Merge branch 'net-metrics-consolidate'
[sfrench/cifs-2.6.git] / net / vmw_vsock / vmci_transport.c
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/cred.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/kmod.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/net.h>
27 #include <linux/poll.h>
28 #include <linux/skbuff.h>
29 #include <linux/smp.h>
30 #include <linux/socket.h>
31 #include <linux/stddef.h>
32 #include <linux/unistd.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <net/sock.h>
36 #include <net/af_vsock.h>
37
38 #include "vmci_transport_notify.h"
39
40 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
41 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
42 static void vmci_transport_peer_detach_cb(u32 sub_id,
43                                           const struct vmci_event_data *ed,
44                                           void *client_data);
45 static void vmci_transport_recv_pkt_work(struct work_struct *work);
46 static void vmci_transport_cleanup(struct work_struct *work);
47 static int vmci_transport_recv_listen(struct sock *sk,
48                                       struct vmci_transport_packet *pkt);
49 static int vmci_transport_recv_connecting_server(
50                                         struct sock *sk,
51                                         struct sock *pending,
52                                         struct vmci_transport_packet *pkt);
53 static int vmci_transport_recv_connecting_client(
54                                         struct sock *sk,
55                                         struct vmci_transport_packet *pkt);
56 static int vmci_transport_recv_connecting_client_negotiate(
57                                         struct sock *sk,
58                                         struct vmci_transport_packet *pkt);
59 static int vmci_transport_recv_connecting_client_invalid(
60                                         struct sock *sk,
61                                         struct vmci_transport_packet *pkt);
62 static int vmci_transport_recv_connected(struct sock *sk,
63                                          struct vmci_transport_packet *pkt);
64 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
65 static u16 vmci_transport_new_proto_supported_versions(void);
66 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
67                                                   bool old_pkt_proto);
68
69 struct vmci_transport_recv_pkt_info {
70         struct work_struct work;
71         struct sock *sk;
72         struct vmci_transport_packet pkt;
73 };
74
75 static LIST_HEAD(vmci_transport_cleanup_list);
76 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
77 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
78
79 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
80                                                            VMCI_INVALID_ID };
81 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
82
83 static int PROTOCOL_OVERRIDE = -1;
84
85 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN   128
86 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE       262144
87 #define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX   262144
88
89 /* The default peer timeout indicates how long we will wait for a peer response
90  * to a control message.
91  */
92 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
93
94 /* Helper function to convert from a VMCI error code to a VSock error code. */
95
96 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
97 {
98         switch (vmci_error) {
99         case VMCI_ERROR_NO_MEM:
100                 return -ENOMEM;
101         case VMCI_ERROR_DUPLICATE_ENTRY:
102         case VMCI_ERROR_ALREADY_EXISTS:
103                 return -EADDRINUSE;
104         case VMCI_ERROR_NO_ACCESS:
105                 return -EPERM;
106         case VMCI_ERROR_NO_RESOURCES:
107                 return -ENOBUFS;
108         case VMCI_ERROR_INVALID_RESOURCE:
109                 return -EHOSTUNREACH;
110         case VMCI_ERROR_INVALID_ARGS:
111         default:
112                 break;
113         }
114         return -EINVAL;
115 }
116
117 static u32 vmci_transport_peer_rid(u32 peer_cid)
118 {
119         if (VMADDR_CID_HYPERVISOR == peer_cid)
120                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
121
122         return VMCI_TRANSPORT_PACKET_RID;
123 }
124
125 static inline void
126 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
127                            struct sockaddr_vm *src,
128                            struct sockaddr_vm *dst,
129                            u8 type,
130                            u64 size,
131                            u64 mode,
132                            struct vmci_transport_waiting_info *wait,
133                            u16 proto,
134                            struct vmci_handle handle)
135 {
136         /* We register the stream control handler as an any cid handle so we
137          * must always send from a source address of VMADDR_CID_ANY
138          */
139         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
140                                        VMCI_TRANSPORT_PACKET_RID);
141         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
142                                        vmci_transport_peer_rid(dst->svm_cid));
143         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
144         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
145         pkt->type = type;
146         pkt->src_port = src->svm_port;
147         pkt->dst_port = dst->svm_port;
148         memset(&pkt->proto, 0, sizeof(pkt->proto));
149         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
150
151         switch (pkt->type) {
152         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
153                 pkt->u.size = 0;
154                 break;
155
156         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
157         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
158                 pkt->u.size = size;
159                 break;
160
161         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
162         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
163                 pkt->u.handle = handle;
164                 break;
165
166         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
167         case VMCI_TRANSPORT_PACKET_TYPE_READ:
168         case VMCI_TRANSPORT_PACKET_TYPE_RST:
169                 pkt->u.size = 0;
170                 break;
171
172         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
173                 pkt->u.mode = mode;
174                 break;
175
176         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
177         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
178                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
179                 break;
180
181         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
182         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
183                 pkt->u.size = size;
184                 pkt->proto = proto;
185                 break;
186         }
187 }
188
189 static inline void
190 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
191                                     struct sockaddr_vm *local,
192                                     struct sockaddr_vm *remote)
193 {
194         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
195         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
196 }
197
198 static int
199 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
200                                   struct sockaddr_vm *src,
201                                   struct sockaddr_vm *dst,
202                                   enum vmci_transport_packet_type type,
203                                   u64 size,
204                                   u64 mode,
205                                   struct vmci_transport_waiting_info *wait,
206                                   u16 proto,
207                                   struct vmci_handle handle,
208                                   bool convert_error)
209 {
210         int err;
211
212         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
213                                    proto, handle);
214         err = vmci_datagram_send(&pkt->dg);
215         if (convert_error && (err < 0))
216                 return vmci_transport_error_to_vsock_error(err);
217
218         return err;
219 }
220
221 static int
222 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
223                                       enum vmci_transport_packet_type type,
224                                       u64 size,
225                                       u64 mode,
226                                       struct vmci_transport_waiting_info *wait,
227                                       struct vmci_handle handle)
228 {
229         struct vmci_transport_packet reply;
230         struct sockaddr_vm src, dst;
231
232         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
233                 return 0;
234         } else {
235                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
236                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
237                                                          type,
238                                                          size, mode, wait,
239                                                          VSOCK_PROTO_INVALID,
240                                                          handle, true);
241         }
242 }
243
244 static int
245 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
246                                    struct sockaddr_vm *dst,
247                                    enum vmci_transport_packet_type type,
248                                    u64 size,
249                                    u64 mode,
250                                    struct vmci_transport_waiting_info *wait,
251                                    struct vmci_handle handle)
252 {
253         /* Note that it is safe to use a single packet across all CPUs since
254          * two tasklets of the same type are guaranteed to not ever run
255          * simultaneously. If that ever changes, or VMCI stops using tasklets,
256          * we can use per-cpu packets.
257          */
258         static struct vmci_transport_packet pkt;
259
260         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
261                                                  size, mode, wait,
262                                                  VSOCK_PROTO_INVALID, handle,
263                                                  false);
264 }
265
266 static int
267 vmci_transport_send_control_pkt(struct sock *sk,
268                                 enum vmci_transport_packet_type type,
269                                 u64 size,
270                                 u64 mode,
271                                 struct vmci_transport_waiting_info *wait,
272                                 u16 proto,
273                                 struct vmci_handle handle)
274 {
275         struct vmci_transport_packet *pkt;
276         struct vsock_sock *vsk;
277         int err;
278
279         vsk = vsock_sk(sk);
280
281         if (!vsock_addr_bound(&vsk->local_addr))
282                 return -EINVAL;
283
284         if (!vsock_addr_bound(&vsk->remote_addr))
285                 return -EINVAL;
286
287         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
288         if (!pkt)
289                 return -ENOMEM;
290
291         err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
292                                                 &vsk->remote_addr, type, size,
293                                                 mode, wait, proto, handle,
294                                                 true);
295         kfree(pkt);
296
297         return err;
298 }
299
300 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
301                                         struct sockaddr_vm *src,
302                                         struct vmci_transport_packet *pkt)
303 {
304         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
305                 return 0;
306         return vmci_transport_send_control_pkt_bh(
307                                         dst, src,
308                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
309                                         0, NULL, VMCI_INVALID_HANDLE);
310 }
311
312 static int vmci_transport_send_reset(struct sock *sk,
313                                      struct vmci_transport_packet *pkt)
314 {
315         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
316                 return 0;
317         return vmci_transport_send_control_pkt(sk,
318                                         VMCI_TRANSPORT_PACKET_TYPE_RST,
319                                         0, 0, NULL, VSOCK_PROTO_INVALID,
320                                         VMCI_INVALID_HANDLE);
321 }
322
323 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
324 {
325         return vmci_transport_send_control_pkt(
326                                         sk,
327                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
328                                         size, 0, NULL,
329                                         VSOCK_PROTO_INVALID,
330                                         VMCI_INVALID_HANDLE);
331 }
332
333 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
334                                           u16 version)
335 {
336         return vmci_transport_send_control_pkt(
337                                         sk,
338                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
339                                         size, 0, NULL, version,
340                                         VMCI_INVALID_HANDLE);
341 }
342
343 static int vmci_transport_send_qp_offer(struct sock *sk,
344                                         struct vmci_handle handle)
345 {
346         return vmci_transport_send_control_pkt(
347                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
348                                         0, NULL,
349                                         VSOCK_PROTO_INVALID, handle);
350 }
351
352 static int vmci_transport_send_attach(struct sock *sk,
353                                       struct vmci_handle handle)
354 {
355         return vmci_transport_send_control_pkt(
356                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
357                                         0, 0, NULL, VSOCK_PROTO_INVALID,
358                                         handle);
359 }
360
361 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
362 {
363         return vmci_transport_reply_control_pkt_fast(
364                                                 pkt,
365                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
366                                                 0, 0, NULL,
367                                                 VMCI_INVALID_HANDLE);
368 }
369
370 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
371                                           struct sockaddr_vm *src)
372 {
373         return vmci_transport_send_control_pkt_bh(
374                                         dst, src,
375                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
376                                         0, 0, NULL, VMCI_INVALID_HANDLE);
377 }
378
379 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
380                                  struct sockaddr_vm *src)
381 {
382         return vmci_transport_send_control_pkt_bh(
383                                         dst, src,
384                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
385                                         0, NULL, VMCI_INVALID_HANDLE);
386 }
387
388 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
389                                 struct sockaddr_vm *src)
390 {
391         return vmci_transport_send_control_pkt_bh(
392                                         dst, src,
393                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
394                                         0, NULL, VMCI_INVALID_HANDLE);
395 }
396
397 int vmci_transport_send_wrote(struct sock *sk)
398 {
399         return vmci_transport_send_control_pkt(
400                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
401                                         0, NULL, VSOCK_PROTO_INVALID,
402                                         VMCI_INVALID_HANDLE);
403 }
404
405 int vmci_transport_send_read(struct sock *sk)
406 {
407         return vmci_transport_send_control_pkt(
408                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
409                                         0, NULL, VSOCK_PROTO_INVALID,
410                                         VMCI_INVALID_HANDLE);
411 }
412
413 int vmci_transport_send_waiting_write(struct sock *sk,
414                                       struct vmci_transport_waiting_info *wait)
415 {
416         return vmci_transport_send_control_pkt(
417                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
418                                 0, 0, wait, VSOCK_PROTO_INVALID,
419                                 VMCI_INVALID_HANDLE);
420 }
421
422 int vmci_transport_send_waiting_read(struct sock *sk,
423                                      struct vmci_transport_waiting_info *wait)
424 {
425         return vmci_transport_send_control_pkt(
426                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
427                                 0, 0, wait, VSOCK_PROTO_INVALID,
428                                 VMCI_INVALID_HANDLE);
429 }
430
431 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
432 {
433         return vmci_transport_send_control_pkt(
434                                         &vsk->sk,
435                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
436                                         0, mode, NULL,
437                                         VSOCK_PROTO_INVALID,
438                                         VMCI_INVALID_HANDLE);
439 }
440
441 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
442 {
443         return vmci_transport_send_control_pkt(sk,
444                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
445                                         size, 0, NULL,
446                                         VSOCK_PROTO_INVALID,
447                                         VMCI_INVALID_HANDLE);
448 }
449
450 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
451                                              u16 version)
452 {
453         return vmci_transport_send_control_pkt(
454                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
455                                         size, 0, NULL, version,
456                                         VMCI_INVALID_HANDLE);
457 }
458
459 static struct sock *vmci_transport_get_pending(
460                                         struct sock *listener,
461                                         struct vmci_transport_packet *pkt)
462 {
463         struct vsock_sock *vlistener;
464         struct vsock_sock *vpending;
465         struct sock *pending;
466         struct sockaddr_vm src;
467
468         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
469
470         vlistener = vsock_sk(listener);
471
472         list_for_each_entry(vpending, &vlistener->pending_links,
473                             pending_links) {
474                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
475                     pkt->dst_port == vpending->local_addr.svm_port) {
476                         pending = sk_vsock(vpending);
477                         sock_hold(pending);
478                         goto found;
479                 }
480         }
481
482         pending = NULL;
483 found:
484         return pending;
485
486 }
487
488 static void vmci_transport_release_pending(struct sock *pending)
489 {
490         sock_put(pending);
491 }
492
493 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
494  * trusted sockets 2) sockets from applications running as the same user as the
495  * VM (this is only true for the host side and only when using hosted products)
496  */
497
498 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
499 {
500         return vsock->trusted ||
501                vmci_is_context_owner(peer_cid, vsock->owner->uid);
502 }
503
504 /* We allow sending datagrams to and receiving datagrams from a restricted VM
505  * only if it is trusted as described in vmci_transport_is_trusted.
506  */
507
508 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
509 {
510         if (VMADDR_CID_HYPERVISOR == peer_cid)
511                 return true;
512
513         if (vsock->cached_peer != peer_cid) {
514                 vsock->cached_peer = peer_cid;
515                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
516                     (vmci_context_get_priv_flags(peer_cid) &
517                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
518                         vsock->cached_peer_allow_dgram = false;
519                 } else {
520                         vsock->cached_peer_allow_dgram = true;
521                 }
522         }
523
524         return vsock->cached_peer_allow_dgram;
525 }
526
527 static int
528 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
529                                 struct vmci_handle *handle,
530                                 u64 produce_size,
531                                 u64 consume_size,
532                                 u32 peer, u32 flags, bool trusted)
533 {
534         int err = 0;
535
536         if (trusted) {
537                 /* Try to allocate our queue pair as trusted. This will only
538                  * work if vsock is running in the host.
539                  */
540
541                 err = vmci_qpair_alloc(qpair, handle, produce_size,
542                                        consume_size,
543                                        peer, flags,
544                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
545                 if (err != VMCI_ERROR_NO_ACCESS)
546                         goto out;
547
548         }
549
550         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
551                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
552 out:
553         if (err < 0) {
554                 pr_err("Could not attach to queue pair with %d\n",
555                        err);
556                 err = vmci_transport_error_to_vsock_error(err);
557         }
558
559         return err;
560 }
561
562 static int
563 vmci_transport_datagram_create_hnd(u32 resource_id,
564                                    u32 flags,
565                                    vmci_datagram_recv_cb recv_cb,
566                                    void *client_data,
567                                    struct vmci_handle *out_handle)
568 {
569         int err = 0;
570
571         /* Try to allocate our datagram handler as trusted. This will only work
572          * if vsock is running in the host.
573          */
574
575         err = vmci_datagram_create_handle_priv(resource_id, flags,
576                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
577                                                recv_cb,
578                                                client_data, out_handle);
579
580         if (err == VMCI_ERROR_NO_ACCESS)
581                 err = vmci_datagram_create_handle(resource_id, flags,
582                                                   recv_cb, client_data,
583                                                   out_handle);
584
585         return err;
586 }
587
588 /* This is invoked as part of a tasklet that's scheduled when the VMCI
589  * interrupt fires.  This is run in bottom-half context and if it ever needs to
590  * sleep it should defer that work to a work queue.
591  */
592
593 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
594 {
595         struct sock *sk;
596         size_t size;
597         struct sk_buff *skb;
598         struct vsock_sock *vsk;
599
600         sk = (struct sock *)data;
601
602         /* This handler is privileged when this module is running on the host.
603          * We will get datagrams from all endpoints (even VMs that are in a
604          * restricted context). If we get one from a restricted context then
605          * the destination socket must be trusted.
606          *
607          * NOTE: We access the socket struct without holding the lock here.
608          * This is ok because the field we are interested is never modified
609          * outside of the create and destruct socket functions.
610          */
611         vsk = vsock_sk(sk);
612         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
613                 return VMCI_ERROR_NO_ACCESS;
614
615         size = VMCI_DG_SIZE(dg);
616
617         /* Attach the packet to the socket's receive queue as an sk_buff. */
618         skb = alloc_skb(size, GFP_ATOMIC);
619         if (!skb)
620                 return VMCI_ERROR_NO_MEM;
621
622         /* sk_receive_skb() will do a sock_put(), so hold here. */
623         sock_hold(sk);
624         skb_put(skb, size);
625         memcpy(skb->data, dg, size);
626         sk_receive_skb(sk, skb, 0);
627
628         return VMCI_SUCCESS;
629 }
630
631 static bool vmci_transport_stream_allow(u32 cid, u32 port)
632 {
633         static const u32 non_socket_contexts[] = {
634                 VMADDR_CID_RESERVED,
635         };
636         int i;
637
638         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
639
640         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
641                 if (cid == non_socket_contexts[i])
642                         return false;
643         }
644
645         return true;
646 }
647
648 /* This is invoked as part of a tasklet that's scheduled when the VMCI
649  * interrupt fires.  This is run in bottom-half context but it defers most of
650  * its work to the packet handling work queue.
651  */
652
653 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
654 {
655         struct sock *sk;
656         struct sockaddr_vm dst;
657         struct sockaddr_vm src;
658         struct vmci_transport_packet *pkt;
659         struct vsock_sock *vsk;
660         bool bh_process_pkt;
661         int err;
662
663         sk = NULL;
664         err = VMCI_SUCCESS;
665         bh_process_pkt = false;
666
667         /* Ignore incoming packets from contexts without sockets, or resources
668          * that aren't vsock implementations.
669          */
670
671         if (!vmci_transport_stream_allow(dg->src.context, -1)
672             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
673                 return VMCI_ERROR_NO_ACCESS;
674
675         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
676                 /* Drop datagrams that do not contain full VSock packets. */
677                 return VMCI_ERROR_INVALID_ARGS;
678
679         pkt = (struct vmci_transport_packet *)dg;
680
681         /* Find the socket that should handle this packet.  First we look for a
682          * connected socket and if there is none we look for a socket bound to
683          * the destintation address.
684          */
685         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
686         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
687
688         sk = vsock_find_connected_socket(&src, &dst);
689         if (!sk) {
690                 sk = vsock_find_bound_socket(&dst);
691                 if (!sk) {
692                         /* We could not find a socket for this specified
693                          * address.  If this packet is a RST, we just drop it.
694                          * If it is another packet, we send a RST.  Note that
695                          * we do not send a RST reply to RSTs so that we do not
696                          * continually send RSTs between two endpoints.
697                          *
698                          * Note that since this is a reply, dst is src and src
699                          * is dst.
700                          */
701                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
702                                 pr_err("unable to send reset\n");
703
704                         err = VMCI_ERROR_NOT_FOUND;
705                         goto out;
706                 }
707         }
708
709         /* If the received packet type is beyond all types known to this
710          * implementation, reply with an invalid message.  Hopefully this will
711          * help when implementing backwards compatibility in the future.
712          */
713         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
714                 vmci_transport_send_invalid_bh(&dst, &src);
715                 err = VMCI_ERROR_INVALID_ARGS;
716                 goto out;
717         }
718
719         /* This handler is privileged when this module is running on the host.
720          * We will get datagram connect requests from all endpoints (even VMs
721          * that are in a restricted context). If we get one from a restricted
722          * context then the destination socket must be trusted.
723          *
724          * NOTE: We access the socket struct without holding the lock here.
725          * This is ok because the field we are interested is never modified
726          * outside of the create and destruct socket functions.
727          */
728         vsk = vsock_sk(sk);
729         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
730                 err = VMCI_ERROR_NO_ACCESS;
731                 goto out;
732         }
733
734         /* We do most everything in a work queue, but let's fast path the
735          * notification of reads and writes to help data transfer performance.
736          * We can only do this if there is no process context code executing
737          * for this socket since that may change the state.
738          */
739         bh_lock_sock(sk);
740
741         if (!sock_owned_by_user(sk)) {
742                 /* The local context ID may be out of date, update it. */
743                 vsk->local_addr.svm_cid = dst.svm_cid;
744
745                 if (sk->sk_state == TCP_ESTABLISHED)
746                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
747                                         sk, pkt, true, &dst, &src,
748                                         &bh_process_pkt);
749         }
750
751         bh_unlock_sock(sk);
752
753         if (!bh_process_pkt) {
754                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
755
756                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
757                 if (!recv_pkt_info) {
758                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
759                                 pr_err("unable to send reset\n");
760
761                         err = VMCI_ERROR_NO_MEM;
762                         goto out;
763                 }
764
765                 recv_pkt_info->sk = sk;
766                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
767                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
768
769                 schedule_work(&recv_pkt_info->work);
770                 /* Clear sk so that the reference count incremented by one of
771                  * the Find functions above is not decremented below.  We need
772                  * that reference count for the packet handler we've scheduled
773                  * to run.
774                  */
775                 sk = NULL;
776         }
777
778 out:
779         if (sk)
780                 sock_put(sk);
781
782         return err;
783 }
784
785 static void vmci_transport_handle_detach(struct sock *sk)
786 {
787         struct vsock_sock *vsk;
788
789         vsk = vsock_sk(sk);
790         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
791                 sock_set_flag(sk, SOCK_DONE);
792
793                 /* On a detach the peer will not be sending or receiving
794                  * anymore.
795                  */
796                 vsk->peer_shutdown = SHUTDOWN_MASK;
797
798                 /* We should not be sending anymore since the peer won't be
799                  * there to receive, but we can still receive if there is data
800                  * left in our consume queue. If the local endpoint is a host,
801                  * we can't call vsock_stream_has_data, since that may block,
802                  * but a host endpoint can't read data once the VM has
803                  * detached, so there is no available data in that case.
804                  */
805                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
806                     vsock_stream_has_data(vsk) <= 0) {
807                         if (sk->sk_state == TCP_SYN_SENT) {
808                                 /* The peer may detach from a queue pair while
809                                  * we are still in the connecting state, i.e.,
810                                  * if the peer VM is killed after attaching to
811                                  * a queue pair, but before we complete the
812                                  * handshake. In that case, we treat the detach
813                                  * event like a reset.
814                                  */
815
816                                 sk->sk_state = TCP_CLOSE;
817                                 sk->sk_err = ECONNRESET;
818                                 sk->sk_error_report(sk);
819                                 return;
820                         }
821                         sk->sk_state = TCP_CLOSE;
822                 }
823                 sk->sk_state_change(sk);
824         }
825 }
826
827 static void vmci_transport_peer_detach_cb(u32 sub_id,
828                                           const struct vmci_event_data *e_data,
829                                           void *client_data)
830 {
831         struct vmci_transport *trans = client_data;
832         const struct vmci_event_payload_qp *e_payload;
833
834         e_payload = vmci_event_data_const_payload(e_data);
835
836         /* XXX This is lame, we should provide a way to lookup sockets by
837          * qp_handle.
838          */
839         if (vmci_handle_is_invalid(e_payload->handle) ||
840             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
841                 return;
842
843         /* We don't ask for delayed CBs when we subscribe to this event (we
844          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
845          * guarantees in that case about what context we might be running in,
846          * so it could be BH or process, blockable or non-blockable.  So we
847          * need to account for all possible contexts here.
848          */
849         spin_lock_bh(&trans->lock);
850         if (!trans->sk)
851                 goto out;
852
853         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
854          * where trans->sk isn't locked.
855          */
856         bh_lock_sock(trans->sk);
857
858         vmci_transport_handle_detach(trans->sk);
859
860         bh_unlock_sock(trans->sk);
861  out:
862         spin_unlock_bh(&trans->lock);
863 }
864
865 static void vmci_transport_qp_resumed_cb(u32 sub_id,
866                                          const struct vmci_event_data *e_data,
867                                          void *client_data)
868 {
869         vsock_for_each_connected_socket(vmci_transport_handle_detach);
870 }
871
872 static void vmci_transport_recv_pkt_work(struct work_struct *work)
873 {
874         struct vmci_transport_recv_pkt_info *recv_pkt_info;
875         struct vmci_transport_packet *pkt;
876         struct sock *sk;
877
878         recv_pkt_info =
879                 container_of(work, struct vmci_transport_recv_pkt_info, work);
880         sk = recv_pkt_info->sk;
881         pkt = &recv_pkt_info->pkt;
882
883         lock_sock(sk);
884
885         /* The local context ID may be out of date. */
886         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
887
888         switch (sk->sk_state) {
889         case TCP_LISTEN:
890                 vmci_transport_recv_listen(sk, pkt);
891                 break;
892         case TCP_SYN_SENT:
893                 /* Processing of pending connections for servers goes through
894                  * the listening socket, so see vmci_transport_recv_listen()
895                  * for that path.
896                  */
897                 vmci_transport_recv_connecting_client(sk, pkt);
898                 break;
899         case TCP_ESTABLISHED:
900                 vmci_transport_recv_connected(sk, pkt);
901                 break;
902         default:
903                 /* Because this function does not run in the same context as
904                  * vmci_transport_recv_stream_cb it is possible that the
905                  * socket has closed. We need to let the other side know or it
906                  * could be sitting in a connect and hang forever. Send a
907                  * reset to prevent that.
908                  */
909                 vmci_transport_send_reset(sk, pkt);
910                 break;
911         }
912
913         release_sock(sk);
914         kfree(recv_pkt_info);
915         /* Release reference obtained in the stream callback when we fetched
916          * this socket out of the bound or connected list.
917          */
918         sock_put(sk);
919 }
920
921 static int vmci_transport_recv_listen(struct sock *sk,
922                                       struct vmci_transport_packet *pkt)
923 {
924         struct sock *pending;
925         struct vsock_sock *vpending;
926         int err;
927         u64 qp_size;
928         bool old_request = false;
929         bool old_pkt_proto = false;
930
931         err = 0;
932
933         /* Because we are in the listen state, we could be receiving a packet
934          * for ourself or any previous connection requests that we received.
935          * If it's the latter, we try to find a socket in our list of pending
936          * connections and, if we do, call the appropriate handler for the
937          * state that that socket is in.  Otherwise we try to service the
938          * connection request.
939          */
940         pending = vmci_transport_get_pending(sk, pkt);
941         if (pending) {
942                 lock_sock(pending);
943
944                 /* The local context ID may be out of date. */
945                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
946
947                 switch (pending->sk_state) {
948                 case TCP_SYN_SENT:
949                         err = vmci_transport_recv_connecting_server(sk,
950                                                                     pending,
951                                                                     pkt);
952                         break;
953                 default:
954                         vmci_transport_send_reset(pending, pkt);
955                         err = -EINVAL;
956                 }
957
958                 if (err < 0)
959                         vsock_remove_pending(sk, pending);
960
961                 release_sock(pending);
962                 vmci_transport_release_pending(pending);
963
964                 return err;
965         }
966
967         /* The listen state only accepts connection requests.  Reply with a
968          * reset unless we received a reset.
969          */
970
971         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
972               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
973                 vmci_transport_reply_reset(pkt);
974                 return -EINVAL;
975         }
976
977         if (pkt->u.size == 0) {
978                 vmci_transport_reply_reset(pkt);
979                 return -EINVAL;
980         }
981
982         /* If this socket can't accommodate this connection request, we send a
983          * reset.  Otherwise we create and initialize a child socket and reply
984          * with a connection negotiation.
985          */
986         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
987                 vmci_transport_reply_reset(pkt);
988                 return -ECONNREFUSED;
989         }
990
991         pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
992                                  sk->sk_type, 0);
993         if (!pending) {
994                 vmci_transport_send_reset(sk, pkt);
995                 return -ENOMEM;
996         }
997
998         vpending = vsock_sk(pending);
999
1000         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1001                         pkt->dst_port);
1002         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1003                         pkt->src_port);
1004
1005         /* If the proposed size fits within our min/max, accept it. Otherwise
1006          * propose our own size.
1007          */
1008         if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1009             pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1010                 qp_size = pkt->u.size;
1011         } else {
1012                 qp_size = vmci_trans(vpending)->queue_pair_size;
1013         }
1014
1015         /* Figure out if we are using old or new requests based on the
1016          * overrides pkt types sent by our peer.
1017          */
1018         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1019                 old_request = old_pkt_proto;
1020         } else {
1021                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1022                         old_request = true;
1023                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1024                         old_request = false;
1025
1026         }
1027
1028         if (old_request) {
1029                 /* Handle a REQUEST (or override) */
1030                 u16 version = VSOCK_PROTO_INVALID;
1031                 if (vmci_transport_proto_to_notify_struct(
1032                         pending, &version, true))
1033                         err = vmci_transport_send_negotiate(pending, qp_size);
1034                 else
1035                         err = -EINVAL;
1036
1037         } else {
1038                 /* Handle a REQUEST2 (or override) */
1039                 int proto_int = pkt->proto;
1040                 int pos;
1041                 u16 active_proto_version = 0;
1042
1043                 /* The list of possible protocols is the intersection of all
1044                  * protocols the client supports ... plus all the protocols we
1045                  * support.
1046                  */
1047                 proto_int &= vmci_transport_new_proto_supported_versions();
1048
1049                 /* We choose the highest possible protocol version and use that
1050                  * one.
1051                  */
1052                 pos = fls(proto_int);
1053                 if (pos) {
1054                         active_proto_version = (1 << (pos - 1));
1055                         if (vmci_transport_proto_to_notify_struct(
1056                                 pending, &active_proto_version, false))
1057                                 err = vmci_transport_send_negotiate2(pending,
1058                                                         qp_size,
1059                                                         active_proto_version);
1060                         else
1061                                 err = -EINVAL;
1062
1063                 } else {
1064                         err = -EINVAL;
1065                 }
1066         }
1067
1068         if (err < 0) {
1069                 vmci_transport_send_reset(sk, pkt);
1070                 sock_put(pending);
1071                 err = vmci_transport_error_to_vsock_error(err);
1072                 goto out;
1073         }
1074
1075         vsock_add_pending(sk, pending);
1076         sk->sk_ack_backlog++;
1077
1078         pending->sk_state = TCP_SYN_SENT;
1079         vmci_trans(vpending)->produce_size =
1080                 vmci_trans(vpending)->consume_size = qp_size;
1081         vmci_trans(vpending)->queue_pair_size = qp_size;
1082
1083         vmci_trans(vpending)->notify_ops->process_request(pending);
1084
1085         /* We might never receive another message for this socket and it's not
1086          * connected to any process, so we have to ensure it gets cleaned up
1087          * ourself.  Our delayed work function will take care of that.  Note
1088          * that we do not ever cancel this function since we have few
1089          * guarantees about its state when calling cancel_delayed_work().
1090          * Instead we hold a reference on the socket for that function and make
1091          * it capable of handling cases where it needs to do nothing but
1092          * release that reference.
1093          */
1094         vpending->listener = sk;
1095         sock_hold(sk);
1096         sock_hold(pending);
1097         schedule_delayed_work(&vpending->pending_work, HZ);
1098
1099 out:
1100         return err;
1101 }
1102
1103 static int
1104 vmci_transport_recv_connecting_server(struct sock *listener,
1105                                       struct sock *pending,
1106                                       struct vmci_transport_packet *pkt)
1107 {
1108         struct vsock_sock *vpending;
1109         struct vmci_handle handle;
1110         struct vmci_qp *qpair;
1111         bool is_local;
1112         u32 flags;
1113         u32 detach_sub_id;
1114         int err;
1115         int skerr;
1116
1117         vpending = vsock_sk(pending);
1118         detach_sub_id = VMCI_INVALID_ID;
1119
1120         switch (pkt->type) {
1121         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1122                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1123                         vmci_transport_send_reset(pending, pkt);
1124                         skerr = EPROTO;
1125                         err = -EINVAL;
1126                         goto destroy;
1127                 }
1128                 break;
1129         default:
1130                 /* Close and cleanup the connection. */
1131                 vmci_transport_send_reset(pending, pkt);
1132                 skerr = EPROTO;
1133                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1134                 goto destroy;
1135         }
1136
1137         /* In order to complete the connection we need to attach to the offered
1138          * queue pair and send an attach notification.  We also subscribe to the
1139          * detach event so we know when our peer goes away, and we do that
1140          * before attaching so we don't miss an event.  If all this succeeds,
1141          * we update our state and wakeup anything waiting in accept() for a
1142          * connection.
1143          */
1144
1145         /* We don't care about attach since we ensure the other side has
1146          * attached by specifying the ATTACH_ONLY flag below.
1147          */
1148         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1149                                    vmci_transport_peer_detach_cb,
1150                                    vmci_trans(vpending), &detach_sub_id);
1151         if (err < VMCI_SUCCESS) {
1152                 vmci_transport_send_reset(pending, pkt);
1153                 err = vmci_transport_error_to_vsock_error(err);
1154                 skerr = -err;
1155                 goto destroy;
1156         }
1157
1158         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1159
1160         /* Now attach to the queue pair the client created. */
1161         handle = pkt->u.handle;
1162
1163         /* vpending->local_addr always has a context id so we do not need to
1164          * worry about VMADDR_CID_ANY in this case.
1165          */
1166         is_local =
1167             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1168         flags = VMCI_QPFLAG_ATTACH_ONLY;
1169         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1170
1171         err = vmci_transport_queue_pair_alloc(
1172                                         &qpair,
1173                                         &handle,
1174                                         vmci_trans(vpending)->produce_size,
1175                                         vmci_trans(vpending)->consume_size,
1176                                         pkt->dg.src.context,
1177                                         flags,
1178                                         vmci_transport_is_trusted(
1179                                                 vpending,
1180                                                 vpending->remote_addr.svm_cid));
1181         if (err < 0) {
1182                 vmci_transport_send_reset(pending, pkt);
1183                 skerr = -err;
1184                 goto destroy;
1185         }
1186
1187         vmci_trans(vpending)->qp_handle = handle;
1188         vmci_trans(vpending)->qpair = qpair;
1189
1190         /* When we send the attach message, we must be ready to handle incoming
1191          * control messages on the newly connected socket. So we move the
1192          * pending socket to the connected state before sending the attach
1193          * message. Otherwise, an incoming packet triggered by the attach being
1194          * received by the peer may be processed concurrently with what happens
1195          * below after sending the attach message, and that incoming packet
1196          * will find the listening socket instead of the (currently) pending
1197          * socket. Note that enqueueing the socket increments the reference
1198          * count, so even if a reset comes before the connection is accepted,
1199          * the socket will be valid until it is removed from the queue.
1200          *
1201          * If we fail sending the attach below, we remove the socket from the
1202          * connected list and move the socket to TCP_CLOSE before
1203          * releasing the lock, so a pending slow path processing of an incoming
1204          * packet will not see the socket in the connected state in that case.
1205          */
1206         pending->sk_state = TCP_ESTABLISHED;
1207
1208         vsock_insert_connected(vpending);
1209
1210         /* Notify our peer of our attach. */
1211         err = vmci_transport_send_attach(pending, handle);
1212         if (err < 0) {
1213                 vsock_remove_connected(vpending);
1214                 pr_err("Could not send attach\n");
1215                 vmci_transport_send_reset(pending, pkt);
1216                 err = vmci_transport_error_to_vsock_error(err);
1217                 skerr = -err;
1218                 goto destroy;
1219         }
1220
1221         /* We have a connection. Move the now connected socket from the
1222          * listener's pending list to the accept queue so callers of accept()
1223          * can find it.
1224          */
1225         vsock_remove_pending(listener, pending);
1226         vsock_enqueue_accept(listener, pending);
1227
1228         /* Callers of accept() will be be waiting on the listening socket, not
1229          * the pending socket.
1230          */
1231         listener->sk_data_ready(listener);
1232
1233         return 0;
1234
1235 destroy:
1236         pending->sk_err = skerr;
1237         pending->sk_state = TCP_CLOSE;
1238         /* As long as we drop our reference, all necessary cleanup will handle
1239          * when the cleanup function drops its reference and our destruct
1240          * implementation is called.  Note that since the listen handler will
1241          * remove pending from the pending list upon our failure, the cleanup
1242          * function won't drop the additional reference, which is why we do it
1243          * here.
1244          */
1245         sock_put(pending);
1246
1247         return err;
1248 }
1249
1250 static int
1251 vmci_transport_recv_connecting_client(struct sock *sk,
1252                                       struct vmci_transport_packet *pkt)
1253 {
1254         struct vsock_sock *vsk;
1255         int err;
1256         int skerr;
1257
1258         vsk = vsock_sk(sk);
1259
1260         switch (pkt->type) {
1261         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1262                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1263                     !vmci_handle_is_equal(pkt->u.handle,
1264                                           vmci_trans(vsk)->qp_handle)) {
1265                         skerr = EPROTO;
1266                         err = -EINVAL;
1267                         goto destroy;
1268                 }
1269
1270                 /* Signify the socket is connected and wakeup the waiter in
1271                  * connect(). Also place the socket in the connected table for
1272                  * accounting (it can already be found since it's in the bound
1273                  * table).
1274                  */
1275                 sk->sk_state = TCP_ESTABLISHED;
1276                 sk->sk_socket->state = SS_CONNECTED;
1277                 vsock_insert_connected(vsk);
1278                 sk->sk_state_change(sk);
1279
1280                 break;
1281         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1282         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1283                 if (pkt->u.size == 0
1284                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1285                     || pkt->src_port != vsk->remote_addr.svm_port
1286                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1287                     || vmci_trans(vsk)->qpair
1288                     || vmci_trans(vsk)->produce_size != 0
1289                     || vmci_trans(vsk)->consume_size != 0
1290                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1291                         skerr = EPROTO;
1292                         err = -EINVAL;
1293
1294                         goto destroy;
1295                 }
1296
1297                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1298                 if (err) {
1299                         skerr = -err;
1300                         goto destroy;
1301                 }
1302
1303                 break;
1304         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1305                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1306                 if (err) {
1307                         skerr = -err;
1308                         goto destroy;
1309                 }
1310
1311                 break;
1312         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1313                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1314                  * continue processing here after they sent an INVALID packet.
1315                  * This meant that we got a RST after the INVALID. We ignore a
1316                  * RST after an INVALID. The common code doesn't send the RST
1317                  * ... so we can hang if an old version of the common code
1318                  * fails between getting a REQUEST and sending an OFFER back.
1319                  * Not much we can do about it... except hope that it doesn't
1320                  * happen.
1321                  */
1322                 if (vsk->ignore_connecting_rst) {
1323                         vsk->ignore_connecting_rst = false;
1324                 } else {
1325                         skerr = ECONNRESET;
1326                         err = 0;
1327                         goto destroy;
1328                 }
1329
1330                 break;
1331         default:
1332                 /* Close and cleanup the connection. */
1333                 skerr = EPROTO;
1334                 err = -EINVAL;
1335                 goto destroy;
1336         }
1337
1338         return 0;
1339
1340 destroy:
1341         vmci_transport_send_reset(sk, pkt);
1342
1343         sk->sk_state = TCP_CLOSE;
1344         sk->sk_err = skerr;
1345         sk->sk_error_report(sk);
1346         return err;
1347 }
1348
1349 static int vmci_transport_recv_connecting_client_negotiate(
1350                                         struct sock *sk,
1351                                         struct vmci_transport_packet *pkt)
1352 {
1353         int err;
1354         struct vsock_sock *vsk;
1355         struct vmci_handle handle;
1356         struct vmci_qp *qpair;
1357         u32 detach_sub_id;
1358         bool is_local;
1359         u32 flags;
1360         bool old_proto = true;
1361         bool old_pkt_proto;
1362         u16 version;
1363
1364         vsk = vsock_sk(sk);
1365         handle = VMCI_INVALID_HANDLE;
1366         detach_sub_id = VMCI_INVALID_ID;
1367
1368         /* If we have gotten here then we should be past the point where old
1369          * linux vsock could have sent the bogus rst.
1370          */
1371         vsk->sent_request = false;
1372         vsk->ignore_connecting_rst = false;
1373
1374         /* Verify that we're OK with the proposed queue pair size */
1375         if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1376             pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1377                 err = -EINVAL;
1378                 goto destroy;
1379         }
1380
1381         /* At this point we know the CID the peer is using to talk to us. */
1382
1383         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1384                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1385
1386         /* Setup the notify ops to be the highest supported version that both
1387          * the server and the client support.
1388          */
1389
1390         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1391                 old_proto = old_pkt_proto;
1392         } else {
1393                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1394                         old_proto = true;
1395                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1396                         old_proto = false;
1397
1398         }
1399
1400         if (old_proto)
1401                 version = VSOCK_PROTO_INVALID;
1402         else
1403                 version = pkt->proto;
1404
1405         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1406                 err = -EINVAL;
1407                 goto destroy;
1408         }
1409
1410         /* Subscribe to detach events first.
1411          *
1412          * XXX We attach once for each queue pair created for now so it is easy
1413          * to find the socket (it's provided), but later we should only
1414          * subscribe once and add a way to lookup sockets by queue pair handle.
1415          */
1416         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1417                                    vmci_transport_peer_detach_cb,
1418                                    vmci_trans(vsk), &detach_sub_id);
1419         if (err < VMCI_SUCCESS) {
1420                 err = vmci_transport_error_to_vsock_error(err);
1421                 goto destroy;
1422         }
1423
1424         /* Make VMCI select the handle for us. */
1425         handle = VMCI_INVALID_HANDLE;
1426         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1427         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1428
1429         err = vmci_transport_queue_pair_alloc(&qpair,
1430                                               &handle,
1431                                               pkt->u.size,
1432                                               pkt->u.size,
1433                                               vsk->remote_addr.svm_cid,
1434                                               flags,
1435                                               vmci_transport_is_trusted(
1436                                                   vsk,
1437                                                   vsk->
1438                                                   remote_addr.svm_cid));
1439         if (err < 0)
1440                 goto destroy;
1441
1442         err = vmci_transport_send_qp_offer(sk, handle);
1443         if (err < 0) {
1444                 err = vmci_transport_error_to_vsock_error(err);
1445                 goto destroy;
1446         }
1447
1448         vmci_trans(vsk)->qp_handle = handle;
1449         vmci_trans(vsk)->qpair = qpair;
1450
1451         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1452                 pkt->u.size;
1453
1454         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1455
1456         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1457
1458         return 0;
1459
1460 destroy:
1461         if (detach_sub_id != VMCI_INVALID_ID)
1462                 vmci_event_unsubscribe(detach_sub_id);
1463
1464         if (!vmci_handle_is_invalid(handle))
1465                 vmci_qpair_detach(&qpair);
1466
1467         return err;
1468 }
1469
1470 static int
1471 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1472                                               struct vmci_transport_packet *pkt)
1473 {
1474         int err = 0;
1475         struct vsock_sock *vsk = vsock_sk(sk);
1476
1477         if (vsk->sent_request) {
1478                 vsk->sent_request = false;
1479                 vsk->ignore_connecting_rst = true;
1480
1481                 err = vmci_transport_send_conn_request(
1482                         sk, vmci_trans(vsk)->queue_pair_size);
1483                 if (err < 0)
1484                         err = vmci_transport_error_to_vsock_error(err);
1485                 else
1486                         err = 0;
1487
1488         }
1489
1490         return err;
1491 }
1492
1493 static int vmci_transport_recv_connected(struct sock *sk,
1494                                          struct vmci_transport_packet *pkt)
1495 {
1496         struct vsock_sock *vsk;
1497         bool pkt_processed = false;
1498
1499         /* In cases where we are closing the connection, it's sufficient to
1500          * mark the state change (and maybe error) and wake up any waiting
1501          * threads. Since this is a connected socket, it's owned by a user
1502          * process and will be cleaned up when the failure is passed back on
1503          * the current or next system call.  Our system call implementations
1504          * must therefore check for error and state changes on entry and when
1505          * being awoken.
1506          */
1507         switch (pkt->type) {
1508         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1509                 if (pkt->u.mode) {
1510                         vsk = vsock_sk(sk);
1511
1512                         vsk->peer_shutdown |= pkt->u.mode;
1513                         sk->sk_state_change(sk);
1514                 }
1515                 break;
1516
1517         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1518                 vsk = vsock_sk(sk);
1519                 /* It is possible that we sent our peer a message (e.g a
1520                  * WAITING_READ) right before we got notified that the peer had
1521                  * detached. If that happens then we can get a RST pkt back
1522                  * from our peer even though there is data available for us to
1523                  * read. In that case, don't shutdown the socket completely but
1524                  * instead allow the local client to finish reading data off
1525                  * the queuepair. Always treat a RST pkt in connected mode like
1526                  * a clean shutdown.
1527                  */
1528                 sock_set_flag(sk, SOCK_DONE);
1529                 vsk->peer_shutdown = SHUTDOWN_MASK;
1530                 if (vsock_stream_has_data(vsk) <= 0)
1531                         sk->sk_state = TCP_CLOSING;
1532
1533                 sk->sk_state_change(sk);
1534                 break;
1535
1536         default:
1537                 vsk = vsock_sk(sk);
1538                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1539                                 sk, pkt, false, NULL, NULL,
1540                                 &pkt_processed);
1541                 if (!pkt_processed)
1542                         return -EINVAL;
1543
1544                 break;
1545         }
1546
1547         return 0;
1548 }
1549
1550 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1551                                       struct vsock_sock *psk)
1552 {
1553         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1554         if (!vsk->trans)
1555                 return -ENOMEM;
1556
1557         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1558         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1559         vmci_trans(vsk)->qpair = NULL;
1560         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1561         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1562         vmci_trans(vsk)->notify_ops = NULL;
1563         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1564         vmci_trans(vsk)->sk = &vsk->sk;
1565         spin_lock_init(&vmci_trans(vsk)->lock);
1566         if (psk) {
1567                 vmci_trans(vsk)->queue_pair_size =
1568                         vmci_trans(psk)->queue_pair_size;
1569                 vmci_trans(vsk)->queue_pair_min_size =
1570                         vmci_trans(psk)->queue_pair_min_size;
1571                 vmci_trans(vsk)->queue_pair_max_size =
1572                         vmci_trans(psk)->queue_pair_max_size;
1573         } else {
1574                 vmci_trans(vsk)->queue_pair_size =
1575                         VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1576                 vmci_trans(vsk)->queue_pair_min_size =
1577                          VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1578                 vmci_trans(vsk)->queue_pair_max_size =
1579                         VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1580         }
1581
1582         return 0;
1583 }
1584
1585 static void vmci_transport_free_resources(struct list_head *transport_list)
1586 {
1587         while (!list_empty(transport_list)) {
1588                 struct vmci_transport *transport =
1589                     list_first_entry(transport_list, struct vmci_transport,
1590                                      elem);
1591                 list_del(&transport->elem);
1592
1593                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1594                         vmci_event_unsubscribe(transport->detach_sub_id);
1595                         transport->detach_sub_id = VMCI_INVALID_ID;
1596                 }
1597
1598                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1599                         vmci_qpair_detach(&transport->qpair);
1600                         transport->qp_handle = VMCI_INVALID_HANDLE;
1601                         transport->produce_size = 0;
1602                         transport->consume_size = 0;
1603                 }
1604
1605                 kfree(transport);
1606         }
1607 }
1608
1609 static void vmci_transport_cleanup(struct work_struct *work)
1610 {
1611         LIST_HEAD(pending);
1612
1613         spin_lock_bh(&vmci_transport_cleanup_lock);
1614         list_replace_init(&vmci_transport_cleanup_list, &pending);
1615         spin_unlock_bh(&vmci_transport_cleanup_lock);
1616         vmci_transport_free_resources(&pending);
1617 }
1618
1619 static void vmci_transport_destruct(struct vsock_sock *vsk)
1620 {
1621         /* Ensure that the detach callback doesn't use the sk/vsk
1622          * we are about to destruct.
1623          */
1624         spin_lock_bh(&vmci_trans(vsk)->lock);
1625         vmci_trans(vsk)->sk = NULL;
1626         spin_unlock_bh(&vmci_trans(vsk)->lock);
1627
1628         if (vmci_trans(vsk)->notify_ops)
1629                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1630
1631         spin_lock_bh(&vmci_transport_cleanup_lock);
1632         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1633         spin_unlock_bh(&vmci_transport_cleanup_lock);
1634         schedule_work(&vmci_transport_cleanup_work);
1635
1636         vsk->trans = NULL;
1637 }
1638
1639 static void vmci_transport_release(struct vsock_sock *vsk)
1640 {
1641         vsock_remove_sock(vsk);
1642
1643         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1644                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1645                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1646         }
1647 }
1648
1649 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1650                                      struct sockaddr_vm *addr)
1651 {
1652         u32 port;
1653         u32 flags;
1654         int err;
1655
1656         /* VMCI will select a resource ID for us if we provide
1657          * VMCI_INVALID_ID.
1658          */
1659         port = addr->svm_port == VMADDR_PORT_ANY ?
1660                         VMCI_INVALID_ID : addr->svm_port;
1661
1662         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1663                 return -EACCES;
1664
1665         flags = addr->svm_cid == VMADDR_CID_ANY ?
1666                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1667
1668         err = vmci_transport_datagram_create_hnd(port, flags,
1669                                                  vmci_transport_recv_dgram_cb,
1670                                                  &vsk->sk,
1671                                                  &vmci_trans(vsk)->dg_handle);
1672         if (err < VMCI_SUCCESS)
1673                 return vmci_transport_error_to_vsock_error(err);
1674         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1675                         vmci_trans(vsk)->dg_handle.resource);
1676
1677         return 0;
1678 }
1679
1680 static int vmci_transport_dgram_enqueue(
1681         struct vsock_sock *vsk,
1682         struct sockaddr_vm *remote_addr,
1683         struct msghdr *msg,
1684         size_t len)
1685 {
1686         int err;
1687         struct vmci_datagram *dg;
1688
1689         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1690                 return -EMSGSIZE;
1691
1692         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1693                 return -EPERM;
1694
1695         /* Allocate a buffer for the user's message and our packet header. */
1696         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1697         if (!dg)
1698                 return -ENOMEM;
1699
1700         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1701
1702         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1703                                    remote_addr->svm_port);
1704         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1705                                    vsk->local_addr.svm_port);
1706         dg->payload_size = len;
1707
1708         err = vmci_datagram_send(dg);
1709         kfree(dg);
1710         if (err < 0)
1711                 return vmci_transport_error_to_vsock_error(err);
1712
1713         return err - sizeof(*dg);
1714 }
1715
1716 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1717                                         struct msghdr *msg, size_t len,
1718                                         int flags)
1719 {
1720         int err;
1721         int noblock;
1722         struct vmci_datagram *dg;
1723         size_t payload_len;
1724         struct sk_buff *skb;
1725
1726         noblock = flags & MSG_DONTWAIT;
1727
1728         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1729                 return -EOPNOTSUPP;
1730
1731         /* Retrieve the head sk_buff from the socket's receive queue. */
1732         err = 0;
1733         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1734         if (!skb)
1735                 return err;
1736
1737         dg = (struct vmci_datagram *)skb->data;
1738         if (!dg)
1739                 /* err is 0, meaning we read zero bytes. */
1740                 goto out;
1741
1742         payload_len = dg->payload_size;
1743         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1744         if (payload_len != skb->len - sizeof(*dg)) {
1745                 err = -EINVAL;
1746                 goto out;
1747         }
1748
1749         if (payload_len > len) {
1750                 payload_len = len;
1751                 msg->msg_flags |= MSG_TRUNC;
1752         }
1753
1754         /* Place the datagram payload in the user's iovec. */
1755         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1756         if (err)
1757                 goto out;
1758
1759         if (msg->msg_name) {
1760                 /* Provide the address of the sender. */
1761                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1762                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1763                 msg->msg_namelen = sizeof(*vm_addr);
1764         }
1765         err = payload_len;
1766
1767 out:
1768         skb_free_datagram(&vsk->sk, skb);
1769         return err;
1770 }
1771
1772 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1773 {
1774         if (cid == VMADDR_CID_HYPERVISOR) {
1775                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1776                  * state and are allowed.
1777                  */
1778                 return port == VMCI_UNITY_PBRPC_REGISTER;
1779         }
1780
1781         return true;
1782 }
1783
1784 static int vmci_transport_connect(struct vsock_sock *vsk)
1785 {
1786         int err;
1787         bool old_pkt_proto = false;
1788         struct sock *sk = &vsk->sk;
1789
1790         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1791                 old_pkt_proto) {
1792                 err = vmci_transport_send_conn_request(
1793                         sk, vmci_trans(vsk)->queue_pair_size);
1794                 if (err < 0) {
1795                         sk->sk_state = TCP_CLOSE;
1796                         return err;
1797                 }
1798         } else {
1799                 int supported_proto_versions =
1800                         vmci_transport_new_proto_supported_versions();
1801                 err = vmci_transport_send_conn_request2(
1802                                 sk, vmci_trans(vsk)->queue_pair_size,
1803                                 supported_proto_versions);
1804                 if (err < 0) {
1805                         sk->sk_state = TCP_CLOSE;
1806                         return err;
1807                 }
1808
1809                 vsk->sent_request = true;
1810         }
1811
1812         return err;
1813 }
1814
1815 static ssize_t vmci_transport_stream_dequeue(
1816         struct vsock_sock *vsk,
1817         struct msghdr *msg,
1818         size_t len,
1819         int flags)
1820 {
1821         if (flags & MSG_PEEK)
1822                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1823         else
1824                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1825 }
1826
1827 static ssize_t vmci_transport_stream_enqueue(
1828         struct vsock_sock *vsk,
1829         struct msghdr *msg,
1830         size_t len)
1831 {
1832         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1833 }
1834
1835 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1836 {
1837         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1838 }
1839
1840 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1841 {
1842         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1843 }
1844
1845 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1846 {
1847         return vmci_trans(vsk)->consume_size;
1848 }
1849
1850 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1851 {
1852         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1853 }
1854
1855 static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1856 {
1857         return vmci_trans(vsk)->queue_pair_size;
1858 }
1859
1860 static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1861 {
1862         return vmci_trans(vsk)->queue_pair_min_size;
1863 }
1864
1865 static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1866 {
1867         return vmci_trans(vsk)->queue_pair_max_size;
1868 }
1869
1870 static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1871 {
1872         if (val < vmci_trans(vsk)->queue_pair_min_size)
1873                 vmci_trans(vsk)->queue_pair_min_size = val;
1874         if (val > vmci_trans(vsk)->queue_pair_max_size)
1875                 vmci_trans(vsk)->queue_pair_max_size = val;
1876         vmci_trans(vsk)->queue_pair_size = val;
1877 }
1878
1879 static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1880                                                u64 val)
1881 {
1882         if (val > vmci_trans(vsk)->queue_pair_size)
1883                 vmci_trans(vsk)->queue_pair_size = val;
1884         vmci_trans(vsk)->queue_pair_min_size = val;
1885 }
1886
1887 static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1888                                                u64 val)
1889 {
1890         if (val < vmci_trans(vsk)->queue_pair_size)
1891                 vmci_trans(vsk)->queue_pair_size = val;
1892         vmci_trans(vsk)->queue_pair_max_size = val;
1893 }
1894
1895 static int vmci_transport_notify_poll_in(
1896         struct vsock_sock *vsk,
1897         size_t target,
1898         bool *data_ready_now)
1899 {
1900         return vmci_trans(vsk)->notify_ops->poll_in(
1901                         &vsk->sk, target, data_ready_now);
1902 }
1903
1904 static int vmci_transport_notify_poll_out(
1905         struct vsock_sock *vsk,
1906         size_t target,
1907         bool *space_available_now)
1908 {
1909         return vmci_trans(vsk)->notify_ops->poll_out(
1910                         &vsk->sk, target, space_available_now);
1911 }
1912
1913 static int vmci_transport_notify_recv_init(
1914         struct vsock_sock *vsk,
1915         size_t target,
1916         struct vsock_transport_recv_notify_data *data)
1917 {
1918         return vmci_trans(vsk)->notify_ops->recv_init(
1919                         &vsk->sk, target,
1920                         (struct vmci_transport_recv_notify_data *)data);
1921 }
1922
1923 static int vmci_transport_notify_recv_pre_block(
1924         struct vsock_sock *vsk,
1925         size_t target,
1926         struct vsock_transport_recv_notify_data *data)
1927 {
1928         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1929                         &vsk->sk, target,
1930                         (struct vmci_transport_recv_notify_data *)data);
1931 }
1932
1933 static int vmci_transport_notify_recv_pre_dequeue(
1934         struct vsock_sock *vsk,
1935         size_t target,
1936         struct vsock_transport_recv_notify_data *data)
1937 {
1938         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1939                         &vsk->sk, target,
1940                         (struct vmci_transport_recv_notify_data *)data);
1941 }
1942
1943 static int vmci_transport_notify_recv_post_dequeue(
1944         struct vsock_sock *vsk,
1945         size_t target,
1946         ssize_t copied,
1947         bool data_read,
1948         struct vsock_transport_recv_notify_data *data)
1949 {
1950         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1951                         &vsk->sk, target, copied, data_read,
1952                         (struct vmci_transport_recv_notify_data *)data);
1953 }
1954
1955 static int vmci_transport_notify_send_init(
1956         struct vsock_sock *vsk,
1957         struct vsock_transport_send_notify_data *data)
1958 {
1959         return vmci_trans(vsk)->notify_ops->send_init(
1960                         &vsk->sk,
1961                         (struct vmci_transport_send_notify_data *)data);
1962 }
1963
1964 static int vmci_transport_notify_send_pre_block(
1965         struct vsock_sock *vsk,
1966         struct vsock_transport_send_notify_data *data)
1967 {
1968         return vmci_trans(vsk)->notify_ops->send_pre_block(
1969                         &vsk->sk,
1970                         (struct vmci_transport_send_notify_data *)data);
1971 }
1972
1973 static int vmci_transport_notify_send_pre_enqueue(
1974         struct vsock_sock *vsk,
1975         struct vsock_transport_send_notify_data *data)
1976 {
1977         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1978                         &vsk->sk,
1979                         (struct vmci_transport_send_notify_data *)data);
1980 }
1981
1982 static int vmci_transport_notify_send_post_enqueue(
1983         struct vsock_sock *vsk,
1984         ssize_t written,
1985         struct vsock_transport_send_notify_data *data)
1986 {
1987         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1988                         &vsk->sk, written,
1989                         (struct vmci_transport_send_notify_data *)data);
1990 }
1991
1992 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1993 {
1994         if (PROTOCOL_OVERRIDE != -1) {
1995                 if (PROTOCOL_OVERRIDE == 0)
1996                         *old_pkt_proto = true;
1997                 else
1998                         *old_pkt_proto = false;
1999
2000                 pr_info("Proto override in use\n");
2001                 return true;
2002         }
2003
2004         return false;
2005 }
2006
2007 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2008                                                   u16 *proto,
2009                                                   bool old_pkt_proto)
2010 {
2011         struct vsock_sock *vsk = vsock_sk(sk);
2012
2013         if (old_pkt_proto) {
2014                 if (*proto != VSOCK_PROTO_INVALID) {
2015                         pr_err("Can't set both an old and new protocol\n");
2016                         return false;
2017                 }
2018                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2019                 goto exit;
2020         }
2021
2022         switch (*proto) {
2023         case VSOCK_PROTO_PKT_ON_NOTIFY:
2024                 vmci_trans(vsk)->notify_ops =
2025                         &vmci_transport_notify_pkt_q_state_ops;
2026                 break;
2027         default:
2028                 pr_err("Unknown notify protocol version\n");
2029                 return false;
2030         }
2031
2032 exit:
2033         vmci_trans(vsk)->notify_ops->socket_init(sk);
2034         return true;
2035 }
2036
2037 static u16 vmci_transport_new_proto_supported_versions(void)
2038 {
2039         if (PROTOCOL_OVERRIDE != -1)
2040                 return PROTOCOL_OVERRIDE;
2041
2042         return VSOCK_PROTO_ALL_SUPPORTED;
2043 }
2044
2045 static u32 vmci_transport_get_local_cid(void)
2046 {
2047         return vmci_get_context_id();
2048 }
2049
2050 static const struct vsock_transport vmci_transport = {
2051         .init = vmci_transport_socket_init,
2052         .destruct = vmci_transport_destruct,
2053         .release = vmci_transport_release,
2054         .connect = vmci_transport_connect,
2055         .dgram_bind = vmci_transport_dgram_bind,
2056         .dgram_dequeue = vmci_transport_dgram_dequeue,
2057         .dgram_enqueue = vmci_transport_dgram_enqueue,
2058         .dgram_allow = vmci_transport_dgram_allow,
2059         .stream_dequeue = vmci_transport_stream_dequeue,
2060         .stream_enqueue = vmci_transport_stream_enqueue,
2061         .stream_has_data = vmci_transport_stream_has_data,
2062         .stream_has_space = vmci_transport_stream_has_space,
2063         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2064         .stream_is_active = vmci_transport_stream_is_active,
2065         .stream_allow = vmci_transport_stream_allow,
2066         .notify_poll_in = vmci_transport_notify_poll_in,
2067         .notify_poll_out = vmci_transport_notify_poll_out,
2068         .notify_recv_init = vmci_transport_notify_recv_init,
2069         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2070         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2071         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2072         .notify_send_init = vmci_transport_notify_send_init,
2073         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2074         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2075         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2076         .shutdown = vmci_transport_shutdown,
2077         .set_buffer_size = vmci_transport_set_buffer_size,
2078         .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2079         .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2080         .get_buffer_size = vmci_transport_get_buffer_size,
2081         .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2082         .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2083         .get_local_cid = vmci_transport_get_local_cid,
2084 };
2085
2086 static int __init vmci_transport_init(void)
2087 {
2088         int err;
2089
2090         /* Create the datagram handle that we will use to send and receive all
2091          * VSocket control messages for this context.
2092          */
2093         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2094                                                  VMCI_FLAG_ANYCID_DG_HND,
2095                                                  vmci_transport_recv_stream_cb,
2096                                                  NULL,
2097                                                  &vmci_transport_stream_handle);
2098         if (err < VMCI_SUCCESS) {
2099                 pr_err("Unable to create datagram handle. (%d)\n", err);
2100                 return vmci_transport_error_to_vsock_error(err);
2101         }
2102
2103         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2104                                    vmci_transport_qp_resumed_cb,
2105                                    NULL, &vmci_transport_qp_resumed_sub_id);
2106         if (err < VMCI_SUCCESS) {
2107                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2108                 err = vmci_transport_error_to_vsock_error(err);
2109                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2110                 goto err_destroy_stream_handle;
2111         }
2112
2113         err = vsock_core_init(&vmci_transport);
2114         if (err < 0)
2115                 goto err_unsubscribe;
2116
2117         return 0;
2118
2119 err_unsubscribe:
2120         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2121 err_destroy_stream_handle:
2122         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2123         return err;
2124 }
2125 module_init(vmci_transport_init);
2126
2127 static void __exit vmci_transport_exit(void)
2128 {
2129         cancel_work_sync(&vmci_transport_cleanup_work);
2130         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2131
2132         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2133                 if (vmci_datagram_destroy_handle(
2134                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2135                         pr_err("Couldn't destroy datagram handle\n");
2136                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2137         }
2138
2139         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2140                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2141                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2142         }
2143
2144         vsock_core_exit();
2145 }
2146 module_exit(vmci_transport_exit);
2147
2148 MODULE_AUTHOR("VMware, Inc.");
2149 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2150 MODULE_VERSION("1.0.5.0-k");
2151 MODULE_LICENSE("GPL v2");
2152 MODULE_ALIAS("vmware_vsock");
2153 MODULE_ALIAS_NETPROTO(PF_VSOCK);