Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return 2484;
85                 else if (chan < 14)
86                         return 2407 + chan * 5;
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return 4000 + chan * 5;
91                 else
92                         return 5000 + chan * 5;
93                 break;
94         case NL80211_BAND_60GHZ:
95                 if (chan < 7)
96                         return 56160 + chan * 2160;
97                 break;
98         default:
99                 ;
100         }
101         return 0; /* not supported */
102 }
103 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
104
105 int ieee80211_frequency_to_channel(int freq)
106 {
107         /* see 802.11 17.3.8.3.2 and Annex J */
108         if (freq == 2484)
109                 return 14;
110         else if (freq < 2484)
111                 return (freq - 2407) / 5;
112         else if (freq >= 4910 && freq <= 4980)
113                 return (freq - 4000) / 5;
114         else if (freq <= 45000) /* DMG band lower limit */
115                 return (freq - 5000) / 5;
116         else if (freq >= 58320 && freq <= 70200)
117                 return (freq - 56160) / 2160;
118         else
119                 return 0;
120 }
121 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
122
123 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
124 {
125         enum nl80211_band band;
126         struct ieee80211_supported_band *sband;
127         int i;
128
129         for (band = 0; band < NUM_NL80211_BANDS; band++) {
130                 sband = wiphy->bands[band];
131
132                 if (!sband)
133                         continue;
134
135                 for (i = 0; i < sband->n_channels; i++) {
136                         if (sband->channels[i].center_freq == freq)
137                                 return &sband->channels[i];
138                 }
139         }
140
141         return NULL;
142 }
143 EXPORT_SYMBOL(ieee80211_get_channel);
144
145 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
146 {
147         int i, want;
148
149         switch (sband->band) {
150         case NL80211_BAND_5GHZ:
151                 want = 3;
152                 for (i = 0; i < sband->n_bitrates; i++) {
153                         if (sband->bitrates[i].bitrate == 60 ||
154                             sband->bitrates[i].bitrate == 120 ||
155                             sband->bitrates[i].bitrate == 240) {
156                                 sband->bitrates[i].flags |=
157                                         IEEE80211_RATE_MANDATORY_A;
158                                 want--;
159                         }
160                 }
161                 WARN_ON(want);
162                 break;
163         case NL80211_BAND_2GHZ:
164                 want = 7;
165                 for (i = 0; i < sband->n_bitrates; i++) {
166                         switch (sband->bitrates[i].bitrate) {
167                         case 10:
168                         case 20:
169                         case 55:
170                         case 110:
171                                 sband->bitrates[i].flags |=
172                                         IEEE80211_RATE_MANDATORY_B |
173                                         IEEE80211_RATE_MANDATORY_G;
174                                 want--;
175                                 break;
176                         case 60:
177                         case 120:
178                         case 240:
179                                 sband->bitrates[i].flags |=
180                                         IEEE80211_RATE_MANDATORY_G;
181                                 want--;
182                                 /* fall through */
183                         default:
184                                 sband->bitrates[i].flags |=
185                                         IEEE80211_RATE_ERP_G;
186                                 break;
187                         }
188                 }
189                 WARN_ON(want != 0 && want != 3);
190                 break;
191         case NL80211_BAND_60GHZ:
192                 /* check for mandatory HT MCS 1..4 */
193                 WARN_ON(!sband->ht_cap.ht_supported);
194                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
195                 break;
196         case NUM_NL80211_BANDS:
197         default:
198                 WARN_ON(1);
199                 break;
200         }
201 }
202
203 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
204 {
205         enum nl80211_band band;
206
207         for (band = 0; band < NUM_NL80211_BANDS; band++)
208                 if (wiphy->bands[band])
209                         set_mandatory_flags_band(wiphy->bands[band]);
210 }
211
212 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
213 {
214         int i;
215         for (i = 0; i < wiphy->n_cipher_suites; i++)
216                 if (cipher == wiphy->cipher_suites[i])
217                         return true;
218         return false;
219 }
220
221 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
222                                    struct key_params *params, int key_idx,
223                                    bool pairwise, const u8 *mac_addr)
224 {
225         if (key_idx < 0 || key_idx > 5)
226                 return -EINVAL;
227
228         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
229                 return -EINVAL;
230
231         if (pairwise && !mac_addr)
232                 return -EINVAL;
233
234         switch (params->cipher) {
235         case WLAN_CIPHER_SUITE_TKIP:
236         case WLAN_CIPHER_SUITE_CCMP:
237         case WLAN_CIPHER_SUITE_CCMP_256:
238         case WLAN_CIPHER_SUITE_GCMP:
239         case WLAN_CIPHER_SUITE_GCMP_256:
240                 /* IEEE802.11-2016 allows only 0 and - when using Extended Key
241                  * ID - 1 as index for pairwise keys.
242                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
243                  * the driver supports Extended Key ID.
244                  * @NL80211_KEY_SET_TX can't be set when installing and
245                  * validating a key.
246                  */
247                 if (params->mode == NL80211_KEY_NO_TX) {
248                         if (!wiphy_ext_feature_isset(&rdev->wiphy,
249                                                      NL80211_EXT_FEATURE_EXT_KEY_ID))
250                                 return -EINVAL;
251                         else if (!pairwise || key_idx < 0 || key_idx > 1)
252                                 return -EINVAL;
253                 } else if ((pairwise && key_idx) ||
254                            params->mode == NL80211_KEY_SET_TX) {
255                         return -EINVAL;
256                 }
257                 break;
258         case WLAN_CIPHER_SUITE_AES_CMAC:
259         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
260         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
261         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
262                 /* Disallow BIP (group-only) cipher as pairwise cipher */
263                 if (pairwise)
264                         return -EINVAL;
265                 if (key_idx < 4)
266                         return -EINVAL;
267                 break;
268         case WLAN_CIPHER_SUITE_WEP40:
269         case WLAN_CIPHER_SUITE_WEP104:
270                 if (key_idx > 3)
271                         return -EINVAL;
272         default:
273                 break;
274         }
275
276         switch (params->cipher) {
277         case WLAN_CIPHER_SUITE_WEP40:
278                 if (params->key_len != WLAN_KEY_LEN_WEP40)
279                         return -EINVAL;
280                 break;
281         case WLAN_CIPHER_SUITE_TKIP:
282                 if (params->key_len != WLAN_KEY_LEN_TKIP)
283                         return -EINVAL;
284                 break;
285         case WLAN_CIPHER_SUITE_CCMP:
286                 if (params->key_len != WLAN_KEY_LEN_CCMP)
287                         return -EINVAL;
288                 break;
289         case WLAN_CIPHER_SUITE_CCMP_256:
290                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
291                         return -EINVAL;
292                 break;
293         case WLAN_CIPHER_SUITE_GCMP:
294                 if (params->key_len != WLAN_KEY_LEN_GCMP)
295                         return -EINVAL;
296                 break;
297         case WLAN_CIPHER_SUITE_GCMP_256:
298                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
299                         return -EINVAL;
300                 break;
301         case WLAN_CIPHER_SUITE_WEP104:
302                 if (params->key_len != WLAN_KEY_LEN_WEP104)
303                         return -EINVAL;
304                 break;
305         case WLAN_CIPHER_SUITE_AES_CMAC:
306                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
307                         return -EINVAL;
308                 break;
309         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
310                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
311                         return -EINVAL;
312                 break;
313         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
314                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
315                         return -EINVAL;
316                 break;
317         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
318                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
319                         return -EINVAL;
320                 break;
321         default:
322                 /*
323                  * We don't know anything about this algorithm,
324                  * allow using it -- but the driver must check
325                  * all parameters! We still check below whether
326                  * or not the driver supports this algorithm,
327                  * of course.
328                  */
329                 break;
330         }
331
332         if (params->seq) {
333                 switch (params->cipher) {
334                 case WLAN_CIPHER_SUITE_WEP40:
335                 case WLAN_CIPHER_SUITE_WEP104:
336                         /* These ciphers do not use key sequence */
337                         return -EINVAL;
338                 case WLAN_CIPHER_SUITE_TKIP:
339                 case WLAN_CIPHER_SUITE_CCMP:
340                 case WLAN_CIPHER_SUITE_CCMP_256:
341                 case WLAN_CIPHER_SUITE_GCMP:
342                 case WLAN_CIPHER_SUITE_GCMP_256:
343                 case WLAN_CIPHER_SUITE_AES_CMAC:
344                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
345                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
346                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
347                         if (params->seq_len != 6)
348                                 return -EINVAL;
349                         break;
350                 }
351         }
352
353         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
354                 return -EINVAL;
355
356         return 0;
357 }
358
359 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
360 {
361         unsigned int hdrlen = 24;
362
363         if (ieee80211_is_data(fc)) {
364                 if (ieee80211_has_a4(fc))
365                         hdrlen = 30;
366                 if (ieee80211_is_data_qos(fc)) {
367                         hdrlen += IEEE80211_QOS_CTL_LEN;
368                         if (ieee80211_has_order(fc))
369                                 hdrlen += IEEE80211_HT_CTL_LEN;
370                 }
371                 goto out;
372         }
373
374         if (ieee80211_is_mgmt(fc)) {
375                 if (ieee80211_has_order(fc))
376                         hdrlen += IEEE80211_HT_CTL_LEN;
377                 goto out;
378         }
379
380         if (ieee80211_is_ctl(fc)) {
381                 /*
382                  * ACK and CTS are 10 bytes, all others 16. To see how
383                  * to get this condition consider
384                  *   subtype mask:   0b0000000011110000 (0x00F0)
385                  *   ACK subtype:    0b0000000011010000 (0x00D0)
386                  *   CTS subtype:    0b0000000011000000 (0x00C0)
387                  *   bits that matter:         ^^^      (0x00E0)
388                  *   value of those: 0b0000000011000000 (0x00C0)
389                  */
390                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
391                         hdrlen = 10;
392                 else
393                         hdrlen = 16;
394         }
395 out:
396         return hdrlen;
397 }
398 EXPORT_SYMBOL(ieee80211_hdrlen);
399
400 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
401 {
402         const struct ieee80211_hdr *hdr =
403                         (const struct ieee80211_hdr *)skb->data;
404         unsigned int hdrlen;
405
406         if (unlikely(skb->len < 10))
407                 return 0;
408         hdrlen = ieee80211_hdrlen(hdr->frame_control);
409         if (unlikely(hdrlen > skb->len))
410                 return 0;
411         return hdrlen;
412 }
413 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
414
415 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
416 {
417         int ae = flags & MESH_FLAGS_AE;
418         /* 802.11-2012, 8.2.4.7.3 */
419         switch (ae) {
420         default:
421         case 0:
422                 return 6;
423         case MESH_FLAGS_AE_A4:
424                 return 12;
425         case MESH_FLAGS_AE_A5_A6:
426                 return 18;
427         }
428 }
429
430 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
431 {
432         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
433 }
434 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
435
436 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
437                                   const u8 *addr, enum nl80211_iftype iftype,
438                                   u8 data_offset)
439 {
440         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
441         struct {
442                 u8 hdr[ETH_ALEN] __aligned(2);
443                 __be16 proto;
444         } payload;
445         struct ethhdr tmp;
446         u16 hdrlen;
447         u8 mesh_flags = 0;
448
449         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
450                 return -1;
451
452         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
453         if (skb->len < hdrlen + 8)
454                 return -1;
455
456         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
457          * header
458          * IEEE 802.11 address fields:
459          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
460          *   0     0   DA    SA    BSSID n/a
461          *   0     1   DA    BSSID SA    n/a
462          *   1     0   BSSID SA    DA    n/a
463          *   1     1   RA    TA    DA    SA
464          */
465         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
466         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
467
468         if (iftype == NL80211_IFTYPE_MESH_POINT)
469                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
470
471         mesh_flags &= MESH_FLAGS_AE;
472
473         switch (hdr->frame_control &
474                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
475         case cpu_to_le16(IEEE80211_FCTL_TODS):
476                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
477                              iftype != NL80211_IFTYPE_AP_VLAN &&
478                              iftype != NL80211_IFTYPE_P2P_GO))
479                         return -1;
480                 break;
481         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
482                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
483                              iftype != NL80211_IFTYPE_MESH_POINT &&
484                              iftype != NL80211_IFTYPE_AP_VLAN &&
485                              iftype != NL80211_IFTYPE_STATION))
486                         return -1;
487                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
488                         if (mesh_flags == MESH_FLAGS_AE_A4)
489                                 return -1;
490                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
491                                 skb_copy_bits(skb, hdrlen +
492                                         offsetof(struct ieee80211s_hdr, eaddr1),
493                                         tmp.h_dest, 2 * ETH_ALEN);
494                         }
495                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
496                 }
497                 break;
498         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
499                 if ((iftype != NL80211_IFTYPE_STATION &&
500                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
501                      iftype != NL80211_IFTYPE_MESH_POINT) ||
502                     (is_multicast_ether_addr(tmp.h_dest) &&
503                      ether_addr_equal(tmp.h_source, addr)))
504                         return -1;
505                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
506                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
507                                 return -1;
508                         if (mesh_flags == MESH_FLAGS_AE_A4)
509                                 skb_copy_bits(skb, hdrlen +
510                                         offsetof(struct ieee80211s_hdr, eaddr1),
511                                         tmp.h_source, ETH_ALEN);
512                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
513                 }
514                 break;
515         case cpu_to_le16(0):
516                 if (iftype != NL80211_IFTYPE_ADHOC &&
517                     iftype != NL80211_IFTYPE_STATION &&
518                     iftype != NL80211_IFTYPE_OCB)
519                                 return -1;
520                 break;
521         }
522
523         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
524         tmp.h_proto = payload.proto;
525
526         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
527                     tmp.h_proto != htons(ETH_P_AARP) &&
528                     tmp.h_proto != htons(ETH_P_IPX)) ||
529                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
530                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
531                  * replace EtherType */
532                 hdrlen += ETH_ALEN + 2;
533         else
534                 tmp.h_proto = htons(skb->len - hdrlen);
535
536         pskb_pull(skb, hdrlen);
537
538         if (!ehdr)
539                 ehdr = skb_push(skb, sizeof(struct ethhdr));
540         memcpy(ehdr, &tmp, sizeof(tmp));
541
542         return 0;
543 }
544 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
545
546 static void
547 __frame_add_frag(struct sk_buff *skb, struct page *page,
548                  void *ptr, int len, int size)
549 {
550         struct skb_shared_info *sh = skb_shinfo(skb);
551         int page_offset;
552
553         page_ref_inc(page);
554         page_offset = ptr - page_address(page);
555         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
556 }
557
558 static void
559 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
560                             int offset, int len)
561 {
562         struct skb_shared_info *sh = skb_shinfo(skb);
563         const skb_frag_t *frag = &sh->frags[0];
564         struct page *frag_page;
565         void *frag_ptr;
566         int frag_len, frag_size;
567         int head_size = skb->len - skb->data_len;
568         int cur_len;
569
570         frag_page = virt_to_head_page(skb->head);
571         frag_ptr = skb->data;
572         frag_size = head_size;
573
574         while (offset >= frag_size) {
575                 offset -= frag_size;
576                 frag_page = skb_frag_page(frag);
577                 frag_ptr = skb_frag_address(frag);
578                 frag_size = skb_frag_size(frag);
579                 frag++;
580         }
581
582         frag_ptr += offset;
583         frag_len = frag_size - offset;
584
585         cur_len = min(len, frag_len);
586
587         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
588         len -= cur_len;
589
590         while (len > 0) {
591                 frag_len = skb_frag_size(frag);
592                 cur_len = min(len, frag_len);
593                 __frame_add_frag(frame, skb_frag_page(frag),
594                                  skb_frag_address(frag), cur_len, frag_len);
595                 len -= cur_len;
596                 frag++;
597         }
598 }
599
600 static struct sk_buff *
601 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
602                        int offset, int len, bool reuse_frag)
603 {
604         struct sk_buff *frame;
605         int cur_len = len;
606
607         if (skb->len - offset < len)
608                 return NULL;
609
610         /*
611          * When reusing framents, copy some data to the head to simplify
612          * ethernet header handling and speed up protocol header processing
613          * in the stack later.
614          */
615         if (reuse_frag)
616                 cur_len = min_t(int, len, 32);
617
618         /*
619          * Allocate and reserve two bytes more for payload
620          * alignment since sizeof(struct ethhdr) is 14.
621          */
622         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
623         if (!frame)
624                 return NULL;
625
626         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
627         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
628
629         len -= cur_len;
630         if (!len)
631                 return frame;
632
633         offset += cur_len;
634         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
635
636         return frame;
637 }
638
639 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
640                               const u8 *addr, enum nl80211_iftype iftype,
641                               const unsigned int extra_headroom,
642                               const u8 *check_da, const u8 *check_sa)
643 {
644         unsigned int hlen = ALIGN(extra_headroom, 4);
645         struct sk_buff *frame = NULL;
646         u16 ethertype;
647         u8 *payload;
648         int offset = 0, remaining;
649         struct ethhdr eth;
650         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
651         bool reuse_skb = false;
652         bool last = false;
653
654         while (!last) {
655                 unsigned int subframe_len;
656                 int len;
657                 u8 padding;
658
659                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
660                 len = ntohs(eth.h_proto);
661                 subframe_len = sizeof(struct ethhdr) + len;
662                 padding = (4 - subframe_len) & 0x3;
663
664                 /* the last MSDU has no padding */
665                 remaining = skb->len - offset;
666                 if (subframe_len > remaining)
667                         goto purge;
668
669                 offset += sizeof(struct ethhdr);
670                 last = remaining <= subframe_len + padding;
671
672                 /* FIXME: should we really accept multicast DA? */
673                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
674                      !ether_addr_equal(check_da, eth.h_dest)) ||
675                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
676                         offset += len + padding;
677                         continue;
678                 }
679
680                 /* reuse skb for the last subframe */
681                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
682                         skb_pull(skb, offset);
683                         frame = skb;
684                         reuse_skb = true;
685                 } else {
686                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
687                                                        reuse_frag);
688                         if (!frame)
689                                 goto purge;
690
691                         offset += len + padding;
692                 }
693
694                 skb_reset_network_header(frame);
695                 frame->dev = skb->dev;
696                 frame->priority = skb->priority;
697
698                 payload = frame->data;
699                 ethertype = (payload[6] << 8) | payload[7];
700                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
701                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
702                            ether_addr_equal(payload, bridge_tunnel_header))) {
703                         eth.h_proto = htons(ethertype);
704                         skb_pull(frame, ETH_ALEN + 2);
705                 }
706
707                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
708                 __skb_queue_tail(list, frame);
709         }
710
711         if (!reuse_skb)
712                 dev_kfree_skb(skb);
713
714         return;
715
716  purge:
717         __skb_queue_purge(list);
718         dev_kfree_skb(skb);
719 }
720 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
721
722 /* Given a data frame determine the 802.1p/1d tag to use. */
723 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
724                                     struct cfg80211_qos_map *qos_map)
725 {
726         unsigned int dscp;
727         unsigned char vlan_priority;
728         unsigned int ret;
729
730         /* skb->priority values from 256->263 are magic values to
731          * directly indicate a specific 802.1d priority.  This is used
732          * to allow 802.1d priority to be passed directly in from VLAN
733          * tags, etc.
734          */
735         if (skb->priority >= 256 && skb->priority <= 263) {
736                 ret = skb->priority - 256;
737                 goto out;
738         }
739
740         if (skb_vlan_tag_present(skb)) {
741                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
742                         >> VLAN_PRIO_SHIFT;
743                 if (vlan_priority > 0) {
744                         ret = vlan_priority;
745                         goto out;
746                 }
747         }
748
749         switch (skb->protocol) {
750         case htons(ETH_P_IP):
751                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
752                 break;
753         case htons(ETH_P_IPV6):
754                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
755                 break;
756         case htons(ETH_P_MPLS_UC):
757         case htons(ETH_P_MPLS_MC): {
758                 struct mpls_label mpls_tmp, *mpls;
759
760                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
761                                           sizeof(*mpls), &mpls_tmp);
762                 if (!mpls)
763                         return 0;
764
765                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
766                         >> MPLS_LS_TC_SHIFT;
767                 goto out;
768         }
769         case htons(ETH_P_80221):
770                 /* 802.21 is always network control traffic */
771                 return 7;
772         default:
773                 return 0;
774         }
775
776         if (qos_map) {
777                 unsigned int i, tmp_dscp = dscp >> 2;
778
779                 for (i = 0; i < qos_map->num_des; i++) {
780                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
781                                 ret = qos_map->dscp_exception[i].up;
782                                 goto out;
783                         }
784                 }
785
786                 for (i = 0; i < 8; i++) {
787                         if (tmp_dscp >= qos_map->up[i].low &&
788                             tmp_dscp <= qos_map->up[i].high) {
789                                 ret = i;
790                                 goto out;
791                         }
792                 }
793         }
794
795         ret = dscp >> 5;
796 out:
797         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
798 }
799 EXPORT_SYMBOL(cfg80211_classify8021d);
800
801 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
802 {
803         const struct cfg80211_bss_ies *ies;
804
805         ies = rcu_dereference(bss->ies);
806         if (!ies)
807                 return NULL;
808
809         return cfg80211_find_elem(id, ies->data, ies->len);
810 }
811 EXPORT_SYMBOL(ieee80211_bss_get_elem);
812
813 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
814 {
815         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
816         struct net_device *dev = wdev->netdev;
817         int i;
818
819         if (!wdev->connect_keys)
820                 return;
821
822         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
823                 if (!wdev->connect_keys->params[i].cipher)
824                         continue;
825                 if (rdev_add_key(rdev, dev, i, false, NULL,
826                                  &wdev->connect_keys->params[i])) {
827                         netdev_err(dev, "failed to set key %d\n", i);
828                         continue;
829                 }
830                 if (wdev->connect_keys->def == i &&
831                     rdev_set_default_key(rdev, dev, i, true, true)) {
832                         netdev_err(dev, "failed to set defkey %d\n", i);
833                         continue;
834                 }
835         }
836
837         kzfree(wdev->connect_keys);
838         wdev->connect_keys = NULL;
839 }
840
841 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
842 {
843         struct cfg80211_event *ev;
844         unsigned long flags;
845
846         spin_lock_irqsave(&wdev->event_lock, flags);
847         while (!list_empty(&wdev->event_list)) {
848                 ev = list_first_entry(&wdev->event_list,
849                                       struct cfg80211_event, list);
850                 list_del(&ev->list);
851                 spin_unlock_irqrestore(&wdev->event_lock, flags);
852
853                 wdev_lock(wdev);
854                 switch (ev->type) {
855                 case EVENT_CONNECT_RESULT:
856                         __cfg80211_connect_result(
857                                 wdev->netdev,
858                                 &ev->cr,
859                                 ev->cr.status == WLAN_STATUS_SUCCESS);
860                         break;
861                 case EVENT_ROAMED:
862                         __cfg80211_roamed(wdev, &ev->rm);
863                         break;
864                 case EVENT_DISCONNECTED:
865                         __cfg80211_disconnected(wdev->netdev,
866                                                 ev->dc.ie, ev->dc.ie_len,
867                                                 ev->dc.reason,
868                                                 !ev->dc.locally_generated);
869                         break;
870                 case EVENT_IBSS_JOINED:
871                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
872                                                ev->ij.channel);
873                         break;
874                 case EVENT_STOPPED:
875                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
876                         break;
877                 case EVENT_PORT_AUTHORIZED:
878                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
879                         break;
880                 }
881                 wdev_unlock(wdev);
882
883                 kfree(ev);
884
885                 spin_lock_irqsave(&wdev->event_lock, flags);
886         }
887         spin_unlock_irqrestore(&wdev->event_lock, flags);
888 }
889
890 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
891 {
892         struct wireless_dev *wdev;
893
894         ASSERT_RTNL();
895
896         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
897                 cfg80211_process_wdev_events(wdev);
898 }
899
900 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
901                           struct net_device *dev, enum nl80211_iftype ntype,
902                           struct vif_params *params)
903 {
904         int err;
905         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
906
907         ASSERT_RTNL();
908
909         /* don't support changing VLANs, you just re-create them */
910         if (otype == NL80211_IFTYPE_AP_VLAN)
911                 return -EOPNOTSUPP;
912
913         /* cannot change into P2P device or NAN */
914         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
915             ntype == NL80211_IFTYPE_NAN)
916                 return -EOPNOTSUPP;
917
918         if (!rdev->ops->change_virtual_intf ||
919             !(rdev->wiphy.interface_modes & (1 << ntype)))
920                 return -EOPNOTSUPP;
921
922         /* if it's part of a bridge, reject changing type to station/ibss */
923         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
924             (ntype == NL80211_IFTYPE_ADHOC ||
925              ntype == NL80211_IFTYPE_STATION ||
926              ntype == NL80211_IFTYPE_P2P_CLIENT))
927                 return -EBUSY;
928
929         if (ntype != otype) {
930                 dev->ieee80211_ptr->use_4addr = false;
931                 dev->ieee80211_ptr->mesh_id_up_len = 0;
932                 wdev_lock(dev->ieee80211_ptr);
933                 rdev_set_qos_map(rdev, dev, NULL);
934                 wdev_unlock(dev->ieee80211_ptr);
935
936                 switch (otype) {
937                 case NL80211_IFTYPE_AP:
938                         cfg80211_stop_ap(rdev, dev, true);
939                         break;
940                 case NL80211_IFTYPE_ADHOC:
941                         cfg80211_leave_ibss(rdev, dev, false);
942                         break;
943                 case NL80211_IFTYPE_STATION:
944                 case NL80211_IFTYPE_P2P_CLIENT:
945                         wdev_lock(dev->ieee80211_ptr);
946                         cfg80211_disconnect(rdev, dev,
947                                             WLAN_REASON_DEAUTH_LEAVING, true);
948                         wdev_unlock(dev->ieee80211_ptr);
949                         break;
950                 case NL80211_IFTYPE_MESH_POINT:
951                         /* mesh should be handled? */
952                         break;
953                 default:
954                         break;
955                 }
956
957                 cfg80211_process_rdev_events(rdev);
958         }
959
960         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
961
962         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
963
964         if (!err && params && params->use_4addr != -1)
965                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
966
967         if (!err) {
968                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
969                 switch (ntype) {
970                 case NL80211_IFTYPE_STATION:
971                         if (dev->ieee80211_ptr->use_4addr)
972                                 break;
973                         /* fall through */
974                 case NL80211_IFTYPE_OCB:
975                 case NL80211_IFTYPE_P2P_CLIENT:
976                 case NL80211_IFTYPE_ADHOC:
977                         dev->priv_flags |= IFF_DONT_BRIDGE;
978                         break;
979                 case NL80211_IFTYPE_P2P_GO:
980                 case NL80211_IFTYPE_AP:
981                 case NL80211_IFTYPE_AP_VLAN:
982                 case NL80211_IFTYPE_WDS:
983                 case NL80211_IFTYPE_MESH_POINT:
984                         /* bridging OK */
985                         break;
986                 case NL80211_IFTYPE_MONITOR:
987                         /* monitor can't bridge anyway */
988                         break;
989                 case NL80211_IFTYPE_UNSPECIFIED:
990                 case NUM_NL80211_IFTYPES:
991                         /* not happening */
992                         break;
993                 case NL80211_IFTYPE_P2P_DEVICE:
994                 case NL80211_IFTYPE_NAN:
995                         WARN_ON(1);
996                         break;
997                 }
998         }
999
1000         if (!err && ntype != otype && netif_running(dev)) {
1001                 cfg80211_update_iface_num(rdev, ntype, 1);
1002                 cfg80211_update_iface_num(rdev, otype, -1);
1003         }
1004
1005         return err;
1006 }
1007
1008 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1009 {
1010         int modulation, streams, bitrate;
1011
1012         /* the formula below does only work for MCS values smaller than 32 */
1013         if (WARN_ON_ONCE(rate->mcs >= 32))
1014                 return 0;
1015
1016         modulation = rate->mcs & 7;
1017         streams = (rate->mcs >> 3) + 1;
1018
1019         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1020
1021         if (modulation < 4)
1022                 bitrate *= (modulation + 1);
1023         else if (modulation == 4)
1024                 bitrate *= (modulation + 2);
1025         else
1026                 bitrate *= (modulation + 3);
1027
1028         bitrate *= streams;
1029
1030         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1031                 bitrate = (bitrate / 9) * 10;
1032
1033         /* do NOT round down here */
1034         return (bitrate + 50000) / 100000;
1035 }
1036
1037 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1038 {
1039         static const u32 __mcs2bitrate[] = {
1040                 /* control PHY */
1041                 [0] =   275,
1042                 /* SC PHY */
1043                 [1] =  3850,
1044                 [2] =  7700,
1045                 [3] =  9625,
1046                 [4] = 11550,
1047                 [5] = 12512, /* 1251.25 mbps */
1048                 [6] = 15400,
1049                 [7] = 19250,
1050                 [8] = 23100,
1051                 [9] = 25025,
1052                 [10] = 30800,
1053                 [11] = 38500,
1054                 [12] = 46200,
1055                 /* OFDM PHY */
1056                 [13] =  6930,
1057                 [14] =  8662, /* 866.25 mbps */
1058                 [15] = 13860,
1059                 [16] = 17325,
1060                 [17] = 20790,
1061                 [18] = 27720,
1062                 [19] = 34650,
1063                 [20] = 41580,
1064                 [21] = 45045,
1065                 [22] = 51975,
1066                 [23] = 62370,
1067                 [24] = 67568, /* 6756.75 mbps */
1068                 /* LP-SC PHY */
1069                 [25] =  6260,
1070                 [26] =  8340,
1071                 [27] = 11120,
1072                 [28] = 12510,
1073                 [29] = 16680,
1074                 [30] = 22240,
1075                 [31] = 25030,
1076         };
1077
1078         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1079                 return 0;
1080
1081         return __mcs2bitrate[rate->mcs];
1082 }
1083
1084 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1085 {
1086         static const u32 base[4][10] = {
1087                 {   6500000,
1088                    13000000,
1089                    19500000,
1090                    26000000,
1091                    39000000,
1092                    52000000,
1093                    58500000,
1094                    65000000,
1095                    78000000,
1096                 /* not in the spec, but some devices use this: */
1097                    86500000,
1098                 },
1099                 {  13500000,
1100                    27000000,
1101                    40500000,
1102                    54000000,
1103                    81000000,
1104                   108000000,
1105                   121500000,
1106                   135000000,
1107                   162000000,
1108                   180000000,
1109                 },
1110                 {  29300000,
1111                    58500000,
1112                    87800000,
1113                   117000000,
1114                   175500000,
1115                   234000000,
1116                   263300000,
1117                   292500000,
1118                   351000000,
1119                   390000000,
1120                 },
1121                 {  58500000,
1122                   117000000,
1123                   175500000,
1124                   234000000,
1125                   351000000,
1126                   468000000,
1127                   526500000,
1128                   585000000,
1129                   702000000,
1130                   780000000,
1131                 },
1132         };
1133         u32 bitrate;
1134         int idx;
1135
1136         if (rate->mcs > 9)
1137                 goto warn;
1138
1139         switch (rate->bw) {
1140         case RATE_INFO_BW_160:
1141                 idx = 3;
1142                 break;
1143         case RATE_INFO_BW_80:
1144                 idx = 2;
1145                 break;
1146         case RATE_INFO_BW_40:
1147                 idx = 1;
1148                 break;
1149         case RATE_INFO_BW_5:
1150         case RATE_INFO_BW_10:
1151         default:
1152                 goto warn;
1153         case RATE_INFO_BW_20:
1154                 idx = 0;
1155         }
1156
1157         bitrate = base[idx][rate->mcs];
1158         bitrate *= rate->nss;
1159
1160         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1161                 bitrate = (bitrate / 9) * 10;
1162
1163         /* do NOT round down here */
1164         return (bitrate + 50000) / 100000;
1165  warn:
1166         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1167                   rate->bw, rate->mcs, rate->nss);
1168         return 0;
1169 }
1170
1171 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1172 {
1173 #define SCALE 2048
1174         u16 mcs_divisors[12] = {
1175                 34133, /* 16.666666... */
1176                 17067, /*  8.333333... */
1177                 11378, /*  5.555555... */
1178                  8533, /*  4.166666... */
1179                  5689, /*  2.777777... */
1180                  4267, /*  2.083333... */
1181                  3923, /*  1.851851... */
1182                  3413, /*  1.666666... */
1183                  2844, /*  1.388888... */
1184                  2560, /*  1.250000... */
1185                  2276, /*  1.111111... */
1186                  2048, /*  1.000000... */
1187         };
1188         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1189         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1190         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1191         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1192         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1193         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1194         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1195         u64 tmp;
1196         u32 result;
1197
1198         if (WARN_ON_ONCE(rate->mcs > 11))
1199                 return 0;
1200
1201         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1202                 return 0;
1203         if (WARN_ON_ONCE(rate->he_ru_alloc >
1204                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1205                 return 0;
1206         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1207                 return 0;
1208
1209         if (rate->bw == RATE_INFO_BW_160)
1210                 result = rates_160M[rate->he_gi];
1211         else if (rate->bw == RATE_INFO_BW_80 ||
1212                  (rate->bw == RATE_INFO_BW_HE_RU &&
1213                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1214                 result = rates_969[rate->he_gi];
1215         else if (rate->bw == RATE_INFO_BW_40 ||
1216                  (rate->bw == RATE_INFO_BW_HE_RU &&
1217                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1218                 result = rates_484[rate->he_gi];
1219         else if (rate->bw == RATE_INFO_BW_20 ||
1220                  (rate->bw == RATE_INFO_BW_HE_RU &&
1221                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1222                 result = rates_242[rate->he_gi];
1223         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1224                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1225                 result = rates_106[rate->he_gi];
1226         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1227                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1228                 result = rates_52[rate->he_gi];
1229         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1230                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1231                 result = rates_26[rate->he_gi];
1232         else {
1233                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1234                      rate->bw, rate->he_ru_alloc);
1235                 return 0;
1236         }
1237
1238         /* now scale to the appropriate MCS */
1239         tmp = result;
1240         tmp *= SCALE;
1241         do_div(tmp, mcs_divisors[rate->mcs]);
1242         result = tmp;
1243
1244         /* and take NSS, DCM into account */
1245         result = (result * rate->nss) / 8;
1246         if (rate->he_dcm)
1247                 result /= 2;
1248
1249         return result / 10000;
1250 }
1251
1252 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1253 {
1254         if (rate->flags & RATE_INFO_FLAGS_MCS)
1255                 return cfg80211_calculate_bitrate_ht(rate);
1256         if (rate->flags & RATE_INFO_FLAGS_60G)
1257                 return cfg80211_calculate_bitrate_60g(rate);
1258         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1259                 return cfg80211_calculate_bitrate_vht(rate);
1260         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1261                 return cfg80211_calculate_bitrate_he(rate);
1262
1263         return rate->legacy;
1264 }
1265 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1266
1267 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1268                           enum ieee80211_p2p_attr_id attr,
1269                           u8 *buf, unsigned int bufsize)
1270 {
1271         u8 *out = buf;
1272         u16 attr_remaining = 0;
1273         bool desired_attr = false;
1274         u16 desired_len = 0;
1275
1276         while (len > 0) {
1277                 unsigned int iedatalen;
1278                 unsigned int copy;
1279                 const u8 *iedata;
1280
1281                 if (len < 2)
1282                         return -EILSEQ;
1283                 iedatalen = ies[1];
1284                 if (iedatalen + 2 > len)
1285                         return -EILSEQ;
1286
1287                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1288                         goto cont;
1289
1290                 if (iedatalen < 4)
1291                         goto cont;
1292
1293                 iedata = ies + 2;
1294
1295                 /* check WFA OUI, P2P subtype */
1296                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1297                     iedata[2] != 0x9a || iedata[3] != 0x09)
1298                         goto cont;
1299
1300                 iedatalen -= 4;
1301                 iedata += 4;
1302
1303                 /* check attribute continuation into this IE */
1304                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1305                 if (copy && desired_attr) {
1306                         desired_len += copy;
1307                         if (out) {
1308                                 memcpy(out, iedata, min(bufsize, copy));
1309                                 out += min(bufsize, copy);
1310                                 bufsize -= min(bufsize, copy);
1311                         }
1312
1313
1314                         if (copy == attr_remaining)
1315                                 return desired_len;
1316                 }
1317
1318                 attr_remaining -= copy;
1319                 if (attr_remaining)
1320                         goto cont;
1321
1322                 iedatalen -= copy;
1323                 iedata += copy;
1324
1325                 while (iedatalen > 0) {
1326                         u16 attr_len;
1327
1328                         /* P2P attribute ID & size must fit */
1329                         if (iedatalen < 3)
1330                                 return -EILSEQ;
1331                         desired_attr = iedata[0] == attr;
1332                         attr_len = get_unaligned_le16(iedata + 1);
1333                         iedatalen -= 3;
1334                         iedata += 3;
1335
1336                         copy = min_t(unsigned int, attr_len, iedatalen);
1337
1338                         if (desired_attr) {
1339                                 desired_len += copy;
1340                                 if (out) {
1341                                         memcpy(out, iedata, min(bufsize, copy));
1342                                         out += min(bufsize, copy);
1343                                         bufsize -= min(bufsize, copy);
1344                                 }
1345
1346                                 if (copy == attr_len)
1347                                         return desired_len;
1348                         }
1349
1350                         iedata += copy;
1351                         iedatalen -= copy;
1352                         attr_remaining = attr_len - copy;
1353                 }
1354
1355  cont:
1356                 len -= ies[1] + 2;
1357                 ies += ies[1] + 2;
1358         }
1359
1360         if (attr_remaining && desired_attr)
1361                 return -EILSEQ;
1362
1363         return -ENOENT;
1364 }
1365 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1366
1367 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1368 {
1369         int i;
1370
1371         /* Make sure array values are legal */
1372         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1373                 return false;
1374
1375         i = 0;
1376         while (i < n_ids) {
1377                 if (ids[i] == WLAN_EID_EXTENSION) {
1378                         if (id_ext && (ids[i + 1] == id))
1379                                 return true;
1380
1381                         i += 2;
1382                         continue;
1383                 }
1384
1385                 if (ids[i] == id && !id_ext)
1386                         return true;
1387
1388                 i++;
1389         }
1390         return false;
1391 }
1392
1393 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1394 {
1395         /* we assume a validly formed IEs buffer */
1396         u8 len = ies[pos + 1];
1397
1398         pos += 2 + len;
1399
1400         /* the IE itself must have 255 bytes for fragments to follow */
1401         if (len < 255)
1402                 return pos;
1403
1404         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1405                 len = ies[pos + 1];
1406                 pos += 2 + len;
1407         }
1408
1409         return pos;
1410 }
1411
1412 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1413                               const u8 *ids, int n_ids,
1414                               const u8 *after_ric, int n_after_ric,
1415                               size_t offset)
1416 {
1417         size_t pos = offset;
1418
1419         while (pos < ielen) {
1420                 u8 ext = 0;
1421
1422                 if (ies[pos] == WLAN_EID_EXTENSION)
1423                         ext = 2;
1424                 if ((pos + ext) >= ielen)
1425                         break;
1426
1427                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1428                                           ies[pos] == WLAN_EID_EXTENSION))
1429                         break;
1430
1431                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1432                         pos = skip_ie(ies, ielen, pos);
1433
1434                         while (pos < ielen) {
1435                                 if (ies[pos] == WLAN_EID_EXTENSION)
1436                                         ext = 2;
1437                                 else
1438                                         ext = 0;
1439
1440                                 if ((pos + ext) >= ielen)
1441                                         break;
1442
1443                                 if (!ieee80211_id_in_list(after_ric,
1444                                                           n_after_ric,
1445                                                           ies[pos + ext],
1446                                                           ext == 2))
1447                                         pos = skip_ie(ies, ielen, pos);
1448                                 else
1449                                         break;
1450                         }
1451                 } else {
1452                         pos = skip_ie(ies, ielen, pos);
1453                 }
1454         }
1455
1456         return pos;
1457 }
1458 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1459
1460 bool ieee80211_operating_class_to_band(u8 operating_class,
1461                                        enum nl80211_band *band)
1462 {
1463         switch (operating_class) {
1464         case 112:
1465         case 115 ... 127:
1466         case 128 ... 130:
1467                 *band = NL80211_BAND_5GHZ;
1468                 return true;
1469         case 81:
1470         case 82:
1471         case 83:
1472         case 84:
1473                 *band = NL80211_BAND_2GHZ;
1474                 return true;
1475         case 180:
1476                 *band = NL80211_BAND_60GHZ;
1477                 return true;
1478         }
1479
1480         return false;
1481 }
1482 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1483
1484 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1485                                           u8 *op_class)
1486 {
1487         u8 vht_opclass;
1488         u32 freq = chandef->center_freq1;
1489
1490         if (freq >= 2412 && freq <= 2472) {
1491                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1492                         return false;
1493
1494                 /* 2.407 GHz, channels 1..13 */
1495                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1496                         if (freq > chandef->chan->center_freq)
1497                                 *op_class = 83; /* HT40+ */
1498                         else
1499                                 *op_class = 84; /* HT40- */
1500                 } else {
1501                         *op_class = 81;
1502                 }
1503
1504                 return true;
1505         }
1506
1507         if (freq == 2484) {
1508                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1509                         return false;
1510
1511                 *op_class = 82; /* channel 14 */
1512                 return true;
1513         }
1514
1515         switch (chandef->width) {
1516         case NL80211_CHAN_WIDTH_80:
1517                 vht_opclass = 128;
1518                 break;
1519         case NL80211_CHAN_WIDTH_160:
1520                 vht_opclass = 129;
1521                 break;
1522         case NL80211_CHAN_WIDTH_80P80:
1523                 vht_opclass = 130;
1524                 break;
1525         case NL80211_CHAN_WIDTH_10:
1526         case NL80211_CHAN_WIDTH_5:
1527                 return false; /* unsupported for now */
1528         default:
1529                 vht_opclass = 0;
1530                 break;
1531         }
1532
1533         /* 5 GHz, channels 36..48 */
1534         if (freq >= 5180 && freq <= 5240) {
1535                 if (vht_opclass) {
1536                         *op_class = vht_opclass;
1537                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1538                         if (freq > chandef->chan->center_freq)
1539                                 *op_class = 116;
1540                         else
1541                                 *op_class = 117;
1542                 } else {
1543                         *op_class = 115;
1544                 }
1545
1546                 return true;
1547         }
1548
1549         /* 5 GHz, channels 52..64 */
1550         if (freq >= 5260 && freq <= 5320) {
1551                 if (vht_opclass) {
1552                         *op_class = vht_opclass;
1553                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1554                         if (freq > chandef->chan->center_freq)
1555                                 *op_class = 119;
1556                         else
1557                                 *op_class = 120;
1558                 } else {
1559                         *op_class = 118;
1560                 }
1561
1562                 return true;
1563         }
1564
1565         /* 5 GHz, channels 100..144 */
1566         if (freq >= 5500 && freq <= 5720) {
1567                 if (vht_opclass) {
1568                         *op_class = vht_opclass;
1569                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1570                         if (freq > chandef->chan->center_freq)
1571                                 *op_class = 122;
1572                         else
1573                                 *op_class = 123;
1574                 } else {
1575                         *op_class = 121;
1576                 }
1577
1578                 return true;
1579         }
1580
1581         /* 5 GHz, channels 149..169 */
1582         if (freq >= 5745 && freq <= 5845) {
1583                 if (vht_opclass) {
1584                         *op_class = vht_opclass;
1585                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1586                         if (freq > chandef->chan->center_freq)
1587                                 *op_class = 126;
1588                         else
1589                                 *op_class = 127;
1590                 } else if (freq <= 5805) {
1591                         *op_class = 124;
1592                 } else {
1593                         *op_class = 125;
1594                 }
1595
1596                 return true;
1597         }
1598
1599         /* 56.16 GHz, channel 1..4 */
1600         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1601                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1602                         return false;
1603
1604                 *op_class = 180;
1605                 return true;
1606         }
1607
1608         /* not supported yet */
1609         return false;
1610 }
1611 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1612
1613 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1614                                        u32 *beacon_int_gcd,
1615                                        bool *beacon_int_different)
1616 {
1617         struct wireless_dev *wdev;
1618
1619         *beacon_int_gcd = 0;
1620         *beacon_int_different = false;
1621
1622         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1623                 if (!wdev->beacon_interval)
1624                         continue;
1625
1626                 if (!*beacon_int_gcd) {
1627                         *beacon_int_gcd = wdev->beacon_interval;
1628                         continue;
1629                 }
1630
1631                 if (wdev->beacon_interval == *beacon_int_gcd)
1632                         continue;
1633
1634                 *beacon_int_different = true;
1635                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1636         }
1637
1638         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1639                 if (*beacon_int_gcd)
1640                         *beacon_int_different = true;
1641                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1642         }
1643 }
1644
1645 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1646                                  enum nl80211_iftype iftype, u32 beacon_int)
1647 {
1648         /*
1649          * This is just a basic pre-condition check; if interface combinations
1650          * are possible the driver must already be checking those with a call
1651          * to cfg80211_check_combinations(), in which case we'll validate more
1652          * through the cfg80211_calculate_bi_data() call and code in
1653          * cfg80211_iter_combinations().
1654          */
1655
1656         if (beacon_int < 10 || beacon_int > 10000)
1657                 return -EINVAL;
1658
1659         return 0;
1660 }
1661
1662 int cfg80211_iter_combinations(struct wiphy *wiphy,
1663                                struct iface_combination_params *params,
1664                                void (*iter)(const struct ieee80211_iface_combination *c,
1665                                             void *data),
1666                                void *data)
1667 {
1668         const struct ieee80211_regdomain *regdom;
1669         enum nl80211_dfs_regions region = 0;
1670         int i, j, iftype;
1671         int num_interfaces = 0;
1672         u32 used_iftypes = 0;
1673         u32 beacon_int_gcd;
1674         bool beacon_int_different;
1675
1676         /*
1677          * This is a bit strange, since the iteration used to rely only on
1678          * the data given by the driver, but here it now relies on context,
1679          * in form of the currently operating interfaces.
1680          * This is OK for all current users, and saves us from having to
1681          * push the GCD calculations into all the drivers.
1682          * In the future, this should probably rely more on data that's in
1683          * cfg80211 already - the only thing not would appear to be any new
1684          * interfaces (while being brought up) and channel/radar data.
1685          */
1686         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1687                                    &beacon_int_gcd, &beacon_int_different);
1688
1689         if (params->radar_detect) {
1690                 rcu_read_lock();
1691                 regdom = rcu_dereference(cfg80211_regdomain);
1692                 if (regdom)
1693                         region = regdom->dfs_region;
1694                 rcu_read_unlock();
1695         }
1696
1697         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1698                 num_interfaces += params->iftype_num[iftype];
1699                 if (params->iftype_num[iftype] > 0 &&
1700                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1701                         used_iftypes |= BIT(iftype);
1702         }
1703
1704         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1705                 const struct ieee80211_iface_combination *c;
1706                 struct ieee80211_iface_limit *limits;
1707                 u32 all_iftypes = 0;
1708
1709                 c = &wiphy->iface_combinations[i];
1710
1711                 if (num_interfaces > c->max_interfaces)
1712                         continue;
1713                 if (params->num_different_channels > c->num_different_channels)
1714                         continue;
1715
1716                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1717                                  GFP_KERNEL);
1718                 if (!limits)
1719                         return -ENOMEM;
1720
1721                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1722                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1723                                 continue;
1724                         for (j = 0; j < c->n_limits; j++) {
1725                                 all_iftypes |= limits[j].types;
1726                                 if (!(limits[j].types & BIT(iftype)))
1727                                         continue;
1728                                 if (limits[j].max < params->iftype_num[iftype])
1729                                         goto cont;
1730                                 limits[j].max -= params->iftype_num[iftype];
1731                         }
1732                 }
1733
1734                 if (params->radar_detect !=
1735                         (c->radar_detect_widths & params->radar_detect))
1736                         goto cont;
1737
1738                 if (params->radar_detect && c->radar_detect_regions &&
1739                     !(c->radar_detect_regions & BIT(region)))
1740                         goto cont;
1741
1742                 /* Finally check that all iftypes that we're currently
1743                  * using are actually part of this combination. If they
1744                  * aren't then we can't use this combination and have
1745                  * to continue to the next.
1746                  */
1747                 if ((all_iftypes & used_iftypes) != used_iftypes)
1748                         goto cont;
1749
1750                 if (beacon_int_gcd) {
1751                         if (c->beacon_int_min_gcd &&
1752                             beacon_int_gcd < c->beacon_int_min_gcd)
1753                                 goto cont;
1754                         if (!c->beacon_int_min_gcd && beacon_int_different)
1755                                 goto cont;
1756                 }
1757
1758                 /* This combination covered all interface types and
1759                  * supported the requested numbers, so we're good.
1760                  */
1761
1762                 (*iter)(c, data);
1763  cont:
1764                 kfree(limits);
1765         }
1766
1767         return 0;
1768 }
1769 EXPORT_SYMBOL(cfg80211_iter_combinations);
1770
1771 static void
1772 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1773                           void *data)
1774 {
1775         int *num = data;
1776         (*num)++;
1777 }
1778
1779 int cfg80211_check_combinations(struct wiphy *wiphy,
1780                                 struct iface_combination_params *params)
1781 {
1782         int err, num = 0;
1783
1784         err = cfg80211_iter_combinations(wiphy, params,
1785                                          cfg80211_iter_sum_ifcombs, &num);
1786         if (err)
1787                 return err;
1788         if (num == 0)
1789                 return -EBUSY;
1790
1791         return 0;
1792 }
1793 EXPORT_SYMBOL(cfg80211_check_combinations);
1794
1795 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1796                            const u8 *rates, unsigned int n_rates,
1797                            u32 *mask)
1798 {
1799         int i, j;
1800
1801         if (!sband)
1802                 return -EINVAL;
1803
1804         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1805                 return -EINVAL;
1806
1807         *mask = 0;
1808
1809         for (i = 0; i < n_rates; i++) {
1810                 int rate = (rates[i] & 0x7f) * 5;
1811                 bool found = false;
1812
1813                 for (j = 0; j < sband->n_bitrates; j++) {
1814                         if (sband->bitrates[j].bitrate == rate) {
1815                                 found = true;
1816                                 *mask |= BIT(j);
1817                                 break;
1818                         }
1819                 }
1820                 if (!found)
1821                         return -EINVAL;
1822         }
1823
1824         /*
1825          * mask must have at least one bit set here since we
1826          * didn't accept a 0-length rates array nor allowed
1827          * entries in the array that didn't exist
1828          */
1829
1830         return 0;
1831 }
1832
1833 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1834 {
1835         enum nl80211_band band;
1836         unsigned int n_channels = 0;
1837
1838         for (band = 0; band < NUM_NL80211_BANDS; band++)
1839                 if (wiphy->bands[band])
1840                         n_channels += wiphy->bands[band]->n_channels;
1841
1842         return n_channels;
1843 }
1844 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1845
1846 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1847                          struct station_info *sinfo)
1848 {
1849         struct cfg80211_registered_device *rdev;
1850         struct wireless_dev *wdev;
1851
1852         wdev = dev->ieee80211_ptr;
1853         if (!wdev)
1854                 return -EOPNOTSUPP;
1855
1856         rdev = wiphy_to_rdev(wdev->wiphy);
1857         if (!rdev->ops->get_station)
1858                 return -EOPNOTSUPP;
1859
1860         memset(sinfo, 0, sizeof(*sinfo));
1861
1862         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1863 }
1864 EXPORT_SYMBOL(cfg80211_get_station);
1865
1866 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1867 {
1868         int i;
1869
1870         if (!f)
1871                 return;
1872
1873         kfree(f->serv_spec_info);
1874         kfree(f->srf_bf);
1875         kfree(f->srf_macs);
1876         for (i = 0; i < f->num_rx_filters; i++)
1877                 kfree(f->rx_filters[i].filter);
1878
1879         for (i = 0; i < f->num_tx_filters; i++)
1880                 kfree(f->tx_filters[i].filter);
1881
1882         kfree(f->rx_filters);
1883         kfree(f->tx_filters);
1884         kfree(f);
1885 }
1886 EXPORT_SYMBOL(cfg80211_free_nan_func);
1887
1888 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1889                                 u32 center_freq_khz, u32 bw_khz)
1890 {
1891         u32 start_freq_khz, end_freq_khz;
1892
1893         start_freq_khz = center_freq_khz - (bw_khz / 2);
1894         end_freq_khz = center_freq_khz + (bw_khz / 2);
1895
1896         if (start_freq_khz >= freq_range->start_freq_khz &&
1897             end_freq_khz <= freq_range->end_freq_khz)
1898                 return true;
1899
1900         return false;
1901 }
1902
1903 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1904 {
1905         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1906                                 sizeof(*(sinfo->pertid)),
1907                                 gfp);
1908         if (!sinfo->pertid)
1909                 return -ENOMEM;
1910
1911         return 0;
1912 }
1913 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1914
1915 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1916 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1917 const unsigned char rfc1042_header[] __aligned(2) =
1918         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1919 EXPORT_SYMBOL(rfc1042_header);
1920
1921 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1922 const unsigned char bridge_tunnel_header[] __aligned(2) =
1923         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1924 EXPORT_SYMBOL(bridge_tunnel_header);
1925
1926 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1927 struct iapp_layer2_update {
1928         u8 da[ETH_ALEN];        /* broadcast */
1929         u8 sa[ETH_ALEN];        /* STA addr */
1930         __be16 len;             /* 6 */
1931         u8 dsap;                /* 0 */
1932         u8 ssap;                /* 0 */
1933         u8 control;
1934         u8 xid_info[3];
1935 } __packed;
1936
1937 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1938 {
1939         struct iapp_layer2_update *msg;
1940         struct sk_buff *skb;
1941
1942         /* Send Level 2 Update Frame to update forwarding tables in layer 2
1943          * bridge devices */
1944
1945         skb = dev_alloc_skb(sizeof(*msg));
1946         if (!skb)
1947                 return;
1948         msg = skb_put(skb, sizeof(*msg));
1949
1950         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1951          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1952
1953         eth_broadcast_addr(msg->da);
1954         ether_addr_copy(msg->sa, addr);
1955         msg->len = htons(6);
1956         msg->dsap = 0;
1957         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
1958         msg->control = 0xaf;    /* XID response lsb.1111F101.
1959                                  * F=0 (no poll command; unsolicited frame) */
1960         msg->xid_info[0] = 0x81;        /* XID format identifier */
1961         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
1962         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
1963
1964         skb->dev = dev;
1965         skb->protocol = eth_type_trans(skb, dev);
1966         memset(skb->cb, 0, sizeof(skb->cb));
1967         netif_rx_ni(skb);
1968 }
1969 EXPORT_SYMBOL(cfg80211_send_layer2_update);
1970
1971 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
1972                               enum ieee80211_vht_chanwidth bw,
1973                               int mcs, bool ext_nss_bw_capable)
1974 {
1975         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
1976         int max_vht_nss = 0;
1977         int ext_nss_bw;
1978         int supp_width;
1979         int i, mcs_encoding;
1980
1981         if (map == 0xffff)
1982                 return 0;
1983
1984         if (WARN_ON(mcs > 9))
1985                 return 0;
1986         if (mcs <= 7)
1987                 mcs_encoding = 0;
1988         else if (mcs == 8)
1989                 mcs_encoding = 1;
1990         else
1991                 mcs_encoding = 2;
1992
1993         /* find max_vht_nss for the given MCS */
1994         for (i = 7; i >= 0; i--) {
1995                 int supp = (map >> (2 * i)) & 3;
1996
1997                 if (supp == 3)
1998                         continue;
1999
2000                 if (supp >= mcs_encoding) {
2001                         max_vht_nss = i + 1;
2002                         break;
2003                 }
2004         }
2005
2006         if (!(cap->supp_mcs.tx_mcs_map &
2007                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2008                 return max_vht_nss;
2009
2010         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2011                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2012         supp_width = le32_get_bits(cap->vht_cap_info,
2013                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2014
2015         /* if not capable, treat ext_nss_bw as 0 */
2016         if (!ext_nss_bw_capable)
2017                 ext_nss_bw = 0;
2018
2019         /* This is invalid */
2020         if (supp_width == 3)
2021                 return 0;
2022
2023         /* This is an invalid combination so pretend nothing is supported */
2024         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2025                 return 0;
2026
2027         /*
2028          * Cover all the special cases according to IEEE 802.11-2016
2029          * Table 9-250. All other cases are either factor of 1 or not
2030          * valid/supported.
2031          */
2032         switch (bw) {
2033         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2034         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2035                 if ((supp_width == 1 || supp_width == 2) &&
2036                     ext_nss_bw == 3)
2037                         return 2 * max_vht_nss;
2038                 break;
2039         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2040                 if (supp_width == 0 &&
2041                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2042                         return max_vht_nss / 2;
2043                 if (supp_width == 0 &&
2044                     ext_nss_bw == 3)
2045                         return (3 * max_vht_nss) / 4;
2046                 if (supp_width == 1 &&
2047                     ext_nss_bw == 3)
2048                         return 2 * max_vht_nss;
2049                 break;
2050         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2051                 if (supp_width == 0 && ext_nss_bw == 1)
2052                         return 0; /* not possible */
2053                 if (supp_width == 0 &&
2054                     ext_nss_bw == 2)
2055                         return max_vht_nss / 2;
2056                 if (supp_width == 0 &&
2057                     ext_nss_bw == 3)
2058                         return (3 * max_vht_nss) / 4;
2059                 if (supp_width == 1 &&
2060                     ext_nss_bw == 0)
2061                         return 0; /* not possible */
2062                 if (supp_width == 1 &&
2063                     ext_nss_bw == 1)
2064                         return max_vht_nss / 2;
2065                 if (supp_width == 1 &&
2066                     ext_nss_bw == 2)
2067                         return (3 * max_vht_nss) / 4;
2068                 break;
2069         }
2070
2071         /* not covered or invalid combination received */
2072         return max_vht_nss;
2073 }
2074 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2075
2076 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2077                              bool is_4addr, u8 check_swif)
2078
2079 {
2080         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2081
2082         switch (check_swif) {
2083         case 0:
2084                 if (is_vlan && is_4addr)
2085                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2086                 return wiphy->interface_modes & BIT(iftype);
2087         case 1:
2088                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2089                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2090                 return wiphy->software_iftypes & BIT(iftype);
2091         default:
2092                 break;
2093         }
2094
2095         return false;
2096 }
2097 EXPORT_SYMBOL(cfg80211_iftype_allowed);