Merge tag 'hid-for-linus-2024021501' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
79
80 /**
81  * struct cfg80211_colocated_ap - colocated AP information
82  *
83  * @list: linked list to all colocated aPS
84  * @bssid: BSSID of the reported AP
85  * @ssid: SSID of the reported AP
86  * @ssid_len: length of the ssid
87  * @center_freq: frequency the reported AP is on
88  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89  *      that operate in the same channel as the reported AP and that might be
90  *      detected by a STA receiving this frame, are transmitting unsolicited
91  *      Probe Response frames every 20 TUs
92  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93  * @same_ssid: the reported AP has the same SSID as the reporting AP
94  * @multi_bss: the reported AP is part of a multiple BSSID set
95  * @transmitted_bssid: the reported AP is the transmitting BSSID
96  * @colocated_ess: all the APs that share the same ESS as the reported AP are
97  *      colocated and can be discovered via legacy bands.
98  * @short_ssid_valid: short_ssid is valid and can be used
99  * @short_ssid: the short SSID for this SSID
100  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101  */
102 struct cfg80211_colocated_ap {
103         struct list_head list;
104         u8 bssid[ETH_ALEN];
105         u8 ssid[IEEE80211_MAX_SSID_LEN];
106         size_t ssid_len;
107         u32 short_ssid;
108         u32 center_freq;
109         u8 unsolicited_probe:1,
110            oct_recommended:1,
111            same_ssid:1,
112            multi_bss:1,
113            transmitted_bssid:1,
114            colocated_ess:1,
115            short_ssid_valid:1;
116         s8 psd_20;
117 };
118
119 static void bss_free(struct cfg80211_internal_bss *bss)
120 {
121         struct cfg80211_bss_ies *ies;
122
123         if (WARN_ON(atomic_read(&bss->hold)))
124                 return;
125
126         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127         if (ies && !bss->pub.hidden_beacon_bss)
128                 kfree_rcu(ies, rcu_head);
129         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130         if (ies)
131                 kfree_rcu(ies, rcu_head);
132
133         /*
134          * This happens when the module is removed, it doesn't
135          * really matter any more save for completeness
136          */
137         if (!list_empty(&bss->hidden_list))
138                 list_del(&bss->hidden_list);
139
140         kfree(bss);
141 }
142
143 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144                                struct cfg80211_internal_bss *bss)
145 {
146         lockdep_assert_held(&rdev->bss_lock);
147
148         bss->refcount++;
149
150         if (bss->pub.hidden_beacon_bss)
151                 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152
153         if (bss->pub.transmitted_bss)
154                 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155 }
156
157 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158                                struct cfg80211_internal_bss *bss)
159 {
160         lockdep_assert_held(&rdev->bss_lock);
161
162         if (bss->pub.hidden_beacon_bss) {
163                 struct cfg80211_internal_bss *hbss;
164
165                 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166                 hbss->refcount--;
167                 if (hbss->refcount == 0)
168                         bss_free(hbss);
169         }
170
171         if (bss->pub.transmitted_bss) {
172                 struct cfg80211_internal_bss *tbss;
173
174                 tbss = bss_from_pub(bss->pub.transmitted_bss);
175                 tbss->refcount--;
176                 if (tbss->refcount == 0)
177                         bss_free(tbss);
178         }
179
180         bss->refcount--;
181         if (bss->refcount == 0)
182                 bss_free(bss);
183 }
184
185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186                                   struct cfg80211_internal_bss *bss)
187 {
188         lockdep_assert_held(&rdev->bss_lock);
189
190         if (!list_empty(&bss->hidden_list)) {
191                 /*
192                  * don't remove the beacon entry if it has
193                  * probe responses associated with it
194                  */
195                 if (!bss->pub.hidden_beacon_bss)
196                         return false;
197                 /*
198                  * if it's a probe response entry break its
199                  * link to the other entries in the group
200                  */
201                 list_del_init(&bss->hidden_list);
202         }
203
204         list_del_init(&bss->list);
205         list_del_init(&bss->pub.nontrans_list);
206         rb_erase(&bss->rbn, &rdev->bss_tree);
207         rdev->bss_entries--;
208         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
210                   rdev->bss_entries, list_empty(&rdev->bss_list));
211         bss_ref_put(rdev, bss);
212         return true;
213 }
214
215 bool cfg80211_is_element_inherited(const struct element *elem,
216                                    const struct element *non_inherit_elem)
217 {
218         u8 id_len, ext_id_len, i, loop_len, id;
219         const u8 *list;
220
221         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222                 return false;
223
224         if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225             elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226                 return false;
227
228         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229                 return true;
230
231         /*
232          * non inheritance element format is:
233          * ext ID (56) | IDs list len | list | extension IDs list len | list
234          * Both lists are optional. Both lengths are mandatory.
235          * This means valid length is:
236          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237          */
238         id_len = non_inherit_elem->data[1];
239         if (non_inherit_elem->datalen < 3 + id_len)
240                 return true;
241
242         ext_id_len = non_inherit_elem->data[2 + id_len];
243         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244                 return true;
245
246         if (elem->id == WLAN_EID_EXTENSION) {
247                 if (!ext_id_len)
248                         return true;
249                 loop_len = ext_id_len;
250                 list = &non_inherit_elem->data[3 + id_len];
251                 id = elem->data[0];
252         } else {
253                 if (!id_len)
254                         return true;
255                 loop_len = id_len;
256                 list = &non_inherit_elem->data[2];
257                 id = elem->id;
258         }
259
260         for (i = 0; i < loop_len; i++) {
261                 if (list[i] == id)
262                         return false;
263         }
264
265         return true;
266 }
267 EXPORT_SYMBOL(cfg80211_is_element_inherited);
268
269 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270                                             const u8 *ie, size_t ie_len,
271                                             u8 **pos, u8 *buf, size_t buf_len)
272 {
273         if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274                     elem->data + elem->datalen > ie + ie_len))
275                 return 0;
276
277         if (elem->datalen + 2 > buf + buf_len - *pos)
278                 return 0;
279
280         memcpy(*pos, elem, elem->datalen + 2);
281         *pos += elem->datalen + 2;
282
283         /* Finish if it is not fragmented  */
284         if (elem->datalen != 255)
285                 return *pos - buf;
286
287         ie_len = ie + ie_len - elem->data - elem->datalen;
288         ie = (const u8 *)elem->data + elem->datalen;
289
290         for_each_element(elem, ie, ie_len) {
291                 if (elem->id != WLAN_EID_FRAGMENT)
292                         break;
293
294                 if (elem->datalen + 2 > buf + buf_len - *pos)
295                         return 0;
296
297                 memcpy(*pos, elem, elem->datalen + 2);
298                 *pos += elem->datalen + 2;
299
300                 if (elem->datalen != 255)
301                         break;
302         }
303
304         return *pos - buf;
305 }
306
307 VISIBLE_IF_CFG80211_KUNIT size_t
308 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309                     const u8 *subie, size_t subie_len,
310                     u8 *new_ie, size_t new_ie_len)
311 {
312         const struct element *non_inherit_elem, *parent, *sub;
313         u8 *pos = new_ie;
314         u8 id, ext_id;
315         unsigned int match_len;
316
317         non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318                                                   subie, subie_len);
319
320         /* We copy the elements one by one from the parent to the generated
321          * elements.
322          * If they are not inherited (included in subie or in the non
323          * inheritance element), then we copy all occurrences the first time
324          * we see this element type.
325          */
326         for_each_element(parent, ie, ielen) {
327                 if (parent->id == WLAN_EID_FRAGMENT)
328                         continue;
329
330                 if (parent->id == WLAN_EID_EXTENSION) {
331                         if (parent->datalen < 1)
332                                 continue;
333
334                         id = WLAN_EID_EXTENSION;
335                         ext_id = parent->data[0];
336                         match_len = 1;
337                 } else {
338                         id = parent->id;
339                         match_len = 0;
340                 }
341
342                 /* Find first occurrence in subie */
343                 sub = cfg80211_find_elem_match(id, subie, subie_len,
344                                                &ext_id, match_len, 0);
345
346                 /* Copy from parent if not in subie and inherited */
347                 if (!sub &&
348                     cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349                         if (!cfg80211_copy_elem_with_frags(parent,
350                                                            ie, ielen,
351                                                            &pos, new_ie,
352                                                            new_ie_len))
353                                 return 0;
354
355                         continue;
356                 }
357
358                 /* Already copied if an earlier element had the same type */
359                 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360                                              &ext_id, match_len, 0))
361                         continue;
362
363                 /* Not inheriting, copy all similar elements from subie */
364                 while (sub) {
365                         if (!cfg80211_copy_elem_with_frags(sub,
366                                                            subie, subie_len,
367                                                            &pos, new_ie,
368                                                            new_ie_len))
369                                 return 0;
370
371                         sub = cfg80211_find_elem_match(id,
372                                                        sub->data + sub->datalen,
373                                                        subie_len + subie -
374                                                        (sub->data +
375                                                         sub->datalen),
376                                                        &ext_id, match_len, 0);
377                 }
378         }
379
380         /* The above misses elements that are included in subie but not in the
381          * parent, so do a pass over subie and append those.
382          * Skip the non-tx BSSID caps and non-inheritance element.
383          */
384         for_each_element(sub, subie, subie_len) {
385                 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386                         continue;
387
388                 if (sub->id == WLAN_EID_FRAGMENT)
389                         continue;
390
391                 if (sub->id == WLAN_EID_EXTENSION) {
392                         if (sub->datalen < 1)
393                                 continue;
394
395                         id = WLAN_EID_EXTENSION;
396                         ext_id = sub->data[0];
397                         match_len = 1;
398
399                         if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400                                 continue;
401                 } else {
402                         id = sub->id;
403                         match_len = 0;
404                 }
405
406                 /* Processed if one was included in the parent */
407                 if (cfg80211_find_elem_match(id, ie, ielen,
408                                              &ext_id, match_len, 0))
409                         continue;
410
411                 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412                                                    &pos, new_ie, new_ie_len))
413                         return 0;
414         }
415
416         return pos - new_ie;
417 }
418 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419
420 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421                    const u8 *ssid, size_t ssid_len)
422 {
423         const struct cfg80211_bss_ies *ies;
424         const struct element *ssid_elem;
425
426         if (bssid && !ether_addr_equal(a->bssid, bssid))
427                 return false;
428
429         if (!ssid)
430                 return true;
431
432         ies = rcu_access_pointer(a->ies);
433         if (!ies)
434                 return false;
435         ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436         if (!ssid_elem)
437                 return false;
438         if (ssid_elem->datalen != ssid_len)
439                 return false;
440         return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441 }
442
443 static int
444 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445                            struct cfg80211_bss *nontrans_bss)
446 {
447         const struct element *ssid_elem;
448         struct cfg80211_bss *bss = NULL;
449
450         rcu_read_lock();
451         ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452         if (!ssid_elem) {
453                 rcu_read_unlock();
454                 return -EINVAL;
455         }
456
457         /* check if nontrans_bss is in the list */
458         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459                 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460                            ssid_elem->datalen)) {
461                         rcu_read_unlock();
462                         return 0;
463                 }
464         }
465
466         rcu_read_unlock();
467
468         /*
469          * This is a bit weird - it's not on the list, but already on another
470          * one! The only way that could happen is if there's some BSSID/SSID
471          * shared by multiple APs in their multi-BSSID profiles, potentially
472          * with hidden SSID mixed in ... ignore it.
473          */
474         if (!list_empty(&nontrans_bss->nontrans_list))
475                 return -EINVAL;
476
477         /* add to the list */
478         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479         return 0;
480 }
481
482 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483                                   unsigned long expire_time)
484 {
485         struct cfg80211_internal_bss *bss, *tmp;
486         bool expired = false;
487
488         lockdep_assert_held(&rdev->bss_lock);
489
490         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491                 if (atomic_read(&bss->hold))
492                         continue;
493                 if (!time_after(expire_time, bss->ts))
494                         continue;
495
496                 if (__cfg80211_unlink_bss(rdev, bss))
497                         expired = true;
498         }
499
500         if (expired)
501                 rdev->bss_generation++;
502 }
503
504 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505 {
506         struct cfg80211_internal_bss *bss, *oldest = NULL;
507         bool ret;
508
509         lockdep_assert_held(&rdev->bss_lock);
510
511         list_for_each_entry(bss, &rdev->bss_list, list) {
512                 if (atomic_read(&bss->hold))
513                         continue;
514
515                 if (!list_empty(&bss->hidden_list) &&
516                     !bss->pub.hidden_beacon_bss)
517                         continue;
518
519                 if (oldest && time_before(oldest->ts, bss->ts))
520                         continue;
521                 oldest = bss;
522         }
523
524         if (WARN_ON(!oldest))
525                 return false;
526
527         /*
528          * The callers make sure to increase rdev->bss_generation if anything
529          * gets removed (and a new entry added), so there's no need to also do
530          * it here.
531          */
532
533         ret = __cfg80211_unlink_bss(rdev, oldest);
534         WARN_ON(!ret);
535         return ret;
536 }
537
538 static u8 cfg80211_parse_bss_param(u8 data,
539                                    struct cfg80211_colocated_ap *coloc_ap)
540 {
541         coloc_ap->oct_recommended =
542                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543         coloc_ap->same_ssid =
544                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545         coloc_ap->multi_bss =
546                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547         coloc_ap->transmitted_bssid =
548                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549         coloc_ap->unsolicited_probe =
550                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551         coloc_ap->colocated_ess =
552                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553
554         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555 }
556
557 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558                                     const struct element **elem, u32 *s_ssid)
559 {
560
561         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563                 return -EINVAL;
564
565         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566         return 0;
567 }
568
569 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570 {
571         struct cfg80211_colocated_ap *ap, *tmp_ap;
572
573         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574                 list_del(&ap->list);
575                 kfree(ap);
576         }
577 }
578
579 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580                                   const u8 *pos, u8 length,
581                                   const struct element *ssid_elem,
582                                   u32 s_ssid_tmp)
583 {
584         u8 bss_params;
585
586         entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587
588         /* The length is already verified by the caller to contain bss_params */
589         if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590                 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591
592                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593                 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594                 entry->short_ssid_valid = true;
595
596                 bss_params = tbtt_info->bss_params;
597
598                 /* Ignore disabled links */
599                 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600                         if (le16_get_bits(tbtt_info->mld_params.params,
601                                           IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602                                 return -EINVAL;
603                 }
604
605                 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606                                           psd_20))
607                         entry->psd_20 = tbtt_info->psd_20;
608         } else {
609                 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610
611                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612
613                 bss_params = tbtt_info->bss_params;
614
615                 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616                                           psd_20))
617                         entry->psd_20 = tbtt_info->psd_20;
618         }
619
620         /* ignore entries with invalid BSSID */
621         if (!is_valid_ether_addr(entry->bssid))
622                 return -EINVAL;
623
624         /* skip non colocated APs */
625         if (!cfg80211_parse_bss_param(bss_params, entry))
626                 return -EINVAL;
627
628         /* no information about the short ssid. Consider the entry valid
629          * for now. It would later be dropped in case there are explicit
630          * SSIDs that need to be matched
631          */
632         if (!entry->same_ssid && !entry->short_ssid_valid)
633                 return 0;
634
635         if (entry->same_ssid) {
636                 entry->short_ssid = s_ssid_tmp;
637                 entry->short_ssid_valid = true;
638
639                 /*
640                  * This is safe because we validate datalen in
641                  * cfg80211_parse_colocated_ap(), before calling this
642                  * function.
643                  */
644                 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645                 entry->ssid_len = ssid_elem->datalen;
646         }
647
648         return 0;
649 }
650
651 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652                                        struct list_head *list)
653 {
654         struct ieee80211_neighbor_ap_info *ap_info;
655         const struct element *elem, *ssid_elem;
656         const u8 *pos, *end;
657         u32 s_ssid_tmp;
658         int n_coloc = 0, ret;
659         LIST_HEAD(ap_list);
660
661         ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662         if (ret)
663                 return 0;
664
665         for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666                             ies->data, ies->len) {
667                 pos = elem->data;
668                 end = elem->data + elem->datalen;
669
670                 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671                 while (pos + sizeof(*ap_info) <= end) {
672                         enum nl80211_band band;
673                         int freq;
674                         u8 length, i, count;
675
676                         ap_info = (void *)pos;
677                         count = u8_get_bits(ap_info->tbtt_info_hdr,
678                                             IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679                         length = ap_info->tbtt_info_len;
680
681                         pos += sizeof(*ap_info);
682
683                         if (!ieee80211_operating_class_to_band(ap_info->op_class,
684                                                                &band))
685                                 break;
686
687                         freq = ieee80211_channel_to_frequency(ap_info->channel,
688                                                               band);
689
690                         if (end - pos < count * length)
691                                 break;
692
693                         if (u8_get_bits(ap_info->tbtt_info_hdr,
694                                         IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695                             IEEE80211_TBTT_INFO_TYPE_TBTT) {
696                                 pos += count * length;
697                                 continue;
698                         }
699
700                         /* TBTT info must include bss param + BSSID +
701                          * (short SSID or same_ssid bit to be set).
702                          * ignore other options, and move to the
703                          * next AP info
704                          */
705                         if (band != NL80211_BAND_6GHZ ||
706                             !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707                                                     bss_params) ||
708                               length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709                               length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710                                                     bss_params))) {
711                                 pos += count * length;
712                                 continue;
713                         }
714
715                         for (i = 0; i < count; i++) {
716                                 struct cfg80211_colocated_ap *entry;
717
718                                 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719                                                 GFP_ATOMIC);
720
721                                 if (!entry)
722                                         goto error;
723
724                                 entry->center_freq = freq;
725
726                                 if (!cfg80211_parse_ap_info(entry, pos, length,
727                                                             ssid_elem,
728                                                             s_ssid_tmp)) {
729                                         n_coloc++;
730                                         list_add_tail(&entry->list, &ap_list);
731                                 } else {
732                                         kfree(entry);
733                                 }
734
735                                 pos += length;
736                         }
737                 }
738
739 error:
740                 if (pos != end) {
741                         cfg80211_free_coloc_ap_list(&ap_list);
742                         return 0;
743                 }
744         }
745
746         list_splice_tail(&ap_list, list);
747         return n_coloc;
748 }
749
750 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751                                         struct ieee80211_channel *chan,
752                                         bool add_to_6ghz)
753 {
754         int i;
755         u32 n_channels = request->n_channels;
756         struct cfg80211_scan_6ghz_params *params =
757                 &request->scan_6ghz_params[request->n_6ghz_params];
758
759         for (i = 0; i < n_channels; i++) {
760                 if (request->channels[i] == chan) {
761                         if (add_to_6ghz)
762                                 params->channel_idx = i;
763                         return;
764                 }
765         }
766
767         request->channels[n_channels] = chan;
768         if (add_to_6ghz)
769                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770                         n_channels;
771
772         request->n_channels++;
773 }
774
775 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776                                      struct cfg80211_scan_request *request)
777 {
778         int i;
779         u32 s_ssid;
780
781         for (i = 0; i < request->n_ssids; i++) {
782                 /* wildcard ssid in the scan request */
783                 if (!request->ssids[i].ssid_len) {
784                         if (ap->multi_bss && !ap->transmitted_bssid)
785                                 continue;
786
787                         return true;
788                 }
789
790                 if (ap->ssid_len &&
791                     ap->ssid_len == request->ssids[i].ssid_len) {
792                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
793                                     ap->ssid_len))
794                                 return true;
795                 } else if (ap->short_ssid_valid) {
796                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797                                            request->ssids[i].ssid_len);
798
799                         if (ap->short_ssid == s_ssid)
800                                 return true;
801                 }
802         }
803
804         return false;
805 }
806
807 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808 {
809         u8 i;
810         struct cfg80211_colocated_ap *ap;
811         int n_channels, count = 0, err;
812         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813         LIST_HEAD(coloc_ap_list);
814         bool need_scan_psc = true;
815         const struct ieee80211_sband_iftype_data *iftd;
816
817         rdev_req->scan_6ghz = true;
818
819         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820                 return -EOPNOTSUPP;
821
822         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823                                                rdev_req->wdev->iftype);
824         if (!iftd || !iftd->he_cap.has_he)
825                 return -EOPNOTSUPP;
826
827         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830                 struct cfg80211_internal_bss *intbss;
831
832                 spin_lock_bh(&rdev->bss_lock);
833                 list_for_each_entry(intbss, &rdev->bss_list, list) {
834                         struct cfg80211_bss *res = &intbss->pub;
835                         const struct cfg80211_bss_ies *ies;
836                         const struct element *ssid_elem;
837                         struct cfg80211_colocated_ap *entry;
838                         u32 s_ssid_tmp;
839                         int ret;
840
841                         ies = rcu_access_pointer(res->ies);
842                         count += cfg80211_parse_colocated_ap(ies,
843                                                              &coloc_ap_list);
844
845                         /* In case the scan request specified a specific BSSID
846                          * and the BSS is found and operating on 6GHz band then
847                          * add this AP to the collocated APs list.
848                          * This is relevant for ML probe requests when the lower
849                          * band APs have not been discovered.
850                          */
851                         if (is_broadcast_ether_addr(rdev_req->bssid) ||
852                             !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853                             res->channel->band != NL80211_BAND_6GHZ)
854                                 continue;
855
856                         ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857                                                        &s_ssid_tmp);
858                         if (ret)
859                                 continue;
860
861                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862                                         GFP_ATOMIC);
863
864                         if (!entry)
865                                 continue;
866
867                         memcpy(entry->bssid, res->bssid, ETH_ALEN);
868                         entry->short_ssid = s_ssid_tmp;
869                         memcpy(entry->ssid, ssid_elem->data,
870                                ssid_elem->datalen);
871                         entry->ssid_len = ssid_elem->datalen;
872                         entry->short_ssid_valid = true;
873                         entry->center_freq = res->channel->center_freq;
874
875                         list_add_tail(&entry->list, &coloc_ap_list);
876                         count++;
877                 }
878                 spin_unlock_bh(&rdev->bss_lock);
879         }
880
881         request = kzalloc(struct_size(request, channels, n_channels) +
882                           sizeof(*request->scan_6ghz_params) * count +
883                           sizeof(*request->ssids) * rdev_req->n_ssids,
884                           GFP_KERNEL);
885         if (!request) {
886                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
887                 return -ENOMEM;
888         }
889
890         *request = *rdev_req;
891         request->n_channels = 0;
892         request->scan_6ghz_params =
893                 (void *)&request->channels[n_channels];
894
895         /*
896          * PSC channels should not be scanned in case of direct scan with 1 SSID
897          * and at least one of the reported co-located APs with same SSID
898          * indicating that all APs in the same ESS are co-located
899          */
900         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901                 list_for_each_entry(ap, &coloc_ap_list, list) {
902                         if (ap->colocated_ess &&
903                             cfg80211_find_ssid_match(ap, request)) {
904                                 need_scan_psc = false;
905                                 break;
906                         }
907                 }
908         }
909
910         /*
911          * add to the scan request the channels that need to be scanned
912          * regardless of the collocated APs (PSC channels or all channels
913          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914          */
915         for (i = 0; i < rdev_req->n_channels; i++) {
916                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917                     ((need_scan_psc &&
918                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920                         cfg80211_scan_req_add_chan(request,
921                                                    rdev_req->channels[i],
922                                                    false);
923                 }
924         }
925
926         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927                 goto skip;
928
929         list_for_each_entry(ap, &coloc_ap_list, list) {
930                 bool found = false;
931                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932                         &request->scan_6ghz_params[request->n_6ghz_params];
933                 struct ieee80211_channel *chan =
934                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935
936                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937                         continue;
938
939                 for (i = 0; i < rdev_req->n_channels; i++) {
940                         if (rdev_req->channels[i] == chan)
941                                 found = true;
942                 }
943
944                 if (!found)
945                         continue;
946
947                 if (request->n_ssids > 0 &&
948                     !cfg80211_find_ssid_match(ap, request))
949                         continue;
950
951                 if (!is_broadcast_ether_addr(request->bssid) &&
952                     !ether_addr_equal(request->bssid, ap->bssid))
953                         continue;
954
955                 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956                         continue;
957
958                 cfg80211_scan_req_add_chan(request, chan, true);
959                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960                 scan_6ghz_params->short_ssid = ap->short_ssid;
961                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963                 scan_6ghz_params->psd_20 = ap->psd_20;
964
965                 /*
966                  * If a PSC channel is added to the scan and 'need_scan_psc' is
967                  * set to false, then all the APs that the scan logic is
968                  * interested with on the channel are collocated and thus there
969                  * is no need to perform the initial PSC channel listen.
970                  */
971                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972                         scan_6ghz_params->psc_no_listen = true;
973
974                 request->n_6ghz_params++;
975         }
976
977 skip:
978         cfg80211_free_coloc_ap_list(&coloc_ap_list);
979
980         if (request->n_channels) {
981                 struct cfg80211_scan_request *old = rdev->int_scan_req;
982                 rdev->int_scan_req = request;
983
984                 /*
985                  * Add the ssids from the parent scan request to the new scan
986                  * request, so the driver would be able to use them in its
987                  * probe requests to discover hidden APs on PSC channels.
988                  */
989                 request->ssids = (void *)&request->channels[request->n_channels];
990                 request->n_ssids = rdev_req->n_ssids;
991                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992                        request->n_ssids);
993
994                 /*
995                  * If this scan follows a previous scan, save the scan start
996                  * info from the first part of the scan
997                  */
998                 if (old)
999                         rdev->int_scan_req->info = old->info;
1000
1001                 err = rdev_scan(rdev, request);
1002                 if (err) {
1003                         rdev->int_scan_req = old;
1004                         kfree(request);
1005                 } else {
1006                         kfree(old);
1007                 }
1008
1009                 return err;
1010         }
1011
1012         kfree(request);
1013         return -EINVAL;
1014 }
1015
1016 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017 {
1018         struct cfg80211_scan_request *request;
1019         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020         u32 n_channels = 0, idx, i;
1021
1022         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023                 return rdev_scan(rdev, rdev_req);
1024
1025         for (i = 0; i < rdev_req->n_channels; i++) {
1026                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027                         n_channels++;
1028         }
1029
1030         if (!n_channels)
1031                 return cfg80211_scan_6ghz(rdev);
1032
1033         request = kzalloc(struct_size(request, channels, n_channels),
1034                           GFP_KERNEL);
1035         if (!request)
1036                 return -ENOMEM;
1037
1038         *request = *rdev_req;
1039         request->n_channels = n_channels;
1040
1041         for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043                         request->channels[idx++] = rdev_req->channels[i];
1044         }
1045
1046         rdev_req->scan_6ghz = false;
1047         rdev->int_scan_req = request;
1048         return rdev_scan(rdev, request);
1049 }
1050
1051 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052                            bool send_message)
1053 {
1054         struct cfg80211_scan_request *request, *rdev_req;
1055         struct wireless_dev *wdev;
1056         struct sk_buff *msg;
1057 #ifdef CONFIG_CFG80211_WEXT
1058         union iwreq_data wrqu;
1059 #endif
1060
1061         lockdep_assert_held(&rdev->wiphy.mtx);
1062
1063         if (rdev->scan_msg) {
1064                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065                 rdev->scan_msg = NULL;
1066                 return;
1067         }
1068
1069         rdev_req = rdev->scan_req;
1070         if (!rdev_req)
1071                 return;
1072
1073         wdev = rdev_req->wdev;
1074         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075
1076         if (wdev_running(wdev) &&
1077             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078             !rdev_req->scan_6ghz && !request->info.aborted &&
1079             !cfg80211_scan_6ghz(rdev))
1080                 return;
1081
1082         /*
1083          * This must be before sending the other events!
1084          * Otherwise, wpa_supplicant gets completely confused with
1085          * wext events.
1086          */
1087         if (wdev->netdev)
1088                 cfg80211_sme_scan_done(wdev->netdev);
1089
1090         if (!request->info.aborted &&
1091             request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092                 /* flush entries from previous scans */
1093                 spin_lock_bh(&rdev->bss_lock);
1094                 __cfg80211_bss_expire(rdev, request->scan_start);
1095                 spin_unlock_bh(&rdev->bss_lock);
1096         }
1097
1098         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099
1100 #ifdef CONFIG_CFG80211_WEXT
1101         if (wdev->netdev && !request->info.aborted) {
1102                 memset(&wrqu, 0, sizeof(wrqu));
1103
1104                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105         }
1106 #endif
1107
1108         dev_put(wdev->netdev);
1109
1110         kfree(rdev->int_scan_req);
1111         rdev->int_scan_req = NULL;
1112
1113         kfree(rdev->scan_req);
1114         rdev->scan_req = NULL;
1115
1116         if (!send_message)
1117                 rdev->scan_msg = msg;
1118         else
1119                 nl80211_send_scan_msg(rdev, msg);
1120 }
1121
1122 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123 {
1124         ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125 }
1126
1127 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128                         struct cfg80211_scan_info *info)
1129 {
1130         struct cfg80211_scan_info old_info = request->info;
1131
1132         trace_cfg80211_scan_done(request, info);
1133         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135
1136         request->info = *info;
1137
1138         /*
1139          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140          * be of the first part. In such a case old_info.scan_start_tsf should
1141          * be non zero.
1142          */
1143         if (request->scan_6ghz && old_info.scan_start_tsf) {
1144                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1145                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146                        sizeof(request->info.tsf_bssid));
1147         }
1148
1149         request->notified = true;
1150         wiphy_work_queue(request->wiphy,
1151                          &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152 }
1153 EXPORT_SYMBOL(cfg80211_scan_done);
1154
1155 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156                                  struct cfg80211_sched_scan_request *req)
1157 {
1158         lockdep_assert_held(&rdev->wiphy.mtx);
1159
1160         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161 }
1162
1163 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164                                         struct cfg80211_sched_scan_request *req)
1165 {
1166         lockdep_assert_held(&rdev->wiphy.mtx);
1167
1168         list_del_rcu(&req->list);
1169         kfree_rcu(req, rcu_head);
1170 }
1171
1172 static struct cfg80211_sched_scan_request *
1173 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174 {
1175         struct cfg80211_sched_scan_request *pos;
1176
1177         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1179                 if (pos->reqid == reqid)
1180                         return pos;
1181         }
1182         return NULL;
1183 }
1184
1185 /*
1186  * Determines if a scheduled scan request can be handled. When a legacy
1187  * scheduled scan is running no other scheduled scan is allowed regardless
1188  * whether the request is for legacy or multi-support scan. When a multi-support
1189  * scheduled scan is running a request for legacy scan is not allowed. In this
1190  * case a request for multi-support scan can be handled if resources are
1191  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192  */
1193 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194                                      bool want_multi)
1195 {
1196         struct cfg80211_sched_scan_request *pos;
1197         int i = 0;
1198
1199         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200                 /* request id zero means legacy in progress */
1201                 if (!i && !pos->reqid)
1202                         return -EINPROGRESS;
1203                 i++;
1204         }
1205
1206         if (i) {
1207                 /* no legacy allowed when multi request(s) are active */
1208                 if (!want_multi)
1209                         return -EINPROGRESS;
1210
1211                 /* resource limit reached */
1212                 if (i == rdev->wiphy.max_sched_scan_reqs)
1213                         return -ENOSPC;
1214         }
1215         return 0;
1216 }
1217
1218 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219 {
1220         struct cfg80211_registered_device *rdev;
1221         struct cfg80211_sched_scan_request *req, *tmp;
1222
1223         rdev = container_of(work, struct cfg80211_registered_device,
1224                            sched_scan_res_wk);
1225
1226         wiphy_lock(&rdev->wiphy);
1227         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228                 if (req->report_results) {
1229                         req->report_results = false;
1230                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231                                 /* flush entries from previous scans */
1232                                 spin_lock_bh(&rdev->bss_lock);
1233                                 __cfg80211_bss_expire(rdev, req->scan_start);
1234                                 spin_unlock_bh(&rdev->bss_lock);
1235                                 req->scan_start = jiffies;
1236                         }
1237                         nl80211_send_sched_scan(req,
1238                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1239                 }
1240         }
1241         wiphy_unlock(&rdev->wiphy);
1242 }
1243
1244 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245 {
1246         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247         struct cfg80211_sched_scan_request *request;
1248
1249         trace_cfg80211_sched_scan_results(wiphy, reqid);
1250         /* ignore if we're not scanning */
1251
1252         rcu_read_lock();
1253         request = cfg80211_find_sched_scan_req(rdev, reqid);
1254         if (request) {
1255                 request->report_results = true;
1256                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257         }
1258         rcu_read_unlock();
1259 }
1260 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261
1262 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263 {
1264         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265
1266         lockdep_assert_held(&wiphy->mtx);
1267
1268         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269
1270         __cfg80211_stop_sched_scan(rdev, reqid, true);
1271 }
1272 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273
1274 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275 {
1276         wiphy_lock(wiphy);
1277         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278         wiphy_unlock(wiphy);
1279 }
1280 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281
1282 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283                                  struct cfg80211_sched_scan_request *req,
1284                                  bool driver_initiated)
1285 {
1286         lockdep_assert_held(&rdev->wiphy.mtx);
1287
1288         if (!driver_initiated) {
1289                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290                 if (err)
1291                         return err;
1292         }
1293
1294         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295
1296         cfg80211_del_sched_scan_req(rdev, req);
1297
1298         return 0;
1299 }
1300
1301 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302                                u64 reqid, bool driver_initiated)
1303 {
1304         struct cfg80211_sched_scan_request *sched_scan_req;
1305
1306         lockdep_assert_held(&rdev->wiphy.mtx);
1307
1308         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309         if (!sched_scan_req)
1310                 return -ENOENT;
1311
1312         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313                                             driver_initiated);
1314 }
1315
1316 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317                       unsigned long age_secs)
1318 {
1319         struct cfg80211_internal_bss *bss;
1320         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321
1322         spin_lock_bh(&rdev->bss_lock);
1323         list_for_each_entry(bss, &rdev->bss_list, list)
1324                 bss->ts -= age_jiffies;
1325         spin_unlock_bh(&rdev->bss_lock);
1326 }
1327
1328 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329 {
1330         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331 }
1332
1333 void cfg80211_bss_flush(struct wiphy *wiphy)
1334 {
1335         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336
1337         spin_lock_bh(&rdev->bss_lock);
1338         __cfg80211_bss_expire(rdev, jiffies);
1339         spin_unlock_bh(&rdev->bss_lock);
1340 }
1341 EXPORT_SYMBOL(cfg80211_bss_flush);
1342
1343 const struct element *
1344 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345                          const u8 *match, unsigned int match_len,
1346                          unsigned int match_offset)
1347 {
1348         const struct element *elem;
1349
1350         for_each_element_id(elem, eid, ies, len) {
1351                 if (elem->datalen >= match_offset + match_len &&
1352                     !memcmp(elem->data + match_offset, match, match_len))
1353                         return elem;
1354         }
1355
1356         return NULL;
1357 }
1358 EXPORT_SYMBOL(cfg80211_find_elem_match);
1359
1360 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361                                                 const u8 *ies,
1362                                                 unsigned int len)
1363 {
1364         const struct element *elem;
1365         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367
1368         if (WARN_ON(oui_type > 0xff))
1369                 return NULL;
1370
1371         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372                                         match, match_len, 0);
1373
1374         if (!elem || elem->datalen < 4)
1375                 return NULL;
1376
1377         return elem;
1378 }
1379 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380
1381 /**
1382  * enum bss_compare_mode - BSS compare mode
1383  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386  */
1387 enum bss_compare_mode {
1388         BSS_CMP_REGULAR,
1389         BSS_CMP_HIDE_ZLEN,
1390         BSS_CMP_HIDE_NUL,
1391 };
1392
1393 static int cmp_bss(struct cfg80211_bss *a,
1394                    struct cfg80211_bss *b,
1395                    enum bss_compare_mode mode)
1396 {
1397         const struct cfg80211_bss_ies *a_ies, *b_ies;
1398         const u8 *ie1 = NULL;
1399         const u8 *ie2 = NULL;
1400         int i, r;
1401
1402         if (a->channel != b->channel)
1403                 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404                        (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405
1406         a_ies = rcu_access_pointer(a->ies);
1407         if (!a_ies)
1408                 return -1;
1409         b_ies = rcu_access_pointer(b->ies);
1410         if (!b_ies)
1411                 return 1;
1412
1413         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415                                        a_ies->data, a_ies->len);
1416         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418                                        b_ies->data, b_ies->len);
1419         if (ie1 && ie2) {
1420                 int mesh_id_cmp;
1421
1422                 if (ie1[1] == ie2[1])
1423                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424                 else
1425                         mesh_id_cmp = ie2[1] - ie1[1];
1426
1427                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428                                        a_ies->data, a_ies->len);
1429                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430                                        b_ies->data, b_ies->len);
1431                 if (ie1 && ie2) {
1432                         if (mesh_id_cmp)
1433                                 return mesh_id_cmp;
1434                         if (ie1[1] != ie2[1])
1435                                 return ie2[1] - ie1[1];
1436                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437                 }
1438         }
1439
1440         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441         if (r)
1442                 return r;
1443
1444         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446
1447         if (!ie1 && !ie2)
1448                 return 0;
1449
1450         /*
1451          * Note that with "hide_ssid", the function returns a match if
1452          * the already-present BSS ("b") is a hidden SSID beacon for
1453          * the new BSS ("a").
1454          */
1455
1456         /* sort missing IE before (left of) present IE */
1457         if (!ie1)
1458                 return -1;
1459         if (!ie2)
1460                 return 1;
1461
1462         switch (mode) {
1463         case BSS_CMP_HIDE_ZLEN:
1464                 /*
1465                  * In ZLEN mode we assume the BSS entry we're
1466                  * looking for has a zero-length SSID. So if
1467                  * the one we're looking at right now has that,
1468                  * return 0. Otherwise, return the difference
1469                  * in length, but since we're looking for the
1470                  * 0-length it's really equivalent to returning
1471                  * the length of the one we're looking at.
1472                  *
1473                  * No content comparison is needed as we assume
1474                  * the content length is zero.
1475                  */
1476                 return ie2[1];
1477         case BSS_CMP_REGULAR:
1478         default:
1479                 /* sort by length first, then by contents */
1480                 if (ie1[1] != ie2[1])
1481                         return ie2[1] - ie1[1];
1482                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483         case BSS_CMP_HIDE_NUL:
1484                 if (ie1[1] != ie2[1])
1485                         return ie2[1] - ie1[1];
1486                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487                 for (i = 0; i < ie2[1]; i++)
1488                         if (ie2[i + 2])
1489                                 return -1;
1490                 return 0;
1491         }
1492 }
1493
1494 static bool cfg80211_bss_type_match(u16 capability,
1495                                     enum nl80211_band band,
1496                                     enum ieee80211_bss_type bss_type)
1497 {
1498         bool ret = true;
1499         u16 mask, val;
1500
1501         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502                 return ret;
1503
1504         if (band == NL80211_BAND_60GHZ) {
1505                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506                 switch (bss_type) {
1507                 case IEEE80211_BSS_TYPE_ESS:
1508                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509                         break;
1510                 case IEEE80211_BSS_TYPE_PBSS:
1511                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512                         break;
1513                 case IEEE80211_BSS_TYPE_IBSS:
1514                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515                         break;
1516                 default:
1517                         return false;
1518                 }
1519         } else {
1520                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521                 switch (bss_type) {
1522                 case IEEE80211_BSS_TYPE_ESS:
1523                         val = WLAN_CAPABILITY_ESS;
1524                         break;
1525                 case IEEE80211_BSS_TYPE_IBSS:
1526                         val = WLAN_CAPABILITY_IBSS;
1527                         break;
1528                 case IEEE80211_BSS_TYPE_MBSS:
1529                         val = 0;
1530                         break;
1531                 default:
1532                         return false;
1533                 }
1534         }
1535
1536         ret = ((capability & mask) == val);
1537         return ret;
1538 }
1539
1540 /* Returned bss is reference counted and must be cleaned up appropriately. */
1541 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542                                         struct ieee80211_channel *channel,
1543                                         const u8 *bssid,
1544                                         const u8 *ssid, size_t ssid_len,
1545                                         enum ieee80211_bss_type bss_type,
1546                                         enum ieee80211_privacy privacy,
1547                                         u32 use_for)
1548 {
1549         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550         struct cfg80211_internal_bss *bss, *res = NULL;
1551         unsigned long now = jiffies;
1552         int bss_privacy;
1553
1554         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555                                privacy);
1556
1557         spin_lock_bh(&rdev->bss_lock);
1558
1559         list_for_each_entry(bss, &rdev->bss_list, list) {
1560                 if (!cfg80211_bss_type_match(bss->pub.capability,
1561                                              bss->pub.channel->band, bss_type))
1562                         continue;
1563
1564                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567                         continue;
1568                 if (channel && bss->pub.channel != channel)
1569                         continue;
1570                 if (!is_valid_ether_addr(bss->pub.bssid))
1571                         continue;
1572                 if ((bss->pub.use_for & use_for) != use_for)
1573                         continue;
1574                 /* Don't get expired BSS structs */
1575                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576                     !atomic_read(&bss->hold))
1577                         continue;
1578                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579                         res = bss;
1580                         bss_ref_get(rdev, res);
1581                         break;
1582                 }
1583         }
1584
1585         spin_unlock_bh(&rdev->bss_lock);
1586         if (!res)
1587                 return NULL;
1588         trace_cfg80211_return_bss(&res->pub);
1589         return &res->pub;
1590 }
1591 EXPORT_SYMBOL(__cfg80211_get_bss);
1592
1593 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594                           struct cfg80211_internal_bss *bss)
1595 {
1596         struct rb_node **p = &rdev->bss_tree.rb_node;
1597         struct rb_node *parent = NULL;
1598         struct cfg80211_internal_bss *tbss;
1599         int cmp;
1600
1601         while (*p) {
1602                 parent = *p;
1603                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604
1605                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606
1607                 if (WARN_ON(!cmp)) {
1608                         /* will sort of leak this BSS */
1609                         return;
1610                 }
1611
1612                 if (cmp < 0)
1613                         p = &(*p)->rb_left;
1614                 else
1615                         p = &(*p)->rb_right;
1616         }
1617
1618         rb_link_node(&bss->rbn, parent, p);
1619         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620 }
1621
1622 static struct cfg80211_internal_bss *
1623 rb_find_bss(struct cfg80211_registered_device *rdev,
1624             struct cfg80211_internal_bss *res,
1625             enum bss_compare_mode mode)
1626 {
1627         struct rb_node *n = rdev->bss_tree.rb_node;
1628         struct cfg80211_internal_bss *bss;
1629         int r;
1630
1631         while (n) {
1632                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633                 r = cmp_bss(&res->pub, &bss->pub, mode);
1634
1635                 if (r == 0)
1636                         return bss;
1637                 else if (r < 0)
1638                         n = n->rb_left;
1639                 else
1640                         n = n->rb_right;
1641         }
1642
1643         return NULL;
1644 }
1645
1646 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647                                    struct cfg80211_internal_bss *new)
1648 {
1649         const struct cfg80211_bss_ies *ies;
1650         struct cfg80211_internal_bss *bss;
1651         const u8 *ie;
1652         int i, ssidlen;
1653         u8 fold = 0;
1654         u32 n_entries = 0;
1655
1656         ies = rcu_access_pointer(new->pub.beacon_ies);
1657         if (WARN_ON(!ies))
1658                 return false;
1659
1660         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661         if (!ie) {
1662                 /* nothing to do */
1663                 return true;
1664         }
1665
1666         ssidlen = ie[1];
1667         for (i = 0; i < ssidlen; i++)
1668                 fold |= ie[2 + i];
1669
1670         if (fold) {
1671                 /* not a hidden SSID */
1672                 return true;
1673         }
1674
1675         /* This is the bad part ... */
1676
1677         list_for_each_entry(bss, &rdev->bss_list, list) {
1678                 /*
1679                  * we're iterating all the entries anyway, so take the
1680                  * opportunity to validate the list length accounting
1681                  */
1682                 n_entries++;
1683
1684                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685                         continue;
1686                 if (bss->pub.channel != new->pub.channel)
1687                         continue;
1688                 if (rcu_access_pointer(bss->pub.beacon_ies))
1689                         continue;
1690                 ies = rcu_access_pointer(bss->pub.ies);
1691                 if (!ies)
1692                         continue;
1693                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694                 if (!ie)
1695                         continue;
1696                 if (ssidlen && ie[1] != ssidlen)
1697                         continue;
1698                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699                         continue;
1700                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701                         list_del(&bss->hidden_list);
1702                 /* combine them */
1703                 list_add(&bss->hidden_list, &new->hidden_list);
1704                 bss->pub.hidden_beacon_bss = &new->pub;
1705                 new->refcount += bss->refcount;
1706                 rcu_assign_pointer(bss->pub.beacon_ies,
1707                                    new->pub.beacon_ies);
1708         }
1709
1710         WARN_ONCE(n_entries != rdev->bss_entries,
1711                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1712                   rdev->bss_entries, n_entries);
1713
1714         return true;
1715 }
1716
1717 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718                                          const struct cfg80211_bss_ies *new_ies,
1719                                          const struct cfg80211_bss_ies *old_ies)
1720 {
1721         struct cfg80211_internal_bss *bss;
1722
1723         /* Assign beacon IEs to all sub entries */
1724         list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725                 const struct cfg80211_bss_ies *ies;
1726
1727                 ies = rcu_access_pointer(bss->pub.beacon_ies);
1728                 WARN_ON(ies != old_ies);
1729
1730                 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731         }
1732 }
1733
1734 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1735                                       struct cfg80211_internal_bss *known,
1736                                       const struct cfg80211_bss_ies *old)
1737 {
1738         const struct ieee80211_ext_chansw_ie *ecsa;
1739         const struct element *elem_new, *elem_old;
1740         const struct cfg80211_bss_ies *new, *bcn;
1741
1742         if (known->pub.proberesp_ecsa_stuck)
1743                 return;
1744
1745         new = rcu_dereference_protected(known->pub.proberesp_ies,
1746                                         lockdep_is_held(&rdev->bss_lock));
1747         if (WARN_ON(!new))
1748                 return;
1749
1750         if (new->tsf - old->tsf < USEC_PER_SEC)
1751                 return;
1752
1753         elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1754                                       old->data, old->len);
1755         if (!elem_old)
1756                 return;
1757
1758         elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1759                                       new->data, new->len);
1760         if (!elem_new)
1761                 return;
1762
1763         bcn = rcu_dereference_protected(known->pub.beacon_ies,
1764                                         lockdep_is_held(&rdev->bss_lock));
1765         if (bcn &&
1766             cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1767                                bcn->data, bcn->len))
1768                 return;
1769
1770         if (elem_new->datalen != elem_old->datalen)
1771                 return;
1772         if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1773                 return;
1774         if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1775                 return;
1776
1777         ecsa = (void *)elem_new->data;
1778
1779         if (!ecsa->mode)
1780                 return;
1781
1782         if (ecsa->new_ch_num !=
1783             ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1784                 return;
1785
1786         known->pub.proberesp_ecsa_stuck = 1;
1787 }
1788
1789 static bool
1790 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1791                           struct cfg80211_internal_bss *known,
1792                           struct cfg80211_internal_bss *new,
1793                           bool signal_valid)
1794 {
1795         lockdep_assert_held(&rdev->bss_lock);
1796
1797         /* Update IEs */
1798         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1799                 const struct cfg80211_bss_ies *old;
1800
1801                 old = rcu_access_pointer(known->pub.proberesp_ies);
1802
1803                 rcu_assign_pointer(known->pub.proberesp_ies,
1804                                    new->pub.proberesp_ies);
1805                 /* Override possible earlier Beacon frame IEs */
1806                 rcu_assign_pointer(known->pub.ies,
1807                                    new->pub.proberesp_ies);
1808                 if (old) {
1809                         cfg80211_check_stuck_ecsa(rdev, known, old);
1810                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1811                 }
1812         }
1813
1814         if (rcu_access_pointer(new->pub.beacon_ies)) {
1815                 const struct cfg80211_bss_ies *old;
1816
1817                 if (known->pub.hidden_beacon_bss &&
1818                     !list_empty(&known->hidden_list)) {
1819                         const struct cfg80211_bss_ies *f;
1820
1821                         /* The known BSS struct is one of the probe
1822                          * response members of a group, but we're
1823                          * receiving a beacon (beacon_ies in the new
1824                          * bss is used). This can only mean that the
1825                          * AP changed its beacon from not having an
1826                          * SSID to showing it, which is confusing so
1827                          * drop this information.
1828                          */
1829
1830                         f = rcu_access_pointer(new->pub.beacon_ies);
1831                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1832                         return false;
1833                 }
1834
1835                 old = rcu_access_pointer(known->pub.beacon_ies);
1836
1837                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1838
1839                 /* Override IEs if they were from a beacon before */
1840                 if (old == rcu_access_pointer(known->pub.ies))
1841                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1842
1843                 cfg80211_update_hidden_bsses(known,
1844                                              rcu_access_pointer(new->pub.beacon_ies),
1845                                              old);
1846
1847                 if (old)
1848                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1849         }
1850
1851         known->pub.beacon_interval = new->pub.beacon_interval;
1852
1853         /* don't update the signal if beacon was heard on
1854          * adjacent channel.
1855          */
1856         if (signal_valid)
1857                 known->pub.signal = new->pub.signal;
1858         known->pub.capability = new->pub.capability;
1859         known->ts = new->ts;
1860         known->ts_boottime = new->ts_boottime;
1861         known->parent_tsf = new->parent_tsf;
1862         known->pub.chains = new->pub.chains;
1863         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1864                IEEE80211_MAX_CHAINS);
1865         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1866         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1867         known->pub.bssid_index = new->pub.bssid_index;
1868         known->pub.use_for &= new->pub.use_for;
1869         known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1870
1871         return true;
1872 }
1873
1874 /* Returned bss is reference counted and must be cleaned up appropriately. */
1875 static struct cfg80211_internal_bss *
1876 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1877                       struct cfg80211_internal_bss *tmp,
1878                       bool signal_valid, unsigned long ts)
1879 {
1880         struct cfg80211_internal_bss *found = NULL;
1881         struct cfg80211_bss_ies *ies;
1882
1883         if (WARN_ON(!tmp->pub.channel))
1884                 goto free_ies;
1885
1886         tmp->ts = ts;
1887
1888         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1889                 goto free_ies;
1890
1891         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1892
1893         if (found) {
1894                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1895                         return NULL;
1896         } else {
1897                 struct cfg80211_internal_bss *new;
1898                 struct cfg80211_internal_bss *hidden;
1899
1900                 /*
1901                  * create a copy -- the "res" variable that is passed in
1902                  * is allocated on the stack since it's not needed in the
1903                  * more common case of an update
1904                  */
1905                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1906                               GFP_ATOMIC);
1907                 if (!new)
1908                         goto free_ies;
1909                 memcpy(new, tmp, sizeof(*new));
1910                 new->refcount = 1;
1911                 INIT_LIST_HEAD(&new->hidden_list);
1912                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1913                 /* we'll set this later if it was non-NULL */
1914                 new->pub.transmitted_bss = NULL;
1915
1916                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1917                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1918                         if (!hidden)
1919                                 hidden = rb_find_bss(rdev, tmp,
1920                                                      BSS_CMP_HIDE_NUL);
1921                         if (hidden) {
1922                                 new->pub.hidden_beacon_bss = &hidden->pub;
1923                                 list_add(&new->hidden_list,
1924                                          &hidden->hidden_list);
1925                                 hidden->refcount++;
1926
1927                                 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1928                                 rcu_assign_pointer(new->pub.beacon_ies,
1929                                                    hidden->pub.beacon_ies);
1930                                 if (ies)
1931                                         kfree_rcu(ies, rcu_head);
1932                         }
1933                 } else {
1934                         /*
1935                          * Ok so we found a beacon, and don't have an entry. If
1936                          * it's a beacon with hidden SSID, we might be in for an
1937                          * expensive search for any probe responses that should
1938                          * be grouped with this beacon for updates ...
1939                          */
1940                         if (!cfg80211_combine_bsses(rdev, new)) {
1941                                 bss_ref_put(rdev, new);
1942                                 return NULL;
1943                         }
1944                 }
1945
1946                 if (rdev->bss_entries >= bss_entries_limit &&
1947                     !cfg80211_bss_expire_oldest(rdev)) {
1948                         bss_ref_put(rdev, new);
1949                         return NULL;
1950                 }
1951
1952                 /* This must be before the call to bss_ref_get */
1953                 if (tmp->pub.transmitted_bss) {
1954                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1955                         bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1956                 }
1957
1958                 list_add_tail(&new->list, &rdev->bss_list);
1959                 rdev->bss_entries++;
1960                 rb_insert_bss(rdev, new);
1961                 found = new;
1962         }
1963
1964         rdev->bss_generation++;
1965         bss_ref_get(rdev, found);
1966
1967         return found;
1968
1969 free_ies:
1970         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1971         if (ies)
1972                 kfree_rcu(ies, rcu_head);
1973         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1974         if (ies)
1975                 kfree_rcu(ies, rcu_head);
1976
1977         return NULL;
1978 }
1979
1980 struct cfg80211_internal_bss *
1981 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1982                     struct cfg80211_internal_bss *tmp,
1983                     bool signal_valid, unsigned long ts)
1984 {
1985         struct cfg80211_internal_bss *res;
1986
1987         spin_lock_bh(&rdev->bss_lock);
1988         res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1989         spin_unlock_bh(&rdev->bss_lock);
1990
1991         return res;
1992 }
1993
1994 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1995                                     enum nl80211_band band)
1996 {
1997         const struct element *tmp;
1998
1999         if (band == NL80211_BAND_6GHZ) {
2000                 struct ieee80211_he_operation *he_oper;
2001
2002                 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2003                                              ielen);
2004                 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2005                     tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2006                         const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2007
2008                         he_oper = (void *)&tmp->data[1];
2009
2010                         he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2011                         if (!he_6ghz_oper)
2012                                 return -1;
2013
2014                         return he_6ghz_oper->primary;
2015                 }
2016         } else if (band == NL80211_BAND_S1GHZ) {
2017                 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2018                 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2019                         struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2020
2021                         return s1gop->oper_ch;
2022                 }
2023         } else {
2024                 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2025                 if (tmp && tmp->datalen == 1)
2026                         return tmp->data[0];
2027
2028                 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2029                 if (tmp &&
2030                     tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2031                         struct ieee80211_ht_operation *htop = (void *)tmp->data;
2032
2033                         return htop->primary_chan;
2034                 }
2035         }
2036
2037         return -1;
2038 }
2039 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2040
2041 /*
2042  * Update RX channel information based on the available frame payload
2043  * information. This is mainly for the 2.4 GHz band where frames can be received
2044  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2045  * element to indicate the current (transmitting) channel, but this might also
2046  * be needed on other bands if RX frequency does not match with the actual
2047  * operating channel of a BSS, or if the AP reports a different primary channel.
2048  */
2049 static struct ieee80211_channel *
2050 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2051                          struct ieee80211_channel *channel)
2052 {
2053         u32 freq;
2054         int channel_number;
2055         struct ieee80211_channel *alt_channel;
2056
2057         channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2058                                                          channel->band);
2059
2060         if (channel_number < 0) {
2061                 /* No channel information in frame payload */
2062                 return channel;
2063         }
2064
2065         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2066
2067         /*
2068          * Frame info (beacon/prob res) is the same as received channel,
2069          * no need for further processing.
2070          */
2071         if (freq == ieee80211_channel_to_khz(channel))
2072                 return channel;
2073
2074         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2075         if (!alt_channel) {
2076                 if (channel->band == NL80211_BAND_2GHZ ||
2077                     channel->band == NL80211_BAND_6GHZ) {
2078                         /*
2079                          * Better not allow unexpected channels when that could
2080                          * be going beyond the 1-11 range (e.g., discovering
2081                          * BSS on channel 12 when radio is configured for
2082                          * channel 11) or beyond the 6 GHz channel range.
2083                          */
2084                         return NULL;
2085                 }
2086
2087                 /* No match for the payload channel number - ignore it */
2088                 return channel;
2089         }
2090
2091         /*
2092          * Use the channel determined through the payload channel number
2093          * instead of the RX channel reported by the driver.
2094          */
2095         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2096                 return NULL;
2097         return alt_channel;
2098 }
2099
2100 struct cfg80211_inform_single_bss_data {
2101         struct cfg80211_inform_bss *drv_data;
2102         enum cfg80211_bss_frame_type ftype;
2103         struct ieee80211_channel *channel;
2104         u8 bssid[ETH_ALEN];
2105         u64 tsf;
2106         u16 capability;
2107         u16 beacon_interval;
2108         const u8 *ie;
2109         size_t ielen;
2110
2111         enum {
2112                 BSS_SOURCE_DIRECT = 0,
2113                 BSS_SOURCE_MBSSID,
2114                 BSS_SOURCE_STA_PROFILE,
2115         } bss_source;
2116         /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2117         struct cfg80211_bss *source_bss;
2118         u8 max_bssid_indicator;
2119         u8 bssid_index;
2120
2121         u8 use_for;
2122         u64 cannot_use_reasons;
2123 };
2124
2125 /* Returned bss is reference counted and must be cleaned up appropriately. */
2126 static struct cfg80211_bss *
2127 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2128                                 struct cfg80211_inform_single_bss_data *data,
2129                                 gfp_t gfp)
2130 {
2131         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2132         struct cfg80211_inform_bss *drv_data = data->drv_data;
2133         struct cfg80211_bss_ies *ies;
2134         struct ieee80211_channel *channel;
2135         struct cfg80211_internal_bss tmp = {}, *res;
2136         int bss_type;
2137         bool signal_valid;
2138         unsigned long ts;
2139
2140         if (WARN_ON(!wiphy))
2141                 return NULL;
2142
2143         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2144                     (drv_data->signal < 0 || drv_data->signal > 100)))
2145                 return NULL;
2146
2147         if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2148                 return NULL;
2149
2150         channel = data->channel;
2151         if (!channel)
2152                 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2153                                                    drv_data->chan);
2154         if (!channel)
2155                 return NULL;
2156
2157         memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2158         tmp.pub.channel = channel;
2159         if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2160                 tmp.pub.signal = drv_data->signal;
2161         else
2162                 tmp.pub.signal = 0;
2163         tmp.pub.beacon_interval = data->beacon_interval;
2164         tmp.pub.capability = data->capability;
2165         tmp.ts_boottime = drv_data->boottime_ns;
2166         tmp.parent_tsf = drv_data->parent_tsf;
2167         ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2168         tmp.pub.use_for = data->use_for;
2169         tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2170
2171         if (data->bss_source != BSS_SOURCE_DIRECT) {
2172                 tmp.pub.transmitted_bss = data->source_bss;
2173                 ts = bss_from_pub(data->source_bss)->ts;
2174                 tmp.pub.bssid_index = data->bssid_index;
2175                 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2176         } else {
2177                 ts = jiffies;
2178
2179                 if (channel->band == NL80211_BAND_60GHZ) {
2180                         bss_type = data->capability &
2181                                    WLAN_CAPABILITY_DMG_TYPE_MASK;
2182                         if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2183                             bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2184                                 regulatory_hint_found_beacon(wiphy, channel,
2185                                                              gfp);
2186                 } else {
2187                         if (data->capability & WLAN_CAPABILITY_ESS)
2188                                 regulatory_hint_found_beacon(wiphy, channel,
2189                                                              gfp);
2190                 }
2191         }
2192
2193         /*
2194          * If we do not know here whether the IEs are from a Beacon or Probe
2195          * Response frame, we need to pick one of the options and only use it
2196          * with the driver that does not provide the full Beacon/Probe Response
2197          * frame. Use Beacon frame pointer to avoid indicating that this should
2198          * override the IEs pointer should we have received an earlier
2199          * indication of Probe Response data.
2200          */
2201         ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2202         if (!ies)
2203                 return NULL;
2204         ies->len = data->ielen;
2205         ies->tsf = data->tsf;
2206         ies->from_beacon = false;
2207         memcpy(ies->data, data->ie, data->ielen);
2208
2209         switch (data->ftype) {
2210         case CFG80211_BSS_FTYPE_BEACON:
2211                 ies->from_beacon = true;
2212                 fallthrough;
2213         case CFG80211_BSS_FTYPE_UNKNOWN:
2214                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2215                 break;
2216         case CFG80211_BSS_FTYPE_PRESP:
2217                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2218                 break;
2219         }
2220         rcu_assign_pointer(tmp.pub.ies, ies);
2221
2222         signal_valid = drv_data->chan == channel;
2223         spin_lock_bh(&rdev->bss_lock);
2224         res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2225         if (!res)
2226                 goto drop;
2227
2228         rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2229
2230         if (data->bss_source == BSS_SOURCE_MBSSID) {
2231                 /* this is a nontransmitting bss, we need to add it to
2232                  * transmitting bss' list if it is not there
2233                  */
2234                 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2235                         if (__cfg80211_unlink_bss(rdev, res)) {
2236                                 rdev->bss_generation++;
2237                                 res = NULL;
2238                         }
2239                 }
2240
2241                 if (!res)
2242                         goto drop;
2243         }
2244         spin_unlock_bh(&rdev->bss_lock);
2245
2246         trace_cfg80211_return_bss(&res->pub);
2247         /* __cfg80211_bss_update gives us a referenced result */
2248         return &res->pub;
2249
2250 drop:
2251         spin_unlock_bh(&rdev->bss_lock);
2252         return NULL;
2253 }
2254
2255 static const struct element
2256 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2257                                    const struct element *mbssid_elem,
2258                                    const struct element *sub_elem)
2259 {
2260         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2261         const struct element *next_mbssid;
2262         const struct element *next_sub;
2263
2264         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2265                                          mbssid_end,
2266                                          ielen - (mbssid_end - ie));
2267
2268         /*
2269          * If it is not the last subelement in current MBSSID IE or there isn't
2270          * a next MBSSID IE - profile is complete.
2271         */
2272         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2273             !next_mbssid)
2274                 return NULL;
2275
2276         /* For any length error, just return NULL */
2277
2278         if (next_mbssid->datalen < 4)
2279                 return NULL;
2280
2281         next_sub = (void *)&next_mbssid->data[1];
2282
2283         if (next_mbssid->data + next_mbssid->datalen <
2284             next_sub->data + next_sub->datalen)
2285                 return NULL;
2286
2287         if (next_sub->id != 0 || next_sub->datalen < 2)
2288                 return NULL;
2289
2290         /*
2291          * Check if the first element in the next sub element is a start
2292          * of a new profile
2293          */
2294         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2295                NULL : next_mbssid;
2296 }
2297
2298 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2299                               const struct element *mbssid_elem,
2300                               const struct element *sub_elem,
2301                               u8 *merged_ie, size_t max_copy_len)
2302 {
2303         size_t copied_len = sub_elem->datalen;
2304         const struct element *next_mbssid;
2305
2306         if (sub_elem->datalen > max_copy_len)
2307                 return 0;
2308
2309         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2310
2311         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2312                                                                 mbssid_elem,
2313                                                                 sub_elem))) {
2314                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2315
2316                 if (copied_len + next_sub->datalen > max_copy_len)
2317                         break;
2318                 memcpy(merged_ie + copied_len, next_sub->data,
2319                        next_sub->datalen);
2320                 copied_len += next_sub->datalen;
2321         }
2322
2323         return copied_len;
2324 }
2325 EXPORT_SYMBOL(cfg80211_merge_profile);
2326
2327 static void
2328 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2329                            struct cfg80211_inform_single_bss_data *tx_data,
2330                            struct cfg80211_bss *source_bss,
2331                            gfp_t gfp)
2332 {
2333         struct cfg80211_inform_single_bss_data data = {
2334                 .drv_data = tx_data->drv_data,
2335                 .ftype = tx_data->ftype,
2336                 .tsf = tx_data->tsf,
2337                 .beacon_interval = tx_data->beacon_interval,
2338                 .source_bss = source_bss,
2339                 .bss_source = BSS_SOURCE_MBSSID,
2340                 .use_for = tx_data->use_for,
2341                 .cannot_use_reasons = tx_data->cannot_use_reasons,
2342         };
2343         const u8 *mbssid_index_ie;
2344         const struct element *elem, *sub;
2345         u8 *new_ie, *profile;
2346         u64 seen_indices = 0;
2347         struct cfg80211_bss *bss;
2348
2349         if (!source_bss)
2350                 return;
2351         if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2352                                 tx_data->ie, tx_data->ielen))
2353                 return;
2354         if (!wiphy->support_mbssid)
2355                 return;
2356         if (wiphy->support_only_he_mbssid &&
2357             !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2358                                     tx_data->ie, tx_data->ielen))
2359                 return;
2360
2361         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2362         if (!new_ie)
2363                 return;
2364
2365         profile = kmalloc(tx_data->ielen, gfp);
2366         if (!profile)
2367                 goto out;
2368
2369         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2370                             tx_data->ie, tx_data->ielen) {
2371                 if (elem->datalen < 4)
2372                         continue;
2373                 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2374                         continue;
2375                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2376                         u8 profile_len;
2377
2378                         if (sub->id != 0 || sub->datalen < 4) {
2379                                 /* not a valid BSS profile */
2380                                 continue;
2381                         }
2382
2383                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2384                             sub->data[1] != 2) {
2385                                 /* The first element within the Nontransmitted
2386                                  * BSSID Profile is not the Nontransmitted
2387                                  * BSSID Capability element.
2388                                  */
2389                                 continue;
2390                         }
2391
2392                         memset(profile, 0, tx_data->ielen);
2393                         profile_len = cfg80211_merge_profile(tx_data->ie,
2394                                                              tx_data->ielen,
2395                                                              elem,
2396                                                              sub,
2397                                                              profile,
2398                                                              tx_data->ielen);
2399
2400                         /* found a Nontransmitted BSSID Profile */
2401                         mbssid_index_ie = cfg80211_find_ie
2402                                 (WLAN_EID_MULTI_BSSID_IDX,
2403                                  profile, profile_len);
2404                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2405                             mbssid_index_ie[2] == 0 ||
2406                             mbssid_index_ie[2] > 46) {
2407                                 /* No valid Multiple BSSID-Index element */
2408                                 continue;
2409                         }
2410
2411                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2412                                 /* We don't support legacy split of a profile */
2413                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2414                                                     mbssid_index_ie[2]);
2415
2416                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2417
2418                         data.bssid_index = mbssid_index_ie[2];
2419                         data.max_bssid_indicator = elem->data[0];
2420
2421                         cfg80211_gen_new_bssid(tx_data->bssid,
2422                                                data.max_bssid_indicator,
2423                                                data.bssid_index,
2424                                                data.bssid);
2425
2426                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2427                         data.ie = new_ie;
2428                         data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2429                                                          tx_data->ielen,
2430                                                          profile,
2431                                                          profile_len,
2432                                                          new_ie,
2433                                                          IEEE80211_MAX_DATA_LEN);
2434                         if (!data.ielen)
2435                                 continue;
2436
2437                         data.capability = get_unaligned_le16(profile + 2);
2438                         bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2439                         if (!bss)
2440                                 break;
2441                         cfg80211_put_bss(wiphy, bss);
2442                 }
2443         }
2444
2445 out:
2446         kfree(new_ie);
2447         kfree(profile);
2448 }
2449
2450 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2451                                     size_t ieslen, u8 *data, size_t data_len,
2452                                     u8 frag_id)
2453 {
2454         const struct element *next;
2455         ssize_t copied;
2456         u8 elem_datalen;
2457
2458         if (!elem)
2459                 return -EINVAL;
2460
2461         /* elem might be invalid after the memmove */
2462         next = (void *)(elem->data + elem->datalen);
2463         elem_datalen = elem->datalen;
2464
2465         if (elem->id == WLAN_EID_EXTENSION) {
2466                 copied = elem->datalen - 1;
2467                 if (copied > data_len)
2468                         return -ENOSPC;
2469
2470                 memmove(data, elem->data + 1, copied);
2471         } else {
2472                 copied = elem->datalen;
2473                 if (copied > data_len)
2474                         return -ENOSPC;
2475
2476                 memmove(data, elem->data, copied);
2477         }
2478
2479         /* Fragmented elements must have 255 bytes */
2480         if (elem_datalen < 255)
2481                 return copied;
2482
2483         for (elem = next;
2484              elem->data < ies + ieslen &&
2485                 elem->data + elem->datalen <= ies + ieslen;
2486              elem = next) {
2487                 /* elem might be invalid after the memmove */
2488                 next = (void *)(elem->data + elem->datalen);
2489
2490                 if (elem->id != frag_id)
2491                         break;
2492
2493                 elem_datalen = elem->datalen;
2494
2495                 if (copied + elem_datalen > data_len)
2496                         return -ENOSPC;
2497
2498                 memmove(data + copied, elem->data, elem_datalen);
2499                 copied += elem_datalen;
2500
2501                 /* Only the last fragment may be short */
2502                 if (elem_datalen != 255)
2503                         break;
2504         }
2505
2506         return copied;
2507 }
2508 EXPORT_SYMBOL(cfg80211_defragment_element);
2509
2510 struct cfg80211_mle {
2511         struct ieee80211_multi_link_elem *mle;
2512         struct ieee80211_mle_per_sta_profile
2513                 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2514         ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2515
2516         u8 data[];
2517 };
2518
2519 static struct cfg80211_mle *
2520 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2521                     gfp_t gfp)
2522 {
2523         const struct element *elem;
2524         struct cfg80211_mle *res;
2525         size_t buf_len;
2526         ssize_t mle_len;
2527         u8 common_size, idx;
2528
2529         if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2530                 return NULL;
2531
2532         /* Required length for first defragmentation */
2533         buf_len = mle->datalen - 1;
2534         for_each_element(elem, mle->data + mle->datalen,
2535                          ielen - sizeof(*mle) + mle->datalen) {
2536                 if (elem->id != WLAN_EID_FRAGMENT)
2537                         break;
2538
2539                 buf_len += elem->datalen;
2540         }
2541
2542         res = kzalloc(struct_size(res, data, buf_len), gfp);
2543         if (!res)
2544                 return NULL;
2545
2546         mle_len = cfg80211_defragment_element(mle, ie, ielen,
2547                                               res->data, buf_len,
2548                                               WLAN_EID_FRAGMENT);
2549         if (mle_len < 0)
2550                 goto error;
2551
2552         res->mle = (void *)res->data;
2553
2554         /* Find the sub-element area in the buffer */
2555         common_size = ieee80211_mle_common_size((u8 *)res->mle);
2556         ie = res->data + common_size;
2557         ielen = mle_len - common_size;
2558
2559         idx = 0;
2560         for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2561                             ie, ielen) {
2562                 res->sta_prof[idx] = (void *)elem->data;
2563                 res->sta_prof_len[idx] = elem->datalen;
2564
2565                 idx++;
2566                 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2567                         break;
2568         }
2569         if (!for_each_element_completed(elem, ie, ielen))
2570                 goto error;
2571
2572         /* Defragment sta_info in-place */
2573         for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2574              idx++) {
2575                 if (res->sta_prof_len[idx] < 255)
2576                         continue;
2577
2578                 elem = (void *)res->sta_prof[idx] - 2;
2579
2580                 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2581                     res->sta_prof[idx + 1])
2582                         buf_len = (u8 *)res->sta_prof[idx + 1] -
2583                                   (u8 *)res->sta_prof[idx];
2584                 else
2585                         buf_len = ielen + ie - (u8 *)elem;
2586
2587                 res->sta_prof_len[idx] =
2588                         cfg80211_defragment_element(elem,
2589                                                     (u8 *)elem, buf_len,
2590                                                     (u8 *)res->sta_prof[idx],
2591                                                     buf_len,
2592                                                     IEEE80211_MLE_SUBELEM_FRAGMENT);
2593                 if (res->sta_prof_len[idx] < 0)
2594                         goto error;
2595         }
2596
2597         return res;
2598
2599 error:
2600         kfree(res);
2601         return NULL;
2602 }
2603
2604 static u8
2605 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2606                               const struct ieee80211_neighbor_ap_info **ap_info,
2607                               const u8 **tbtt_info)
2608 {
2609         const struct ieee80211_neighbor_ap_info *info;
2610         const struct element *rnr;
2611         const u8 *pos, *end;
2612
2613         for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2614                 pos = rnr->data;
2615                 end = rnr->data + rnr->datalen;
2616
2617                 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2618                 while (sizeof(*info) <= end - pos) {
2619                         const struct ieee80211_rnr_mld_params *mld_params;
2620                         u16 params;
2621                         u8 length, i, count, mld_params_offset;
2622                         u8 type, lid;
2623                         u32 use_for;
2624
2625                         info = (void *)pos;
2626                         count = u8_get_bits(info->tbtt_info_hdr,
2627                                             IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2628                         length = info->tbtt_info_len;
2629
2630                         pos += sizeof(*info);
2631
2632                         if (count * length > end - pos)
2633                                 return 0;
2634
2635                         type = u8_get_bits(info->tbtt_info_hdr,
2636                                            IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2637
2638                         if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2639                             length >=
2640                             offsetofend(struct ieee80211_tbtt_info_ge_11,
2641                                         mld_params)) {
2642                                 mld_params_offset =
2643                                         offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2644                                 use_for = NL80211_BSS_USE_FOR_ALL;
2645                         } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2646                                    length >= sizeof(struct ieee80211_rnr_mld_params)) {
2647                                 mld_params_offset = 0;
2648                                 use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2649                         } else {
2650                                 pos += count * length;
2651                                 continue;
2652                         }
2653
2654                         for (i = 0; i < count; i++) {
2655                                 mld_params = (void *)pos + mld_params_offset;
2656                                 params = le16_to_cpu(mld_params->params);
2657
2658                                 lid = u16_get_bits(params,
2659                                                    IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2660
2661                                 if (mld_id == mld_params->mld_id &&
2662                                     link_id == lid) {
2663                                         *ap_info = info;
2664                                         *tbtt_info = pos;
2665
2666                                         return use_for;
2667                                 }
2668
2669                                 pos += length;
2670                         }
2671                 }
2672         }
2673
2674         return 0;
2675 }
2676
2677 static void
2678 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2679                                 struct cfg80211_inform_single_bss_data *tx_data,
2680                                 struct cfg80211_bss *source_bss,
2681                                 const struct element *elem,
2682                                 gfp_t gfp)
2683 {
2684         struct cfg80211_inform_single_bss_data data = {
2685                 .drv_data = tx_data->drv_data,
2686                 .ftype = tx_data->ftype,
2687                 .source_bss = source_bss,
2688                 .bss_source = BSS_SOURCE_STA_PROFILE,
2689         };
2690         struct ieee80211_multi_link_elem *ml_elem;
2691         struct cfg80211_mle *mle;
2692         u16 control;
2693         u8 ml_common_len;
2694         u8 *new_ie;
2695         struct cfg80211_bss *bss;
2696         int mld_id;
2697         u16 seen_links = 0;
2698         const u8 *pos;
2699         u8 i;
2700
2701         if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2702                 return;
2703
2704         ml_elem = (void *)elem->data + 1;
2705         control = le16_to_cpu(ml_elem->control);
2706         if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2707             IEEE80211_ML_CONTROL_TYPE_BASIC)
2708                 return;
2709
2710         /* Must be present when transmitted by an AP (in a probe response) */
2711         if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2712             !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2713             !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2714                 return;
2715
2716         ml_common_len = ml_elem->variable[0];
2717
2718         /* length + MLD MAC address + link ID info + BSS Params Change Count */
2719         pos = ml_elem->variable + 1 + 6 + 1 + 1;
2720
2721         if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2722                 pos += 2;
2723         if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2724                 pos += 2;
2725
2726         /* MLD capabilities and operations */
2727         pos += 2;
2728
2729         /*
2730          * The MLD ID of the reporting AP is always zero. It is set if the AP
2731          * is part of an MBSSID set and will be non-zero for ML Elements
2732          * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2733          * Draft P802.11be_D3.2, 35.3.4.2)
2734          */
2735         if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2736                 mld_id = *pos;
2737                 pos += 1;
2738         } else {
2739                 mld_id = 0;
2740         }
2741
2742         /* Extended MLD capabilities and operations */
2743         pos += 2;
2744
2745         /* Fully defrag the ML element for sta information/profile iteration */
2746         mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2747         if (!mle)
2748                 return;
2749
2750         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2751         if (!new_ie)
2752                 goto out;
2753
2754         for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2755                 const struct ieee80211_neighbor_ap_info *ap_info;
2756                 enum nl80211_band band;
2757                 u32 freq;
2758                 const u8 *profile;
2759                 const u8 *tbtt_info;
2760                 ssize_t profile_len;
2761                 u8 link_id, use_for;
2762
2763                 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2764                                                           mle->sta_prof_len[i]))
2765                         continue;
2766
2767                 control = le16_to_cpu(mle->sta_prof[i]->control);
2768
2769                 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2770                         continue;
2771
2772                 link_id = u16_get_bits(control,
2773                                        IEEE80211_MLE_STA_CONTROL_LINK_ID);
2774                 if (seen_links & BIT(link_id))
2775                         break;
2776                 seen_links |= BIT(link_id);
2777
2778                 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2779                     !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2780                     !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2781                         continue;
2782
2783                 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2784                 data.beacon_interval =
2785                         get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2786                 data.tsf = tx_data->tsf +
2787                            get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2788
2789                 /* sta_info_len counts itself */
2790                 profile = mle->sta_prof[i]->variable +
2791                           mle->sta_prof[i]->sta_info_len - 1;
2792                 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2793                               profile;
2794
2795                 if (profile_len < 2)
2796                         continue;
2797
2798                 data.capability = get_unaligned_le16(profile);
2799                 profile += 2;
2800                 profile_len -= 2;
2801
2802                 /* Find in RNR to look up channel information */
2803                 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2804                                                         tx_data->ielen,
2805                                                         mld_id, link_id,
2806                                                         &ap_info, &tbtt_info);
2807                 if (!use_for)
2808                         continue;
2809
2810                 /* We could sanity check the BSSID is included */
2811
2812                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2813                                                        &band))
2814                         continue;
2815
2816                 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2817                 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2818
2819                 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2820                     !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2821                         use_for = 0;
2822                         data.cannot_use_reasons =
2823                                 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2824                 }
2825                 data.use_for = use_for;
2826
2827                 /* Generate new elements */
2828                 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2829                 data.ie = new_ie;
2830                 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2831                                                  profile, profile_len,
2832                                                  new_ie,
2833                                                  IEEE80211_MAX_DATA_LEN);
2834                 if (!data.ielen)
2835                         continue;
2836
2837                 /* The generated elements do not contain:
2838                  *  - Basic ML element
2839                  *  - A TBTT entry in the RNR for the transmitting AP
2840                  *
2841                  * This information is needed both internally and in userspace
2842                  * as such, we should append it here.
2843                  */
2844                 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2845                     IEEE80211_MAX_DATA_LEN)
2846                         continue;
2847
2848                 /* Copy the Basic Multi-Link element including the common
2849                  * information, and then fix up the link ID.
2850                  * Note that the ML element length has been verified and we
2851                  * also checked that it contains the link ID.
2852                  */
2853                 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2854                 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2855                 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2856                 memcpy(new_ie + data.ielen, ml_elem,
2857                        sizeof(*ml_elem) + ml_common_len);
2858
2859                 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2860
2861                 data.ielen += sizeof(*ml_elem) + ml_common_len;
2862
2863                 /* TODO: Add an RNR containing only the reporting AP */
2864
2865                 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2866                 if (!bss)
2867                         break;
2868                 cfg80211_put_bss(wiphy, bss);
2869         }
2870
2871 out:
2872         kfree(new_ie);
2873         kfree(mle);
2874 }
2875
2876 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2877                                        struct cfg80211_inform_single_bss_data *tx_data,
2878                                        struct cfg80211_bss *source_bss,
2879                                        gfp_t gfp)
2880 {
2881         const struct element *elem;
2882
2883         if (!source_bss)
2884                 return;
2885
2886         if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2887                 return;
2888
2889         for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2890                                tx_data->ie, tx_data->ielen)
2891                 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2892                                                 elem, gfp);
2893 }
2894
2895 struct cfg80211_bss *
2896 cfg80211_inform_bss_data(struct wiphy *wiphy,
2897                          struct cfg80211_inform_bss *data,
2898                          enum cfg80211_bss_frame_type ftype,
2899                          const u8 *bssid, u64 tsf, u16 capability,
2900                          u16 beacon_interval, const u8 *ie, size_t ielen,
2901                          gfp_t gfp)
2902 {
2903         struct cfg80211_inform_single_bss_data inform_data = {
2904                 .drv_data = data,
2905                 .ftype = ftype,
2906                 .tsf = tsf,
2907                 .capability = capability,
2908                 .beacon_interval = beacon_interval,
2909                 .ie = ie,
2910                 .ielen = ielen,
2911                 .use_for = data->restrict_use ?
2912                                 data->use_for :
2913                                 NL80211_BSS_USE_FOR_ALL,
2914                 .cannot_use_reasons = data->cannot_use_reasons,
2915         };
2916         struct cfg80211_bss *res;
2917
2918         memcpy(inform_data.bssid, bssid, ETH_ALEN);
2919
2920         res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2921         if (!res)
2922                 return NULL;
2923
2924         cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2925
2926         cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2927
2928         return res;
2929 }
2930 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2931
2932 static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2933                                           size_t ielen,
2934                                           const u32 flags)
2935 {
2936         const struct element *tmp;
2937         struct ieee80211_he_operation *he_oper;
2938
2939         tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2940         if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2941                 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2942
2943                 he_oper = (void *)&tmp->data[1];
2944                 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2945
2946                 if (!he_6ghz_oper)
2947                         return false;
2948
2949                 switch (u8_get_bits(he_6ghz_oper->control,
2950                                     IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2951                 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2952                         return true;
2953                 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2954                         return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2955                 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2956                         return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2957                 }
2958         }
2959         return false;
2960 }
2961
2962 /* cfg80211_inform_bss_width_frame helper */
2963 static struct cfg80211_bss *
2964 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2965                                       struct cfg80211_inform_bss *data,
2966                                       struct ieee80211_mgmt *mgmt, size_t len,
2967                                       gfp_t gfp)
2968 {
2969         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2970         struct cfg80211_internal_bss tmp = {}, *res;
2971         struct cfg80211_bss_ies *ies;
2972         struct ieee80211_channel *channel;
2973         bool signal_valid;
2974         struct ieee80211_ext *ext = NULL;
2975         u8 *bssid, *variable;
2976         u16 capability, beacon_int;
2977         size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2978                                              u.probe_resp.variable);
2979         int bss_type;
2980
2981         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2982                         offsetof(struct ieee80211_mgmt, u.beacon.variable));
2983
2984         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2985
2986         if (WARN_ON(!mgmt))
2987                 return NULL;
2988
2989         if (WARN_ON(!wiphy))
2990                 return NULL;
2991
2992         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2993                     (data->signal < 0 || data->signal > 100)))
2994                 return NULL;
2995
2996         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2997                 ext = (void *) mgmt;
2998                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2999                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3000                         min_hdr_len = offsetof(struct ieee80211_ext,
3001                                                u.s1g_short_beacon.variable);
3002         }
3003
3004         if (WARN_ON(len < min_hdr_len))
3005                 return NULL;
3006
3007         ielen = len - min_hdr_len;
3008         variable = mgmt->u.probe_resp.variable;
3009         if (ext) {
3010                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3011                         variable = ext->u.s1g_short_beacon.variable;
3012                 else
3013                         variable = ext->u.s1g_beacon.variable;
3014         }
3015
3016         channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
3017         if (!channel)
3018                 return NULL;
3019
3020         if (channel->band == NL80211_BAND_6GHZ &&
3021             !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
3022                 data->restrict_use = 1;
3023                 data->use_for = 0;
3024                 data->cannot_use_reasons =
3025                         NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
3026         }
3027
3028         if (ext) {
3029                 const struct ieee80211_s1g_bcn_compat_ie *compat;
3030                 const struct element *elem;
3031
3032                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
3033                                           variable, ielen);
3034                 if (!elem)
3035                         return NULL;
3036                 if (elem->datalen < sizeof(*compat))
3037                         return NULL;
3038                 compat = (void *)elem->data;
3039                 bssid = ext->u.s1g_beacon.sa;
3040                 capability = le16_to_cpu(compat->compat_info);
3041                 beacon_int = le16_to_cpu(compat->beacon_int);
3042         } else {
3043                 bssid = mgmt->bssid;
3044                 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3045                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3046         }
3047
3048         if (channel->band == NL80211_BAND_60GHZ) {
3049                 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
3050                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
3051                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
3052                         regulatory_hint_found_beacon(wiphy, channel, gfp);
3053         } else {
3054                 if (capability & WLAN_CAPABILITY_ESS)
3055                         regulatory_hint_found_beacon(wiphy, channel, gfp);
3056         }
3057
3058         ies = kzalloc(sizeof(*ies) + ielen, gfp);
3059         if (!ies)
3060                 return NULL;
3061         ies->len = ielen;
3062         ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3063         ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3064                            ieee80211_is_s1g_beacon(mgmt->frame_control);
3065         memcpy(ies->data, variable, ielen);
3066
3067         if (ieee80211_is_probe_resp(mgmt->frame_control))
3068                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3069         else
3070                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3071         rcu_assign_pointer(tmp.pub.ies, ies);
3072
3073         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3074         tmp.pub.beacon_interval = beacon_int;
3075         tmp.pub.capability = capability;
3076         tmp.pub.channel = channel;
3077         tmp.pub.signal = data->signal;
3078         tmp.ts_boottime = data->boottime_ns;
3079         tmp.parent_tsf = data->parent_tsf;
3080         tmp.pub.chains = data->chains;
3081         memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3082         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3083         tmp.pub.use_for = data->restrict_use ?
3084                                 data->use_for :
3085                                 NL80211_BSS_USE_FOR_ALL;
3086         tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3087
3088         signal_valid = data->chan == channel;
3089         spin_lock_bh(&rdev->bss_lock);
3090         res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3091         if (!res)
3092                 goto drop;
3093
3094         rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3095
3096         spin_unlock_bh(&rdev->bss_lock);
3097
3098         trace_cfg80211_return_bss(&res->pub);
3099         /* __cfg80211_bss_update gives us a referenced result */
3100         return &res->pub;
3101
3102 drop:
3103         spin_unlock_bh(&rdev->bss_lock);
3104         return NULL;
3105 }
3106
3107 struct cfg80211_bss *
3108 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3109                                struct cfg80211_inform_bss *data,
3110                                struct ieee80211_mgmt *mgmt, size_t len,
3111                                gfp_t gfp)
3112 {
3113         struct cfg80211_inform_single_bss_data inform_data = {
3114                 .drv_data = data,
3115                 .ie = mgmt->u.probe_resp.variable,
3116                 .ielen = len - offsetof(struct ieee80211_mgmt,
3117                                         u.probe_resp.variable),
3118                 .use_for = data->restrict_use ?
3119                                 data->use_for :
3120                                 NL80211_BSS_USE_FOR_ALL,
3121                 .cannot_use_reasons = data->cannot_use_reasons,
3122         };
3123         struct cfg80211_bss *res;
3124
3125         res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3126                                                     len, gfp);
3127         if (!res)
3128                 return NULL;
3129
3130         /* don't do any further MBSSID/ML handling for S1G */
3131         if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3132                 return res;
3133
3134         inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3135                 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3136         memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3137         inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3138         inform_data.beacon_interval =
3139                 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3140
3141         /* process each non-transmitting bss */
3142         cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3143
3144         cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3145
3146         return res;
3147 }
3148 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3149
3150 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3151 {
3152         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3153
3154         if (!pub)
3155                 return;
3156
3157         spin_lock_bh(&rdev->bss_lock);
3158         bss_ref_get(rdev, bss_from_pub(pub));
3159         spin_unlock_bh(&rdev->bss_lock);
3160 }
3161 EXPORT_SYMBOL(cfg80211_ref_bss);
3162
3163 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3164 {
3165         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3166
3167         if (!pub)
3168                 return;
3169
3170         spin_lock_bh(&rdev->bss_lock);
3171         bss_ref_put(rdev, bss_from_pub(pub));
3172         spin_unlock_bh(&rdev->bss_lock);
3173 }
3174 EXPORT_SYMBOL(cfg80211_put_bss);
3175
3176 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3177 {
3178         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3179         struct cfg80211_internal_bss *bss, *tmp1;
3180         struct cfg80211_bss *nontrans_bss, *tmp;
3181
3182         if (WARN_ON(!pub))
3183                 return;
3184
3185         bss = bss_from_pub(pub);
3186
3187         spin_lock_bh(&rdev->bss_lock);
3188         if (list_empty(&bss->list))
3189                 goto out;
3190
3191         list_for_each_entry_safe(nontrans_bss, tmp,
3192                                  &pub->nontrans_list,
3193                                  nontrans_list) {
3194                 tmp1 = bss_from_pub(nontrans_bss);
3195                 if (__cfg80211_unlink_bss(rdev, tmp1))
3196                         rdev->bss_generation++;
3197         }
3198
3199         if (__cfg80211_unlink_bss(rdev, bss))
3200                 rdev->bss_generation++;
3201 out:
3202         spin_unlock_bh(&rdev->bss_lock);
3203 }
3204 EXPORT_SYMBOL(cfg80211_unlink_bss);
3205
3206 void cfg80211_bss_iter(struct wiphy *wiphy,
3207                        struct cfg80211_chan_def *chandef,
3208                        void (*iter)(struct wiphy *wiphy,
3209                                     struct cfg80211_bss *bss,
3210                                     void *data),
3211                        void *iter_data)
3212 {
3213         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214         struct cfg80211_internal_bss *bss;
3215
3216         spin_lock_bh(&rdev->bss_lock);
3217
3218         list_for_each_entry(bss, &rdev->bss_list, list) {
3219                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3220                                                      false))
3221                         iter(wiphy, &bss->pub, iter_data);
3222         }
3223
3224         spin_unlock_bh(&rdev->bss_lock);
3225 }
3226 EXPORT_SYMBOL(cfg80211_bss_iter);
3227
3228 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3229                                      unsigned int link_id,
3230                                      struct ieee80211_channel *chan)
3231 {
3232         struct wiphy *wiphy = wdev->wiphy;
3233         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3234         struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3235         struct cfg80211_internal_bss *new = NULL;
3236         struct cfg80211_internal_bss *bss;
3237         struct cfg80211_bss *nontrans_bss;
3238         struct cfg80211_bss *tmp;
3239
3240         spin_lock_bh(&rdev->bss_lock);
3241
3242         /*
3243          * Some APs use CSA also for bandwidth changes, i.e., without actually
3244          * changing the control channel, so no need to update in such a case.
3245          */
3246         if (cbss->pub.channel == chan)
3247                 goto done;
3248
3249         /* use transmitting bss */
3250         if (cbss->pub.transmitted_bss)
3251                 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3252
3253         cbss->pub.channel = chan;
3254
3255         list_for_each_entry(bss, &rdev->bss_list, list) {
3256                 if (!cfg80211_bss_type_match(bss->pub.capability,
3257                                              bss->pub.channel->band,
3258                                              wdev->conn_bss_type))
3259                         continue;
3260
3261                 if (bss == cbss)
3262                         continue;
3263
3264                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3265                         new = bss;
3266                         break;
3267                 }
3268         }
3269
3270         if (new) {
3271                 /* to save time, update IEs for transmitting bss only */
3272                 cfg80211_update_known_bss(rdev, cbss, new, false);
3273                 new->pub.proberesp_ies = NULL;
3274                 new->pub.beacon_ies = NULL;
3275
3276                 list_for_each_entry_safe(nontrans_bss, tmp,
3277                                          &new->pub.nontrans_list,
3278                                          nontrans_list) {
3279                         bss = bss_from_pub(nontrans_bss);
3280                         if (__cfg80211_unlink_bss(rdev, bss))
3281                                 rdev->bss_generation++;
3282                 }
3283
3284                 WARN_ON(atomic_read(&new->hold));
3285                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3286                         rdev->bss_generation++;
3287         }
3288
3289         rb_erase(&cbss->rbn, &rdev->bss_tree);
3290         rb_insert_bss(rdev, cbss);
3291         rdev->bss_generation++;
3292
3293         list_for_each_entry_safe(nontrans_bss, tmp,
3294                                  &cbss->pub.nontrans_list,
3295                                  nontrans_list) {
3296                 bss = bss_from_pub(nontrans_bss);
3297                 bss->pub.channel = chan;
3298                 rb_erase(&bss->rbn, &rdev->bss_tree);
3299                 rb_insert_bss(rdev, bss);
3300                 rdev->bss_generation++;
3301         }
3302
3303 done:
3304         spin_unlock_bh(&rdev->bss_lock);
3305 }
3306
3307 #ifdef CONFIG_CFG80211_WEXT
3308 static struct cfg80211_registered_device *
3309 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3310 {
3311         struct cfg80211_registered_device *rdev;
3312         struct net_device *dev;
3313
3314         ASSERT_RTNL();
3315
3316         dev = dev_get_by_index(net, ifindex);
3317         if (!dev)
3318                 return ERR_PTR(-ENODEV);
3319         if (dev->ieee80211_ptr)
3320                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3321         else
3322                 rdev = ERR_PTR(-ENODEV);
3323         dev_put(dev);
3324         return rdev;
3325 }
3326
3327 int cfg80211_wext_siwscan(struct net_device *dev,
3328                           struct iw_request_info *info,
3329                           union iwreq_data *wrqu, char *extra)
3330 {
3331         struct cfg80211_registered_device *rdev;
3332         struct wiphy *wiphy;
3333         struct iw_scan_req *wreq = NULL;
3334         struct cfg80211_scan_request *creq;
3335         int i, err, n_channels = 0;
3336         enum nl80211_band band;
3337
3338         if (!netif_running(dev))
3339                 return -ENETDOWN;
3340
3341         if (wrqu->data.length == sizeof(struct iw_scan_req))
3342                 wreq = (struct iw_scan_req *)extra;
3343
3344         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3345
3346         if (IS_ERR(rdev))
3347                 return PTR_ERR(rdev);
3348
3349         if (rdev->scan_req || rdev->scan_msg)
3350                 return -EBUSY;
3351
3352         wiphy = &rdev->wiphy;
3353
3354         /* Determine number of channels, needed to allocate creq */
3355         if (wreq && wreq->num_channels)
3356                 n_channels = wreq->num_channels;
3357         else
3358                 n_channels = ieee80211_get_num_supported_channels(wiphy);
3359
3360         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3361                        n_channels * sizeof(void *),
3362                        GFP_ATOMIC);
3363         if (!creq)
3364                 return -ENOMEM;
3365
3366         creq->wiphy = wiphy;
3367         creq->wdev = dev->ieee80211_ptr;
3368         /* SSIDs come after channels */
3369         creq->ssids = (void *)&creq->channels[n_channels];
3370         creq->n_channels = n_channels;
3371         creq->n_ssids = 1;
3372         creq->scan_start = jiffies;
3373
3374         /* translate "Scan on frequencies" request */
3375         i = 0;
3376         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3377                 int j;
3378
3379                 if (!wiphy->bands[band])
3380                         continue;
3381
3382                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3383                         /* ignore disabled channels */
3384                         if (wiphy->bands[band]->channels[j].flags &
3385                                                 IEEE80211_CHAN_DISABLED)
3386                                 continue;
3387
3388                         /* If we have a wireless request structure and the
3389                          * wireless request specifies frequencies, then search
3390                          * for the matching hardware channel.
3391                          */
3392                         if (wreq && wreq->num_channels) {
3393                                 int k;
3394                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3395                                 for (k = 0; k < wreq->num_channels; k++) {
3396                                         struct iw_freq *freq =
3397                                                 &wreq->channel_list[k];
3398                                         int wext_freq =
3399                                                 cfg80211_wext_freq(freq);
3400
3401                                         if (wext_freq == wiphy_freq)
3402                                                 goto wext_freq_found;
3403                                 }
3404                                 goto wext_freq_not_found;
3405                         }
3406
3407                 wext_freq_found:
3408                         creq->channels[i] = &wiphy->bands[band]->channels[j];
3409                         i++;
3410                 wext_freq_not_found: ;
3411                 }
3412         }
3413         /* No channels found? */
3414         if (!i) {
3415                 err = -EINVAL;
3416                 goto out;
3417         }
3418
3419         /* Set real number of channels specified in creq->channels[] */
3420         creq->n_channels = i;
3421
3422         /* translate "Scan for SSID" request */
3423         if (wreq) {
3424                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3425                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3426                                 err = -EINVAL;
3427                                 goto out;
3428                         }
3429                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3430                         creq->ssids[0].ssid_len = wreq->essid_len;
3431                 }
3432                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3433                         creq->n_ssids = 0;
3434         }
3435
3436         for (i = 0; i < NUM_NL80211_BANDS; i++)
3437                 if (wiphy->bands[i])
3438                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3439
3440         eth_broadcast_addr(creq->bssid);
3441
3442         wiphy_lock(&rdev->wiphy);
3443
3444         rdev->scan_req = creq;
3445         err = rdev_scan(rdev, creq);
3446         if (err) {
3447                 rdev->scan_req = NULL;
3448                 /* creq will be freed below */
3449         } else {
3450                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3451                 /* creq now owned by driver */
3452                 creq = NULL;
3453                 dev_hold(dev);
3454         }
3455         wiphy_unlock(&rdev->wiphy);
3456  out:
3457         kfree(creq);
3458         return err;
3459 }
3460 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3461
3462 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3463                                     const struct cfg80211_bss_ies *ies,
3464                                     char *current_ev, char *end_buf)
3465 {
3466         const u8 *pos, *end, *next;
3467         struct iw_event iwe;
3468
3469         if (!ies)
3470                 return current_ev;
3471
3472         /*
3473          * If needed, fragment the IEs buffer (at IE boundaries) into short
3474          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3475          */
3476         pos = ies->data;
3477         end = pos + ies->len;
3478
3479         while (end - pos > IW_GENERIC_IE_MAX) {
3480                 next = pos + 2 + pos[1];
3481                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3482                         next = next + 2 + next[1];
3483
3484                 memset(&iwe, 0, sizeof(iwe));
3485                 iwe.cmd = IWEVGENIE;
3486                 iwe.u.data.length = next - pos;
3487                 current_ev = iwe_stream_add_point_check(info, current_ev,
3488                                                         end_buf, &iwe,
3489                                                         (void *)pos);
3490                 if (IS_ERR(current_ev))
3491                         return current_ev;
3492                 pos = next;
3493         }
3494
3495         if (end > pos) {
3496                 memset(&iwe, 0, sizeof(iwe));
3497                 iwe.cmd = IWEVGENIE;
3498                 iwe.u.data.length = end - pos;
3499                 current_ev = iwe_stream_add_point_check(info, current_ev,
3500                                                         end_buf, &iwe,
3501                                                         (void *)pos);
3502                 if (IS_ERR(current_ev))
3503                         return current_ev;
3504         }
3505
3506         return current_ev;
3507 }
3508
3509 static char *
3510 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3511               struct cfg80211_internal_bss *bss, char *current_ev,
3512               char *end_buf)
3513 {
3514         const struct cfg80211_bss_ies *ies;
3515         struct iw_event iwe;
3516         const u8 *ie;
3517         u8 buf[50];
3518         u8 *cfg, *p, *tmp;
3519         int rem, i, sig;
3520         bool ismesh = false;
3521
3522         memset(&iwe, 0, sizeof(iwe));
3523         iwe.cmd = SIOCGIWAP;
3524         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3525         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3526         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3527                                                 IW_EV_ADDR_LEN);
3528         if (IS_ERR(current_ev))
3529                 return current_ev;
3530
3531         memset(&iwe, 0, sizeof(iwe));
3532         iwe.cmd = SIOCGIWFREQ;
3533         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3534         iwe.u.freq.e = 0;
3535         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3536                                                 IW_EV_FREQ_LEN);
3537         if (IS_ERR(current_ev))
3538                 return current_ev;
3539
3540         memset(&iwe, 0, sizeof(iwe));
3541         iwe.cmd = SIOCGIWFREQ;
3542         iwe.u.freq.m = bss->pub.channel->center_freq;
3543         iwe.u.freq.e = 6;
3544         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3545                                                 IW_EV_FREQ_LEN);
3546         if (IS_ERR(current_ev))
3547                 return current_ev;
3548
3549         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3550                 memset(&iwe, 0, sizeof(iwe));
3551                 iwe.cmd = IWEVQUAL;
3552                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3553                                      IW_QUAL_NOISE_INVALID |
3554                                      IW_QUAL_QUAL_UPDATED;
3555                 switch (wiphy->signal_type) {
3556                 case CFG80211_SIGNAL_TYPE_MBM:
3557                         sig = bss->pub.signal / 100;
3558                         iwe.u.qual.level = sig;
3559                         iwe.u.qual.updated |= IW_QUAL_DBM;
3560                         if (sig < -110)         /* rather bad */
3561                                 sig = -110;
3562                         else if (sig > -40)     /* perfect */
3563                                 sig = -40;
3564                         /* will give a range of 0 .. 70 */
3565                         iwe.u.qual.qual = sig + 110;
3566                         break;
3567                 case CFG80211_SIGNAL_TYPE_UNSPEC:
3568                         iwe.u.qual.level = bss->pub.signal;
3569                         /* will give range 0 .. 100 */
3570                         iwe.u.qual.qual = bss->pub.signal;
3571                         break;
3572                 default:
3573                         /* not reached */
3574                         break;
3575                 }
3576                 current_ev = iwe_stream_add_event_check(info, current_ev,
3577                                                         end_buf, &iwe,
3578                                                         IW_EV_QUAL_LEN);
3579                 if (IS_ERR(current_ev))
3580                         return current_ev;
3581         }
3582
3583         memset(&iwe, 0, sizeof(iwe));
3584         iwe.cmd = SIOCGIWENCODE;
3585         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3586                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3587         else
3588                 iwe.u.data.flags = IW_ENCODE_DISABLED;
3589         iwe.u.data.length = 0;
3590         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3591                                                 &iwe, "");
3592         if (IS_ERR(current_ev))
3593                 return current_ev;
3594
3595         rcu_read_lock();
3596         ies = rcu_dereference(bss->pub.ies);
3597         rem = ies->len;
3598         ie = ies->data;
3599
3600         while (rem >= 2) {
3601                 /* invalid data */
3602                 if (ie[1] > rem - 2)
3603                         break;
3604
3605                 switch (ie[0]) {
3606                 case WLAN_EID_SSID:
3607                         memset(&iwe, 0, sizeof(iwe));
3608                         iwe.cmd = SIOCGIWESSID;
3609                         iwe.u.data.length = ie[1];
3610                         iwe.u.data.flags = 1;
3611                         current_ev = iwe_stream_add_point_check(info,
3612                                                                 current_ev,
3613                                                                 end_buf, &iwe,
3614                                                                 (u8 *)ie + 2);
3615                         if (IS_ERR(current_ev))
3616                                 goto unlock;
3617                         break;
3618                 case WLAN_EID_MESH_ID:
3619                         memset(&iwe, 0, sizeof(iwe));
3620                         iwe.cmd = SIOCGIWESSID;
3621                         iwe.u.data.length = ie[1];
3622                         iwe.u.data.flags = 1;
3623                         current_ev = iwe_stream_add_point_check(info,
3624                                                                 current_ev,
3625                                                                 end_buf, &iwe,
3626                                                                 (u8 *)ie + 2);
3627                         if (IS_ERR(current_ev))
3628                                 goto unlock;
3629                         break;
3630                 case WLAN_EID_MESH_CONFIG:
3631                         ismesh = true;
3632                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3633                                 break;
3634                         cfg = (u8 *)ie + 2;
3635                         memset(&iwe, 0, sizeof(iwe));
3636                         iwe.cmd = IWEVCUSTOM;
3637                         iwe.u.data.length = sprintf(buf,
3638                                                     "Mesh Network Path Selection Protocol ID: 0x%02X",
3639                                                     cfg[0]);
3640                         current_ev = iwe_stream_add_point_check(info,
3641                                                                 current_ev,
3642                                                                 end_buf,
3643                                                                 &iwe, buf);
3644                         if (IS_ERR(current_ev))
3645                                 goto unlock;
3646                         iwe.u.data.length = sprintf(buf,
3647                                                     "Path Selection Metric ID: 0x%02X",
3648                                                     cfg[1]);
3649                         current_ev = iwe_stream_add_point_check(info,
3650                                                                 current_ev,
3651                                                                 end_buf,
3652                                                                 &iwe, buf);
3653                         if (IS_ERR(current_ev))
3654                                 goto unlock;
3655                         iwe.u.data.length = sprintf(buf,
3656                                                     "Congestion Control Mode ID: 0x%02X",
3657                                                     cfg[2]);
3658                         current_ev = iwe_stream_add_point_check(info,
3659                                                                 current_ev,
3660                                                                 end_buf,
3661                                                                 &iwe, buf);
3662                         if (IS_ERR(current_ev))
3663                                 goto unlock;
3664                         iwe.u.data.length = sprintf(buf,
3665                                                     "Synchronization ID: 0x%02X",
3666                                                     cfg[3]);
3667                         current_ev = iwe_stream_add_point_check(info,
3668                                                                 current_ev,
3669                                                                 end_buf,
3670                                                                 &iwe, buf);
3671                         if (IS_ERR(current_ev))
3672                                 goto unlock;
3673                         iwe.u.data.length = sprintf(buf,
3674                                                     "Authentication ID: 0x%02X",
3675                                                     cfg[4]);
3676                         current_ev = iwe_stream_add_point_check(info,
3677                                                                 current_ev,
3678                                                                 end_buf,
3679                                                                 &iwe, buf);
3680                         if (IS_ERR(current_ev))
3681                                 goto unlock;
3682                         iwe.u.data.length = sprintf(buf,
3683                                                     "Formation Info: 0x%02X",
3684                                                     cfg[5]);
3685                         current_ev = iwe_stream_add_point_check(info,
3686                                                                 current_ev,
3687                                                                 end_buf,
3688                                                                 &iwe, buf);
3689                         if (IS_ERR(current_ev))
3690                                 goto unlock;
3691                         iwe.u.data.length = sprintf(buf,
3692                                                     "Capabilities: 0x%02X",
3693                                                     cfg[6]);
3694                         current_ev = iwe_stream_add_point_check(info,
3695                                                                 current_ev,
3696                                                                 end_buf,
3697                                                                 &iwe, buf);
3698                         if (IS_ERR(current_ev))
3699                                 goto unlock;
3700                         break;
3701                 case WLAN_EID_SUPP_RATES:
3702                 case WLAN_EID_EXT_SUPP_RATES:
3703                         /* display all supported rates in readable format */
3704                         p = current_ev + iwe_stream_lcp_len(info);
3705
3706                         memset(&iwe, 0, sizeof(iwe));
3707                         iwe.cmd = SIOCGIWRATE;
3708                         /* Those two flags are ignored... */
3709                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3710
3711                         for (i = 0; i < ie[1]; i++) {
3712                                 iwe.u.bitrate.value =
3713                                         ((ie[i + 2] & 0x7f) * 500000);
3714                                 tmp = p;
3715                                 p = iwe_stream_add_value(info, current_ev, p,
3716                                                          end_buf, &iwe,
3717                                                          IW_EV_PARAM_LEN);
3718                                 if (p == tmp) {
3719                                         current_ev = ERR_PTR(-E2BIG);
3720                                         goto unlock;
3721                                 }
3722                         }
3723                         current_ev = p;
3724                         break;
3725                 }
3726                 rem -= ie[1] + 2;
3727                 ie += ie[1] + 2;
3728         }
3729
3730         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3731             ismesh) {
3732                 memset(&iwe, 0, sizeof(iwe));
3733                 iwe.cmd = SIOCGIWMODE;
3734                 if (ismesh)
3735                         iwe.u.mode = IW_MODE_MESH;
3736                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3737                         iwe.u.mode = IW_MODE_MASTER;
3738                 else
3739                         iwe.u.mode = IW_MODE_ADHOC;
3740                 current_ev = iwe_stream_add_event_check(info, current_ev,
3741                                                         end_buf, &iwe,
3742                                                         IW_EV_UINT_LEN);
3743                 if (IS_ERR(current_ev))
3744                         goto unlock;
3745         }
3746
3747         memset(&iwe, 0, sizeof(iwe));
3748         iwe.cmd = IWEVCUSTOM;
3749         iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3750                                     (unsigned long long)(ies->tsf));
3751         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3752                                                 &iwe, buf);
3753         if (IS_ERR(current_ev))
3754                 goto unlock;
3755         memset(&iwe, 0, sizeof(iwe));
3756         iwe.cmd = IWEVCUSTOM;
3757         iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3758                                     elapsed_jiffies_msecs(bss->ts));
3759         current_ev = iwe_stream_add_point_check(info, current_ev,
3760                                                 end_buf, &iwe, buf);
3761         if (IS_ERR(current_ev))
3762                 goto unlock;
3763
3764         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3765
3766  unlock:
3767         rcu_read_unlock();
3768         return current_ev;
3769 }
3770
3771
3772 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3773                                   struct iw_request_info *info,
3774                                   char *buf, size_t len)
3775 {
3776         char *current_ev = buf;
3777         char *end_buf = buf + len;
3778         struct cfg80211_internal_bss *bss;
3779         int err = 0;
3780
3781         spin_lock_bh(&rdev->bss_lock);
3782         cfg80211_bss_expire(rdev);
3783
3784         list_for_each_entry(bss, &rdev->bss_list, list) {
3785                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3786                         err = -E2BIG;
3787                         break;
3788                 }
3789                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3790                                            current_ev, end_buf);
3791                 if (IS_ERR(current_ev)) {
3792                         err = PTR_ERR(current_ev);
3793                         break;
3794                 }
3795         }
3796         spin_unlock_bh(&rdev->bss_lock);
3797
3798         if (err)
3799                 return err;
3800         return current_ev - buf;
3801 }
3802
3803
3804 int cfg80211_wext_giwscan(struct net_device *dev,
3805                           struct iw_request_info *info,
3806                           union iwreq_data *wrqu, char *extra)
3807 {
3808         struct iw_point *data = &wrqu->data;
3809         struct cfg80211_registered_device *rdev;
3810         int res;
3811
3812         if (!netif_running(dev))
3813                 return -ENETDOWN;
3814
3815         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3816
3817         if (IS_ERR(rdev))
3818                 return PTR_ERR(rdev);
3819
3820         if (rdev->scan_req || rdev->scan_msg)
3821                 return -EAGAIN;
3822
3823         res = ieee80211_scan_results(rdev, info, extra, data->length);
3824         data->length = 0;
3825         if (res >= 0) {
3826                 data->length = res;
3827                 res = 0;
3828         }
3829
3830         return res;
3831 }
3832 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3833 #endif