Merge branch 'drm/du/fixes' of git://linuxtv.org/pinchartl/media into drm-fixes
[sfrench/cifs-2.6.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  *
8  * This software is available to you under a choice of one of two
9  * licenses.  You may choose to be licensed under the terms of the GNU
10  * General Public License (GPL) Version 2, available from the file
11  * COPYING in the main directory of this source tree, or the
12  * OpenIB.org BSD license below:
13  *
14  *     Redistribution and use in source and binary forms, with or
15  *     without modification, are permitted provided that the following
16  *     conditions are met:
17  *
18  *      - Redistributions of source code must retain the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer.
21  *
22  *      - Redistributions in binary form must reproduce the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer in the documentation and/or other materials
25  *        provided with the distribution.
26  *
27  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34  * SOFTWARE.
35  */
36
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
40
41 #include <net/strparser.h>
42 #include <net/tls.h>
43
44 #define MAX_IV_SIZE     TLS_CIPHER_AES_GCM_128_IV_SIZE
45
46 static int tls_do_decryption(struct sock *sk,
47                              struct scatterlist *sgin,
48                              struct scatterlist *sgout,
49                              char *iv_recv,
50                              size_t data_len,
51                              struct sk_buff *skb,
52                              gfp_t flags)
53 {
54         struct tls_context *tls_ctx = tls_get_ctx(sk);
55         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
56         struct strp_msg *rxm = strp_msg(skb);
57         struct aead_request *aead_req;
58
59         int ret;
60         unsigned int req_size = sizeof(struct aead_request) +
61                 crypto_aead_reqsize(ctx->aead_recv);
62
63         aead_req = kzalloc(req_size, flags);
64         if (!aead_req)
65                 return -ENOMEM;
66
67         aead_request_set_tfm(aead_req, ctx->aead_recv);
68         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
69         aead_request_set_crypt(aead_req, sgin, sgout,
70                                data_len + tls_ctx->rx.tag_size,
71                                (u8 *)iv_recv);
72         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
73                                   crypto_req_done, &ctx->async_wait);
74
75         ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
76
77         if (ret < 0)
78                 goto out;
79
80         rxm->offset += tls_ctx->rx.prepend_size;
81         rxm->full_len -= tls_ctx->rx.overhead_size;
82         tls_advance_record_sn(sk, &tls_ctx->rx);
83
84         ctx->decrypted = true;
85
86         ctx->saved_data_ready(sk);
87
88 out:
89         kfree(aead_req);
90         return ret;
91 }
92
93 static void trim_sg(struct sock *sk, struct scatterlist *sg,
94                     int *sg_num_elem, unsigned int *sg_size, int target_size)
95 {
96         int i = *sg_num_elem - 1;
97         int trim = *sg_size - target_size;
98
99         if (trim <= 0) {
100                 WARN_ON(trim < 0);
101                 return;
102         }
103
104         *sg_size = target_size;
105         while (trim >= sg[i].length) {
106                 trim -= sg[i].length;
107                 sk_mem_uncharge(sk, sg[i].length);
108                 put_page(sg_page(&sg[i]));
109                 i--;
110
111                 if (i < 0)
112                         goto out;
113         }
114
115         sg[i].length -= trim;
116         sk_mem_uncharge(sk, trim);
117
118 out:
119         *sg_num_elem = i + 1;
120 }
121
122 static void trim_both_sgl(struct sock *sk, int target_size)
123 {
124         struct tls_context *tls_ctx = tls_get_ctx(sk);
125         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
126
127         trim_sg(sk, ctx->sg_plaintext_data,
128                 &ctx->sg_plaintext_num_elem,
129                 &ctx->sg_plaintext_size,
130                 target_size);
131
132         if (target_size > 0)
133                 target_size += tls_ctx->tx.overhead_size;
134
135         trim_sg(sk, ctx->sg_encrypted_data,
136                 &ctx->sg_encrypted_num_elem,
137                 &ctx->sg_encrypted_size,
138                 target_size);
139 }
140
141 static int alloc_encrypted_sg(struct sock *sk, int len)
142 {
143         struct tls_context *tls_ctx = tls_get_ctx(sk);
144         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
145         int rc = 0;
146
147         rc = sk_alloc_sg(sk, len,
148                          ctx->sg_encrypted_data, 0,
149                          &ctx->sg_encrypted_num_elem,
150                          &ctx->sg_encrypted_size, 0);
151
152         return rc;
153 }
154
155 static int alloc_plaintext_sg(struct sock *sk, int len)
156 {
157         struct tls_context *tls_ctx = tls_get_ctx(sk);
158         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
159         int rc = 0;
160
161         rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
162                          &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
163                          tls_ctx->pending_open_record_frags);
164
165         return rc;
166 }
167
168 static void free_sg(struct sock *sk, struct scatterlist *sg,
169                     int *sg_num_elem, unsigned int *sg_size)
170 {
171         int i, n = *sg_num_elem;
172
173         for (i = 0; i < n; ++i) {
174                 sk_mem_uncharge(sk, sg[i].length);
175                 put_page(sg_page(&sg[i]));
176         }
177         *sg_num_elem = 0;
178         *sg_size = 0;
179 }
180
181 static void tls_free_both_sg(struct sock *sk)
182 {
183         struct tls_context *tls_ctx = tls_get_ctx(sk);
184         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
185
186         free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
187                 &ctx->sg_encrypted_size);
188
189         free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
190                 &ctx->sg_plaintext_size);
191 }
192
193 static int tls_do_encryption(struct tls_context *tls_ctx,
194                              struct tls_sw_context *ctx, size_t data_len,
195                              gfp_t flags)
196 {
197         unsigned int req_size = sizeof(struct aead_request) +
198                 crypto_aead_reqsize(ctx->aead_send);
199         struct aead_request *aead_req;
200         int rc;
201
202         aead_req = kzalloc(req_size, flags);
203         if (!aead_req)
204                 return -ENOMEM;
205
206         ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
207         ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
208
209         aead_request_set_tfm(aead_req, ctx->aead_send);
210         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
211         aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
212                                data_len, tls_ctx->tx.iv);
213
214         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
215                                   crypto_req_done, &ctx->async_wait);
216
217         rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
218
219         ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
220         ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
221
222         kfree(aead_req);
223         return rc;
224 }
225
226 static int tls_push_record(struct sock *sk, int flags,
227                            unsigned char record_type)
228 {
229         struct tls_context *tls_ctx = tls_get_ctx(sk);
230         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
231         int rc;
232
233         sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
234         sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
235
236         tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
237                      tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
238                      record_type);
239
240         tls_fill_prepend(tls_ctx,
241                          page_address(sg_page(&ctx->sg_encrypted_data[0])) +
242                          ctx->sg_encrypted_data[0].offset,
243                          ctx->sg_plaintext_size, record_type);
244
245         tls_ctx->pending_open_record_frags = 0;
246         set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
247
248         rc = tls_do_encryption(tls_ctx, ctx, ctx->sg_plaintext_size,
249                                sk->sk_allocation);
250         if (rc < 0) {
251                 /* If we are called from write_space and
252                  * we fail, we need to set this SOCK_NOSPACE
253                  * to trigger another write_space in the future.
254                  */
255                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
256                 return rc;
257         }
258
259         free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
260                 &ctx->sg_plaintext_size);
261
262         ctx->sg_encrypted_num_elem = 0;
263         ctx->sg_encrypted_size = 0;
264
265         /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
266         rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
267         if (rc < 0 && rc != -EAGAIN)
268                 tls_err_abort(sk, EBADMSG);
269
270         tls_advance_record_sn(sk, &tls_ctx->tx);
271         return rc;
272 }
273
274 static int tls_sw_push_pending_record(struct sock *sk, int flags)
275 {
276         return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
277 }
278
279 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
280                               int length, int *pages_used,
281                               unsigned int *size_used,
282                               struct scatterlist *to, int to_max_pages,
283                               bool charge)
284 {
285         struct page *pages[MAX_SKB_FRAGS];
286
287         size_t offset;
288         ssize_t copied, use;
289         int i = 0;
290         unsigned int size = *size_used;
291         int num_elem = *pages_used;
292         int rc = 0;
293         int maxpages;
294
295         while (length > 0) {
296                 i = 0;
297                 maxpages = to_max_pages - num_elem;
298                 if (maxpages == 0) {
299                         rc = -EFAULT;
300                         goto out;
301                 }
302                 copied = iov_iter_get_pages(from, pages,
303                                             length,
304                                             maxpages, &offset);
305                 if (copied <= 0) {
306                         rc = -EFAULT;
307                         goto out;
308                 }
309
310                 iov_iter_advance(from, copied);
311
312                 length -= copied;
313                 size += copied;
314                 while (copied) {
315                         use = min_t(int, copied, PAGE_SIZE - offset);
316
317                         sg_set_page(&to[num_elem],
318                                     pages[i], use, offset);
319                         sg_unmark_end(&to[num_elem]);
320                         if (charge)
321                                 sk_mem_charge(sk, use);
322
323                         offset = 0;
324                         copied -= use;
325
326                         ++i;
327                         ++num_elem;
328                 }
329         }
330
331 out:
332         *size_used = size;
333         *pages_used = num_elem;
334
335         return rc;
336 }
337
338 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
339                              int bytes)
340 {
341         struct tls_context *tls_ctx = tls_get_ctx(sk);
342         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
343         struct scatterlist *sg = ctx->sg_plaintext_data;
344         int copy, i, rc = 0;
345
346         for (i = tls_ctx->pending_open_record_frags;
347              i < ctx->sg_plaintext_num_elem; ++i) {
348                 copy = sg[i].length;
349                 if (copy_from_iter(
350                                 page_address(sg_page(&sg[i])) + sg[i].offset,
351                                 copy, from) != copy) {
352                         rc = -EFAULT;
353                         goto out;
354                 }
355                 bytes -= copy;
356
357                 ++tls_ctx->pending_open_record_frags;
358
359                 if (!bytes)
360                         break;
361         }
362
363 out:
364         return rc;
365 }
366
367 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
368 {
369         struct tls_context *tls_ctx = tls_get_ctx(sk);
370         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
371         int ret = 0;
372         int required_size;
373         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
374         bool eor = !(msg->msg_flags & MSG_MORE);
375         size_t try_to_copy, copied = 0;
376         unsigned char record_type = TLS_RECORD_TYPE_DATA;
377         int record_room;
378         bool full_record;
379         int orig_size;
380
381         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
382                 return -ENOTSUPP;
383
384         lock_sock(sk);
385
386         if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
387                 goto send_end;
388
389         if (unlikely(msg->msg_controllen)) {
390                 ret = tls_proccess_cmsg(sk, msg, &record_type);
391                 if (ret)
392                         goto send_end;
393         }
394
395         while (msg_data_left(msg)) {
396                 if (sk->sk_err) {
397                         ret = -sk->sk_err;
398                         goto send_end;
399                 }
400
401                 orig_size = ctx->sg_plaintext_size;
402                 full_record = false;
403                 try_to_copy = msg_data_left(msg);
404                 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
405                 if (try_to_copy >= record_room) {
406                         try_to_copy = record_room;
407                         full_record = true;
408                 }
409
410                 required_size = ctx->sg_plaintext_size + try_to_copy +
411                                 tls_ctx->tx.overhead_size;
412
413                 if (!sk_stream_memory_free(sk))
414                         goto wait_for_sndbuf;
415 alloc_encrypted:
416                 ret = alloc_encrypted_sg(sk, required_size);
417                 if (ret) {
418                         if (ret != -ENOSPC)
419                                 goto wait_for_memory;
420
421                         /* Adjust try_to_copy according to the amount that was
422                          * actually allocated. The difference is due
423                          * to max sg elements limit
424                          */
425                         try_to_copy -= required_size - ctx->sg_encrypted_size;
426                         full_record = true;
427                 }
428
429                 if (full_record || eor) {
430                         ret = zerocopy_from_iter(sk, &msg->msg_iter,
431                                 try_to_copy, &ctx->sg_plaintext_num_elem,
432                                 &ctx->sg_plaintext_size,
433                                 ctx->sg_plaintext_data,
434                                 ARRAY_SIZE(ctx->sg_plaintext_data),
435                                 true);
436                         if (ret)
437                                 goto fallback_to_reg_send;
438
439                         copied += try_to_copy;
440                         ret = tls_push_record(sk, msg->msg_flags, record_type);
441                         if (!ret)
442                                 continue;
443                         if (ret == -EAGAIN)
444                                 goto send_end;
445
446                         copied -= try_to_copy;
447 fallback_to_reg_send:
448                         iov_iter_revert(&msg->msg_iter,
449                                         ctx->sg_plaintext_size - orig_size);
450                         trim_sg(sk, ctx->sg_plaintext_data,
451                                 &ctx->sg_plaintext_num_elem,
452                                 &ctx->sg_plaintext_size,
453                                 orig_size);
454                 }
455
456                 required_size = ctx->sg_plaintext_size + try_to_copy;
457 alloc_plaintext:
458                 ret = alloc_plaintext_sg(sk, required_size);
459                 if (ret) {
460                         if (ret != -ENOSPC)
461                                 goto wait_for_memory;
462
463                         /* Adjust try_to_copy according to the amount that was
464                          * actually allocated. The difference is due
465                          * to max sg elements limit
466                          */
467                         try_to_copy -= required_size - ctx->sg_plaintext_size;
468                         full_record = true;
469
470                         trim_sg(sk, ctx->sg_encrypted_data,
471                                 &ctx->sg_encrypted_num_elem,
472                                 &ctx->sg_encrypted_size,
473                                 ctx->sg_plaintext_size +
474                                 tls_ctx->tx.overhead_size);
475                 }
476
477                 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
478                 if (ret)
479                         goto trim_sgl;
480
481                 copied += try_to_copy;
482                 if (full_record || eor) {
483 push_record:
484                         ret = tls_push_record(sk, msg->msg_flags, record_type);
485                         if (ret) {
486                                 if (ret == -ENOMEM)
487                                         goto wait_for_memory;
488
489                                 goto send_end;
490                         }
491                 }
492
493                 continue;
494
495 wait_for_sndbuf:
496                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
497 wait_for_memory:
498                 ret = sk_stream_wait_memory(sk, &timeo);
499                 if (ret) {
500 trim_sgl:
501                         trim_both_sgl(sk, orig_size);
502                         goto send_end;
503                 }
504
505                 if (tls_is_pending_closed_record(tls_ctx))
506                         goto push_record;
507
508                 if (ctx->sg_encrypted_size < required_size)
509                         goto alloc_encrypted;
510
511                 goto alloc_plaintext;
512         }
513
514 send_end:
515         ret = sk_stream_error(sk, msg->msg_flags, ret);
516
517         release_sock(sk);
518         return copied ? copied : ret;
519 }
520
521 int tls_sw_sendpage(struct sock *sk, struct page *page,
522                     int offset, size_t size, int flags)
523 {
524         struct tls_context *tls_ctx = tls_get_ctx(sk);
525         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
526         int ret = 0;
527         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
528         bool eor;
529         size_t orig_size = size;
530         unsigned char record_type = TLS_RECORD_TYPE_DATA;
531         struct scatterlist *sg;
532         bool full_record;
533         int record_room;
534
535         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
536                       MSG_SENDPAGE_NOTLAST))
537                 return -ENOTSUPP;
538
539         /* No MSG_EOR from splice, only look at MSG_MORE */
540         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
541
542         lock_sock(sk);
543
544         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
545
546         if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
547                 goto sendpage_end;
548
549         /* Call the sk_stream functions to manage the sndbuf mem. */
550         while (size > 0) {
551                 size_t copy, required_size;
552
553                 if (sk->sk_err) {
554                         ret = -sk->sk_err;
555                         goto sendpage_end;
556                 }
557
558                 full_record = false;
559                 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
560                 copy = size;
561                 if (copy >= record_room) {
562                         copy = record_room;
563                         full_record = true;
564                 }
565                 required_size = ctx->sg_plaintext_size + copy +
566                               tls_ctx->tx.overhead_size;
567
568                 if (!sk_stream_memory_free(sk))
569                         goto wait_for_sndbuf;
570 alloc_payload:
571                 ret = alloc_encrypted_sg(sk, required_size);
572                 if (ret) {
573                         if (ret != -ENOSPC)
574                                 goto wait_for_memory;
575
576                         /* Adjust copy according to the amount that was
577                          * actually allocated. The difference is due
578                          * to max sg elements limit
579                          */
580                         copy -= required_size - ctx->sg_plaintext_size;
581                         full_record = true;
582                 }
583
584                 get_page(page);
585                 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
586                 sg_set_page(sg, page, copy, offset);
587                 sg_unmark_end(sg);
588
589                 ctx->sg_plaintext_num_elem++;
590
591                 sk_mem_charge(sk, copy);
592                 offset += copy;
593                 size -= copy;
594                 ctx->sg_plaintext_size += copy;
595                 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
596
597                 if (full_record || eor ||
598                     ctx->sg_plaintext_num_elem ==
599                     ARRAY_SIZE(ctx->sg_plaintext_data)) {
600 push_record:
601                         ret = tls_push_record(sk, flags, record_type);
602                         if (ret) {
603                                 if (ret == -ENOMEM)
604                                         goto wait_for_memory;
605
606                                 goto sendpage_end;
607                         }
608                 }
609                 continue;
610 wait_for_sndbuf:
611                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
612 wait_for_memory:
613                 ret = sk_stream_wait_memory(sk, &timeo);
614                 if (ret) {
615                         trim_both_sgl(sk, ctx->sg_plaintext_size);
616                         goto sendpage_end;
617                 }
618
619                 if (tls_is_pending_closed_record(tls_ctx))
620                         goto push_record;
621
622                 goto alloc_payload;
623         }
624
625 sendpage_end:
626         if (orig_size > size)
627                 ret = orig_size - size;
628         else
629                 ret = sk_stream_error(sk, flags, ret);
630
631         release_sock(sk);
632         return ret;
633 }
634
635 static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
636                                      long timeo, int *err)
637 {
638         struct tls_context *tls_ctx = tls_get_ctx(sk);
639         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
640         struct sk_buff *skb;
641         DEFINE_WAIT_FUNC(wait, woken_wake_function);
642
643         while (!(skb = ctx->recv_pkt)) {
644                 if (sk->sk_err) {
645                         *err = sock_error(sk);
646                         return NULL;
647                 }
648
649                 if (sock_flag(sk, SOCK_DONE))
650                         return NULL;
651
652                 if ((flags & MSG_DONTWAIT) || !timeo) {
653                         *err = -EAGAIN;
654                         return NULL;
655                 }
656
657                 add_wait_queue(sk_sleep(sk), &wait);
658                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
659                 sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
660                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
661                 remove_wait_queue(sk_sleep(sk), &wait);
662
663                 /* Handle signals */
664                 if (signal_pending(current)) {
665                         *err = sock_intr_errno(timeo);
666                         return NULL;
667                 }
668         }
669
670         return skb;
671 }
672
673 static int decrypt_skb(struct sock *sk, struct sk_buff *skb,
674                        struct scatterlist *sgout)
675 {
676         struct tls_context *tls_ctx = tls_get_ctx(sk);
677         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
678         char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE];
679         struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2];
680         struct scatterlist *sgin = &sgin_arr[0];
681         struct strp_msg *rxm = strp_msg(skb);
682         int ret, nsg = ARRAY_SIZE(sgin_arr);
683         char aad_recv[TLS_AAD_SPACE_SIZE];
684         struct sk_buff *unused;
685
686         ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
687                             iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
688                             tls_ctx->rx.iv_size);
689         if (ret < 0)
690                 return ret;
691
692         memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
693         if (!sgout) {
694                 nsg = skb_cow_data(skb, 0, &unused) + 1;
695                 sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation);
696                 if (!sgout)
697                         sgout = sgin;
698         }
699
700         sg_init_table(sgin, nsg);
701         sg_set_buf(&sgin[0], aad_recv, sizeof(aad_recv));
702
703         nsg = skb_to_sgvec(skb, &sgin[1],
704                            rxm->offset + tls_ctx->rx.prepend_size,
705                            rxm->full_len - tls_ctx->rx.prepend_size);
706
707         tls_make_aad(aad_recv,
708                      rxm->full_len - tls_ctx->rx.overhead_size,
709                      tls_ctx->rx.rec_seq,
710                      tls_ctx->rx.rec_seq_size,
711                      ctx->control);
712
713         ret = tls_do_decryption(sk, sgin, sgout, iv,
714                                 rxm->full_len - tls_ctx->rx.overhead_size,
715                                 skb, sk->sk_allocation);
716
717         if (sgin != &sgin_arr[0])
718                 kfree(sgin);
719
720         return ret;
721 }
722
723 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
724                                unsigned int len)
725 {
726         struct tls_context *tls_ctx = tls_get_ctx(sk);
727         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
728         struct strp_msg *rxm = strp_msg(skb);
729
730         if (len < rxm->full_len) {
731                 rxm->offset += len;
732                 rxm->full_len -= len;
733
734                 return false;
735         }
736
737         /* Finished with message */
738         ctx->recv_pkt = NULL;
739         kfree_skb(skb);
740         strp_unpause(&ctx->strp);
741
742         return true;
743 }
744
745 int tls_sw_recvmsg(struct sock *sk,
746                    struct msghdr *msg,
747                    size_t len,
748                    int nonblock,
749                    int flags,
750                    int *addr_len)
751 {
752         struct tls_context *tls_ctx = tls_get_ctx(sk);
753         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
754         unsigned char control;
755         struct strp_msg *rxm;
756         struct sk_buff *skb;
757         ssize_t copied = 0;
758         bool cmsg = false;
759         int err = 0;
760         long timeo;
761
762         flags |= nonblock;
763
764         if (unlikely(flags & MSG_ERRQUEUE))
765                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
766
767         lock_sock(sk);
768
769         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
770         do {
771                 bool zc = false;
772                 int chunk = 0;
773
774                 skb = tls_wait_data(sk, flags, timeo, &err);
775                 if (!skb)
776                         goto recv_end;
777
778                 rxm = strp_msg(skb);
779                 if (!cmsg) {
780                         int cerr;
781
782                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
783                                         sizeof(ctx->control), &ctx->control);
784                         cmsg = true;
785                         control = ctx->control;
786                         if (ctx->control != TLS_RECORD_TYPE_DATA) {
787                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
788                                         err = -EIO;
789                                         goto recv_end;
790                                 }
791                         }
792                 } else if (control != ctx->control) {
793                         goto recv_end;
794                 }
795
796                 if (!ctx->decrypted) {
797                         int page_count;
798                         int to_copy;
799
800                         page_count = iov_iter_npages(&msg->msg_iter,
801                                                      MAX_SKB_FRAGS);
802                         to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
803                         if (to_copy <= len && page_count < MAX_SKB_FRAGS &&
804                             likely(!(flags & MSG_PEEK)))  {
805                                 struct scatterlist sgin[MAX_SKB_FRAGS + 1];
806                                 char unused[21];
807                                 int pages = 0;
808
809                                 zc = true;
810                                 sg_init_table(sgin, MAX_SKB_FRAGS + 1);
811                                 sg_set_buf(&sgin[0], unused, 13);
812
813                                 err = zerocopy_from_iter(sk, &msg->msg_iter,
814                                                          to_copy, &pages,
815                                                          &chunk, &sgin[1],
816                                                          MAX_SKB_FRAGS, false);
817                                 if (err < 0)
818                                         goto fallback_to_reg_recv;
819
820                                 err = decrypt_skb(sk, skb, sgin);
821                                 for (; pages > 0; pages--)
822                                         put_page(sg_page(&sgin[pages]));
823                                 if (err < 0) {
824                                         tls_err_abort(sk, EBADMSG);
825                                         goto recv_end;
826                                 }
827                         } else {
828 fallback_to_reg_recv:
829                                 err = decrypt_skb(sk, skb, NULL);
830                                 if (err < 0) {
831                                         tls_err_abort(sk, EBADMSG);
832                                         goto recv_end;
833                                 }
834                         }
835                         ctx->decrypted = true;
836                 }
837
838                 if (!zc) {
839                         chunk = min_t(unsigned int, rxm->full_len, len);
840                         err = skb_copy_datagram_msg(skb, rxm->offset, msg,
841                                                     chunk);
842                         if (err < 0)
843                                 goto recv_end;
844                 }
845
846                 copied += chunk;
847                 len -= chunk;
848                 if (likely(!(flags & MSG_PEEK))) {
849                         u8 control = ctx->control;
850
851                         if (tls_sw_advance_skb(sk, skb, chunk)) {
852                                 /* Return full control message to
853                                  * userspace before trying to parse
854                                  * another message type
855                                  */
856                                 msg->msg_flags |= MSG_EOR;
857                                 if (control != TLS_RECORD_TYPE_DATA)
858                                         goto recv_end;
859                         }
860                 }
861         } while (len);
862
863 recv_end:
864         release_sock(sk);
865         return copied ? : err;
866 }
867
868 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
869                            struct pipe_inode_info *pipe,
870                            size_t len, unsigned int flags)
871 {
872         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
873         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
874         struct strp_msg *rxm = NULL;
875         struct sock *sk = sock->sk;
876         struct sk_buff *skb;
877         ssize_t copied = 0;
878         int err = 0;
879         long timeo;
880         int chunk;
881
882         lock_sock(sk);
883
884         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
885
886         skb = tls_wait_data(sk, flags, timeo, &err);
887         if (!skb)
888                 goto splice_read_end;
889
890         /* splice does not support reading control messages */
891         if (ctx->control != TLS_RECORD_TYPE_DATA) {
892                 err = -ENOTSUPP;
893                 goto splice_read_end;
894         }
895
896         if (!ctx->decrypted) {
897                 err = decrypt_skb(sk, skb, NULL);
898
899                 if (err < 0) {
900                         tls_err_abort(sk, EBADMSG);
901                         goto splice_read_end;
902                 }
903                 ctx->decrypted = true;
904         }
905         rxm = strp_msg(skb);
906
907         chunk = min_t(unsigned int, rxm->full_len, len);
908         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
909         if (copied < 0)
910                 goto splice_read_end;
911
912         if (likely(!(flags & MSG_PEEK)))
913                 tls_sw_advance_skb(sk, skb, copied);
914
915 splice_read_end:
916         release_sock(sk);
917         return copied ? : err;
918 }
919
920 unsigned int tls_sw_poll(struct file *file, struct socket *sock,
921                          struct poll_table_struct *wait)
922 {
923         unsigned int ret;
924         struct sock *sk = sock->sk;
925         struct tls_context *tls_ctx = tls_get_ctx(sk);
926         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
927
928         /* Grab POLLOUT and POLLHUP from the underlying socket */
929         ret = ctx->sk_poll(file, sock, wait);
930
931         /* Clear POLLIN bits, and set based on recv_pkt */
932         ret &= ~(POLLIN | POLLRDNORM);
933         if (ctx->recv_pkt)
934                 ret |= POLLIN | POLLRDNORM;
935
936         return ret;
937 }
938
939 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
940 {
941         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
942         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
943         char header[tls_ctx->rx.prepend_size];
944         struct strp_msg *rxm = strp_msg(skb);
945         size_t cipher_overhead;
946         size_t data_len = 0;
947         int ret;
948
949         /* Verify that we have a full TLS header, or wait for more data */
950         if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
951                 return 0;
952
953         /* Linearize header to local buffer */
954         ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
955
956         if (ret < 0)
957                 goto read_failure;
958
959         ctx->control = header[0];
960
961         data_len = ((header[4] & 0xFF) | (header[3] << 8));
962
963         cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
964
965         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
966                 ret = -EMSGSIZE;
967                 goto read_failure;
968         }
969         if (data_len < cipher_overhead) {
970                 ret = -EBADMSG;
971                 goto read_failure;
972         }
973
974         if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
975             header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
976                 ret = -EINVAL;
977                 goto read_failure;
978         }
979
980         return data_len + TLS_HEADER_SIZE;
981
982 read_failure:
983         tls_err_abort(strp->sk, ret);
984
985         return ret;
986 }
987
988 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
989 {
990         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
991         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
992         struct strp_msg *rxm;
993
994         rxm = strp_msg(skb);
995
996         ctx->decrypted = false;
997
998         ctx->recv_pkt = skb;
999         strp_pause(strp);
1000
1001         strp->sk->sk_state_change(strp->sk);
1002 }
1003
1004 static void tls_data_ready(struct sock *sk)
1005 {
1006         struct tls_context *tls_ctx = tls_get_ctx(sk);
1007         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
1008
1009         strp_data_ready(&ctx->strp);
1010 }
1011
1012 void tls_sw_free_resources(struct sock *sk)
1013 {
1014         struct tls_context *tls_ctx = tls_get_ctx(sk);
1015         struct tls_sw_context *ctx = tls_sw_ctx(tls_ctx);
1016
1017         if (ctx->aead_send)
1018                 crypto_free_aead(ctx->aead_send);
1019         if (ctx->aead_recv) {
1020                 if (ctx->recv_pkt) {
1021                         kfree_skb(ctx->recv_pkt);
1022                         ctx->recv_pkt = NULL;
1023                 }
1024                 crypto_free_aead(ctx->aead_recv);
1025                 strp_stop(&ctx->strp);
1026                 write_lock_bh(&sk->sk_callback_lock);
1027                 sk->sk_data_ready = ctx->saved_data_ready;
1028                 write_unlock_bh(&sk->sk_callback_lock);
1029                 release_sock(sk);
1030                 strp_done(&ctx->strp);
1031                 lock_sock(sk);
1032         }
1033
1034         tls_free_both_sg(sk);
1035
1036         kfree(ctx);
1037         kfree(tls_ctx);
1038 }
1039
1040 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1041 {
1042         char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
1043         struct tls_crypto_info *crypto_info;
1044         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1045         struct tls_sw_context *sw_ctx;
1046         struct cipher_context *cctx;
1047         struct crypto_aead **aead;
1048         struct strp_callbacks cb;
1049         u16 nonce_size, tag_size, iv_size, rec_seq_size;
1050         char *iv, *rec_seq;
1051         int rc = 0;
1052
1053         if (!ctx) {
1054                 rc = -EINVAL;
1055                 goto out;
1056         }
1057
1058         if (!ctx->priv_ctx) {
1059                 sw_ctx = kzalloc(sizeof(*sw_ctx), GFP_KERNEL);
1060                 if (!sw_ctx) {
1061                         rc = -ENOMEM;
1062                         goto out;
1063                 }
1064                 crypto_init_wait(&sw_ctx->async_wait);
1065         } else {
1066                 sw_ctx = ctx->priv_ctx;
1067         }
1068
1069         ctx->priv_ctx = (struct tls_offload_context *)sw_ctx;
1070
1071         if (tx) {
1072                 crypto_info = &ctx->crypto_send;
1073                 cctx = &ctx->tx;
1074                 aead = &sw_ctx->aead_send;
1075         } else {
1076                 crypto_info = &ctx->crypto_recv;
1077                 cctx = &ctx->rx;
1078                 aead = &sw_ctx->aead_recv;
1079         }
1080
1081         switch (crypto_info->cipher_type) {
1082         case TLS_CIPHER_AES_GCM_128: {
1083                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1084                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1085                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1086                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1087                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1088                 rec_seq =
1089                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1090                 gcm_128_info =
1091                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1092                 break;
1093         }
1094         default:
1095                 rc = -EINVAL;
1096                 goto free_priv;
1097         }
1098
1099         /* Sanity-check the IV size for stack allocations. */
1100         if (iv_size > MAX_IV_SIZE) {
1101                 rc = -EINVAL;
1102                 goto free_priv;
1103         }
1104
1105         cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1106         cctx->tag_size = tag_size;
1107         cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1108         cctx->iv_size = iv_size;
1109         cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1110                            GFP_KERNEL);
1111         if (!cctx->iv) {
1112                 rc = -ENOMEM;
1113                 goto free_priv;
1114         }
1115         memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1116         memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1117         cctx->rec_seq_size = rec_seq_size;
1118         cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
1119         if (!cctx->rec_seq) {
1120                 rc = -ENOMEM;
1121                 goto free_iv;
1122         }
1123         memcpy(cctx->rec_seq, rec_seq, rec_seq_size);
1124
1125         if (tx) {
1126                 sg_init_table(sw_ctx->sg_encrypted_data,
1127                               ARRAY_SIZE(sw_ctx->sg_encrypted_data));
1128                 sg_init_table(sw_ctx->sg_plaintext_data,
1129                               ARRAY_SIZE(sw_ctx->sg_plaintext_data));
1130
1131                 sg_init_table(sw_ctx->sg_aead_in, 2);
1132                 sg_set_buf(&sw_ctx->sg_aead_in[0], sw_ctx->aad_space,
1133                            sizeof(sw_ctx->aad_space));
1134                 sg_unmark_end(&sw_ctx->sg_aead_in[1]);
1135                 sg_chain(sw_ctx->sg_aead_in, 2, sw_ctx->sg_plaintext_data);
1136                 sg_init_table(sw_ctx->sg_aead_out, 2);
1137                 sg_set_buf(&sw_ctx->sg_aead_out[0], sw_ctx->aad_space,
1138                            sizeof(sw_ctx->aad_space));
1139                 sg_unmark_end(&sw_ctx->sg_aead_out[1]);
1140                 sg_chain(sw_ctx->sg_aead_out, 2, sw_ctx->sg_encrypted_data);
1141         }
1142
1143         if (!*aead) {
1144                 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1145                 if (IS_ERR(*aead)) {
1146                         rc = PTR_ERR(*aead);
1147                         *aead = NULL;
1148                         goto free_rec_seq;
1149                 }
1150         }
1151
1152         ctx->push_pending_record = tls_sw_push_pending_record;
1153
1154         memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1155
1156         rc = crypto_aead_setkey(*aead, keyval,
1157                                 TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1158         if (rc)
1159                 goto free_aead;
1160
1161         rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1162         if (rc)
1163                 goto free_aead;
1164
1165         if (!tx) {
1166                 /* Set up strparser */
1167                 memset(&cb, 0, sizeof(cb));
1168                 cb.rcv_msg = tls_queue;
1169                 cb.parse_msg = tls_read_size;
1170
1171                 strp_init(&sw_ctx->strp, sk, &cb);
1172
1173                 write_lock_bh(&sk->sk_callback_lock);
1174                 sw_ctx->saved_data_ready = sk->sk_data_ready;
1175                 sk->sk_data_ready = tls_data_ready;
1176                 write_unlock_bh(&sk->sk_callback_lock);
1177
1178                 sw_ctx->sk_poll = sk->sk_socket->ops->poll;
1179
1180                 strp_check_rcv(&sw_ctx->strp);
1181         }
1182
1183         goto out;
1184
1185 free_aead:
1186         crypto_free_aead(*aead);
1187         *aead = NULL;
1188 free_rec_seq:
1189         kfree(cctx->rec_seq);
1190         cctx->rec_seq = NULL;
1191 free_iv:
1192         kfree(ctx->tx.iv);
1193         ctx->tx.iv = NULL;
1194 free_priv:
1195         kfree(ctx->priv_ctx);
1196         ctx->priv_ctx = NULL;
1197 out:
1198         return rc;
1199 }