allocate a security structure to the xp->security field; the security field
5055  * is initialized to NULL when the xfrm_policy is allocated.
5056  *
5057  * Return:  Return 0 if operation was successful.
5058  */
5059 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5060                                struct xfrm_user_sec_ctx *sec_ctx,
5061                                gfp_t gfp)
5062 {
5063         return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5064 }
5065 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5066
5067 /**
5068  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5069  * @old_ctx: xfrm security context
5070  * @new_ctxp: target xfrm security context
5071  *
5072  * Allocate a security structure in new_ctxp that contains the information from
5073  * the old_ctx structure.
5074  *
5075  * Return: Return 0 if operation was successful.
5076  */
5077 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5078                                struct xfrm_sec_ctx **new_ctxp)
5079 {
5080         return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5081 }
5082
5083 /**
5084  * security_xfrm_policy_free() - Free a xfrm security context
5085  * @ctx: xfrm security context
5086  *
5087  * Free LSM resources associated with @ctx.
5088  */
5089 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5090 {
5091         call_void_hook(xfrm_policy_free_security, ctx);
5092 }
5093 EXPORT_SYMBOL(security_xfrm_policy_free);
5094
5095 /**
5096  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5097  * @ctx: xfrm security context
5098  *
5099  * Authorize deletion of a SPD entry.
5100  *
5101  * Return: Returns 0 if permission is granted.
5102  */
5103 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5104 {
5105         return call_int_hook(xfrm_policy_delete_security, ctx);
5106 }
5107
5108 /**
5109  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5110  * @x: xfrm state being added to the SAD
5111  * @sec_ctx: security label provided by userspace
5112  *
5113  * Allocate a security structure to the @x->security field; the security field
5114  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5115  * correspond to @sec_ctx.
5116  *
5117  * Return: Return 0 if operation was successful.
5118  */
5119 int security_xfrm_state_alloc(struct xfrm_state *x,
5120                               struct xfrm_user_sec_ctx *sec_ctx)
5121 {
5122         return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5123 }
5124 EXPORT_SYMBOL(security_xfrm_state_alloc);
5125
5126 /**
5127  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5128  * @x: xfrm state being added to the SAD
5129  * @polsec: associated policy's security context
5130  * @secid: secid from the flow
5131  *
5132  * Allocate a security structure to the x->security field; the security field
5133  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5134  * correspond to secid.
5135  *
5136  * Return: Returns 0 if operation was successful.
5137  */
5138 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5139                                       struct xfrm_sec_ctx *polsec, u32 secid)
5140 {
5141         return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5142 }
5143
5144 /**
5145  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5146  * @x: xfrm state
5147  *
5148  * Authorize deletion of x->security.
5149  *
5150  * Return: Returns 0 if permission is granted.
5151  */
5152 int security_xfrm_state_delete(struct xfrm_state *x)
5153 {
5154         return call_int_hook(xfrm_state_delete_security, x);
5155 }
5156 EXPORT_SYMBOL(security_xfrm_state_delete);
5157
5158 /**
5159  * security_xfrm_state_free() - Free a xfrm state
5160  * @x: xfrm state
5161  *
5162  * Deallocate x->security.
5163  */
5164 void security_xfrm_state_free(struct xfrm_state *x)
5165 {
5166         call_void_hook(xfrm_state_free_security, x);
5167 }
5168
5169 /**
5170  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5171  * @ctx: target xfrm security context
5172  * @fl_secid: flow secid used to authorize access
5173  *
5174  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5175  * packet.  The hook is called when selecting either a per-socket policy or a
5176  * generic xfrm policy.
5177  *
5178  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5179  *         other errors.
5180  */
5181 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5182 {
5183         return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5184 }
5185
5186 /**
5187  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5188  * @x: xfrm state to match
5189  * @xp: xfrm policy to check for a match
5190  * @flic: flow to check for a match.
5191  *
5192  * Check @xp and @flic for a match with @x.
5193  *
5194  * Return: Returns 1 if there is a match.
5195  */
5196 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5197                                        struct xfrm_policy *xp,
5198                                        const struct flowi_common *flic)
5199 {
5200         struct security_hook_list *hp;
5201         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5202
5203         /*
5204          * Since this function is expected to return 0 or 1, the judgment
5205          * becomes difficult if multiple LSMs supply this call. Fortunately,
5206          * we can use the first LSM's judgment because currently only SELinux
5207          * supplies this call.
5208          *
5209          * For speed optimization, we explicitly break the loop rather than
5210          * using the macro
5211          */
5212         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5213                              list) {
5214                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5215                 break;
5216         }
5217         return rc;
5218 }
5219
5220 /**
5221  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5222  * @skb: xfrm packet
5223  * @secid: secid
5224  *
5225  * Decode the packet in @skb and return the security label in @secid.
5226  *
5227  * Return: Return 0 if all xfrms used have the same secid.
5228  */
5229 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5230 {
5231         return call_int_hook(xfrm_decode_session, skb, secid, 1);
5232 }
5233
5234 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5235 {
5236         int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5237                                0);
5238
5239         BUG_ON(rc);
5240 }
5241 EXPORT_SYMBOL(security_skb_classify_flow);
5242 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
5243
5244 #ifdef CONFIG_KEYS
5245 /**
5246  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5247  * @key: key
5248  * @cred: credentials
5249  * @flags: allocation flags
5250  *
5251  * Permit allocation of a key and assign security data. Note that key does not
5252  * have a serial number assigned at this point.
5253  *
5254  * Return: Return 0 if permission is granted, -ve error otherwise.
5255  */
5256 int security_key_alloc(struct key *key, const struct cred *cred,
5257                        unsigned long flags)
5258 {
5259         return call_int_hook(key_alloc, key, cred, flags);
5260 }
5261
5262 /**
5263  * security_key_free() - Free a kernel key LSM blob
5264  * @key: key
5265  *
5266  * Notification of destruction; free security data.
5267  */
5268 void security_key_free(struct key *key)
5269 {
5270         call_void_hook(key_free, key);
5271 }
5272
5273 /**
5274  * security_key_permission() - Check if a kernel key operation is allowed
5275  * @key_ref: key reference
5276  * @cred: credentials of actor requesting access
5277  * @need_perm: requested permissions
5278  *
5279  * See whether a specific operational right is granted to a process on a key.
5280  *
5281  * Return: Return 0 if permission is granted, -ve error otherwise.
5282  */
5283 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5284                             enum key_need_perm need_perm)
5285 {
5286         return call_int_hook(key_permission, key_ref, cred, need_perm);
5287 }
5288
5289 /**
5290  * security_key_getsecurity() - Get the key's security label
5291  * @key: key
5292  * @buffer: security label buffer
5293  *
5294  * Get a textual representation of the security context attached to a key for
5295  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5296  * storage for the NUL-terminated string and the caller should free it.
5297  *
5298  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5299  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5300  *         there is no security label assigned to the key.
5301  */
5302 int security_key_getsecurity(struct key *key, char **buffer)
5303 {
5304         *buffer = NULL;
5305         return call_int_hook(key_getsecurity, key, buffer);
5306 }
5307
5308 /**
5309  * security_key_post_create_or_update() - Notification of key create or update
5310  * @keyring: keyring to which the key is linked to
5311  * @key: created or updated key
5312  * @payload: data used to instantiate or update the key
5313  * @payload_len: length of payload
5314  * @flags: key flags
5315  * @create: flag indicating whether the key was created or updated
5316  *
5317  * Notify the caller of a key creation or update.
5318  */
5319 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5320                                         const void *payload, size_t payload_len,
5321                                         unsigned long flags, bool create)
5322 {
5323         call_void_hook(key_post_create_or_update, keyring, key, payload,
5324                        payload_len, flags, create);
5325 }
5326 #endif  /* CONFIG_KEYS */
5327
5328 #ifdef CONFIG_AUDIT
5329 /**
5330  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5331  * @field: audit action
5332  * @op: rule operator
5333  * @rulestr: rule context
5334  * @lsmrule: receive buffer for audit rule struct
5335  *
5336  * Allocate and initialize an LSM audit rule structure.
5337  *
5338  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5339  *         an invalid rule.
5340  */
5341 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
5342 {
5343         return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule);
5344 }
5345
5346 /**
5347  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5348  * @krule: audit rule
5349  *
5350  * Specifies whether given @krule contains any fields related to the current
5351  * LSM.
5352  *
5353  * Return: Returns 1 in case of relation found, 0 otherwise.
5354  */
5355 int security_audit_rule_known(struct audit_krule *krule)
5356 {
5357         return call_int_hook(audit_rule_known, krule);
5358 }
5359
5360 /**
5361  * security_audit_rule_free() - Free an LSM audit rule struct
5362  * @lsmrule: audit rule struct
5363  *
5364  * Deallocate the LSM audit rule structure previously allocated by
5365  * audit_rule_init().
5366  */
5367 void security_audit_rule_free(void *lsmrule)
5368 {
5369         call_void_hook(audit_rule_free, lsmrule);
5370 }
5371
5372 /**
5373  * security_audit_rule_match() - Check if a label matches an audit rule
5374  * @secid: security label
5375  * @field: LSM audit field
5376  * @op: matching operator
5377  * @lsmrule: audit rule
5378  *
5379  * Determine if given @secid matches a rule previously approved by
5380  * security_audit_rule_known().
5381  *
5382  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5383  *         failure.
5384  */
5385 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5386 {
5387         return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5388 }
5389 #endif /* CONFIG_AUDIT */
5390
5391 #ifdef CONFIG_BPF_SYSCALL
5392 /**
5393  * security_bpf() - Check if the bpf syscall operation is allowed
5394  * @cmd: command
5395  * @attr: bpf attribute
5396  * @size: size
5397  *
5398  * Do a initial check for all bpf syscalls after the attribute is copied into
5399  * the kernel. The actual security module can implement their own rules to
5400  * check the specific cmd they need.
5401  *
5402  * Return: Returns 0 if permission is granted.
5403  */
5404 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5405 {
5406         return call_int_hook(bpf, cmd, attr, size);
5407 }
5408
5409 /**
5410  * security_bpf_map() - Check if access to a bpf map is allowed
5411  * @map: bpf map
5412  * @fmode: mode
5413  *
5414  * Do a check when the kernel generates and returns a file descriptor for eBPF
5415  * maps.
5416  *
5417  * Return: Returns 0 if permission is granted.
5418  */
5419 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5420 {
5421         return call_int_hook(bpf_map, map, fmode);
5422 }
5423
5424 /**
5425  * security_bpf_prog() - Check if access to a bpf program is allowed
5426  * @prog: bpf program
5427  *
5428  * Do a check when the kernel generates and returns a file descriptor for eBPF
5429  * programs.
5430  *
5431  * Return: Returns 0 if permission is granted.
5432  */
5433 int security_bpf_prog(struct bpf_prog *prog)
5434 {
5435         return call_int_hook(bpf_prog, prog);
5436 }
5437
5438 /**
5439  * security_bpf_map_create() - Check if BPF map creation is allowed
5440  * @map: BPF map object
5441  * @attr: BPF syscall attributes used to create BPF map
5442  * @token: BPF token used to grant user access
5443  *
5444  * Do a check when the kernel creates a new BPF map. This is also the
5445  * point where LSM blob is allocated for LSMs that need them.
5446  *
5447  * Return: Returns 0 on success, error on failure.
5448  */
5449 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5450                             struct bpf_token *token)
5451 {
5452         return call_int_hook(bpf_map_create, map, attr, token);
5453 }
5454
5455 /**
5456  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5457  * @prog: BPF program object
5458  * @attr: BPF syscall attributes used to create BPF program
5459  * @token: BPF token used to grant user access to BPF subsystem
5460  *
5461  * Perform an access control check when the kernel loads a BPF program and
5462  * allocates associated BPF program object. This hook is also responsible for
5463  * allocating any required LSM state for the BPF program.
5464  *
5465  * Return: Returns 0 on success, error on failure.
5466  */
5467 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5468                            struct bpf_token *token)
5469 {
5470         return call_int_hook(bpf_prog_load, prog, attr, token);
5471 }
5472
5473 /**
5474  * security_bpf_token_create() - Check if creating of BPF token is allowed
5475  * @token: BPF token object
5476  * @attr: BPF syscall attributes used to create BPF token
5477  * @path: path pointing to BPF FS mount point from which BPF token is created
5478  *
5479  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5480  * instance. This is also the point where LSM blob can be allocated for LSMs.
5481  *
5482  * Return: Returns 0 on success, error on failure.
5483  */
5484 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5485                               struct path *path)
5486 {
5487         return call_int_hook(bpf_token_create, token, attr, path);
5488 }
5489
5490 /**
5491  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5492  * requested BPF syscall command
5493  * @token: BPF token object
5494  * @cmd: BPF syscall command requested to be delegated by BPF token
5495  *
5496  * Do a check when the kernel decides whether provided BPF token should allow
5497  * delegation of requested BPF syscall command.
5498  *
5499  * Return: Returns 0 on success, error on failure.
5500  */
5501 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5502 {
5503         return call_int_hook(bpf_token_cmd, token, cmd);
5504 }
5505
5506 /**
5507  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5508  * requested BPF-related capability
5509  * @token: BPF token object
5510  * @cap: capabilities requested to be delegated by BPF token
5511  *
5512  * Do a check when the kernel decides whether provided BPF token should allow
5513  * delegation of requested BPF-related capabilities.
5514  *
5515  * Return: Returns 0 on success, error on failure.
5516  */
5517 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5518 {
5519         return call_int_hook(bpf_token_capable, token, cap);
5520 }
5521
5522 /**
5523  * security_bpf_map_free() - Free a bpf map's LSM blob
5524  * @map: bpf map
5525  *
5526  * Clean up the security information stored inside bpf map.
5527  */
5528 void security_bpf_map_free(struct bpf_map *map)
5529 {
5530         call_void_hook(bpf_map_free, map);
5531 }
5532
5533 /**
5534  * security_bpf_prog_free() - Free a BPF program's LSM blob
5535  * @prog: BPF program struct
5536  *
5537  * Clean up the security information stored inside BPF program.
5538  */
5539 void security_bpf_prog_free(struct bpf_prog *prog)
5540 {
5541         call_void_hook(bpf_prog_free, prog);
5542 }
5543
5544 /**
5545  * security_bpf_token_free() - Free a BPF token's LSM blob
5546  * @token: BPF token struct
5547  *
5548  * Clean up the security information stored inside BPF token.
5549  */
5550 void security_bpf_token_free(struct bpf_token *token)
5551 {
5552         call_void_hook(bpf_token_free, token);
5553 }
5554 #endif /* CONFIG_BPF_SYSCALL */
5555
5556 /**
5557  * security_locked_down() - Check if a kernel feature is allowed
5558  * @what: requested kernel feature
5559  *
5560  * Determine whether a kernel feature that potentially enables arbitrary code
5561  * execution in kernel space should be permitted.
5562  *
5563  * Return: Returns 0 if permission is granted.
5564  */
5565 int security_locked_down(enum lockdown_reason what)
5566 {
5567         return call_int_hook(locked_down, what);
5568 }
5569 EXPORT_SYMBOL(security_locked_down);
5570
5571 #ifdef CONFIG_PERF_EVENTS
5572 /**
5573  * security_perf_event_open() - Check if a perf event open is allowed
5574  * @attr: perf event attribute
5575  * @type: type of event
5576  *
5577  * Check whether the @type of perf_event_open syscall is allowed.
5578  *
5579  * Return: Returns 0 if permission is granted.
5580  */
5581 int security_perf_event_open(struct perf_event_attr *attr, int type)
5582 {
5583         return call_int_hook(perf_event_open, attr, type);
5584 }
5585
5586 /**
5587  * security_perf_event_alloc() - Allocate a perf event LSM blob
5588  * @event: perf event
5589  *
5590  * Allocate and save perf_event security info.
5591  *
5592  * Return: Returns 0 on success, error on failure.
5593  */
5594 int security_perf_event_alloc(struct perf_event *event)
5595 {
5596         return call_int_hook(perf_event_alloc, event);
5597 }
5598
5599 /**
5600  * security_perf_event_free() - Free a perf event LSM blob
5601  * @event: perf event
5602  *
5603  * Release (free) perf_event security info.
5604  */
5605 void security_perf_event_free(struct perf_event *event)
5606 {
5607         call_void_hook(perf_event_free, event);
5608 }
5609
5610 /**
5611  * security_perf_event_read() - Check if reading a perf event label is allowed
5612  * @event: perf event
5613  *
5614  * Read perf_event security info if allowed.
5615  *
5616  * Return: Returns 0 if permission is granted.
5617  */
5618 int security_perf_event_read(struct perf_event *event)
5619 {
5620         return call_int_hook(perf_event_read, event);
5621 }
5622
5623 /**
5624  * security_perf_event_write() - Check if writing a perf event label is allowed
5625  * @event: perf event
5626  *
5627  * Write perf_event security info if allowed.
5628  *
5629  * Return: Returns 0 if permission is granted.
5630  */
5631 int security_perf_event_write(struct perf_event *event)
5632 {
5633         return call_int_hook(perf_event_write, event);
5634 }
5635 #endif /* CONFIG_PERF_EVENTS */
5636
5637 #ifdef CONFIG_IO_URING
5638 /**
5639  * security_uring_override_creds() - Check if overriding creds is allowed
5640  * @new: new credentials
5641  *
5642  * Check if the current task, executing an io_uring operation, is allowed to
5643  * override it's credentials with @new.
5644  *
5645  * Return: Returns 0 if permission is granted.
5646  */
5647 int security_uring_override_creds(const struct cred *new)
5648 {
5649         return call_int_hook(uring_override_creds, new);
5650 }
5651
5652 /**
5653  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5654  *
5655  * Check whether the current task is allowed to spawn a io_uring polling thread
5656  * (IORING_SETUP_SQPOLL).
5657  *
5658  * Return: Returns 0 if permission is granted.
5659  */
5660 int security_uring_sqpoll(void)
5661 {
5662         return call_int_hook(uring_sqpoll);
5663 }
5664
5665 /**
5666  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5667  * @ioucmd: command
5668  *
5669  * Check whether the file_operations uring_cmd is allowed to run.
5670  *
5671  * Return: Returns 0 if permission is granted.
5672  */
5673 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5674 {
5675         return call_int_hook(uring_cmd, ioucmd);
5676 }
5677 #endif /* CONFIG_IO_URING */