net: tls: make the offload check helper take skb not socket
[sfrench/cifs-2.6.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "tls.h"
42 #include "trace.h"
43
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48
49 static struct workqueue_struct *destruct_wq __read_mostly;
50
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57         if (ctx->tx_conf == TLS_HW) {
58                 kfree(tls_offload_ctx_tx(ctx));
59                 kfree(ctx->tx.rec_seq);
60                 kfree(ctx->tx.iv);
61         }
62
63         if (ctx->rx_conf == TLS_HW)
64                 kfree(tls_offload_ctx_rx(ctx));
65
66         tls_ctx_free(NULL, ctx);
67 }
68
69 static void tls_device_tx_del_task(struct work_struct *work)
70 {
71         struct tls_offload_context_tx *offload_ctx =
72                 container_of(work, struct tls_offload_context_tx, destruct_work);
73         struct tls_context *ctx = offload_ctx->ctx;
74         struct net_device *netdev;
75
76         /* Safe, because this is the destroy flow, refcount is 0, so
77          * tls_device_down can't store this field in parallel.
78          */
79         netdev = rcu_dereference_protected(ctx->netdev,
80                                            !refcount_read(&ctx->refcount));
81
82         netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
83         dev_put(netdev);
84         ctx->netdev = NULL;
85         tls_device_free_ctx(ctx);
86 }
87
88 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
89 {
90         struct net_device *netdev;
91         unsigned long flags;
92         bool async_cleanup;
93
94         spin_lock_irqsave(&tls_device_lock, flags);
95         if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
96                 spin_unlock_irqrestore(&tls_device_lock, flags);
97                 return;
98         }
99
100         list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
101
102         /* Safe, because this is the destroy flow, refcount is 0, so
103          * tls_device_down can't store this field in parallel.
104          */
105         netdev = rcu_dereference_protected(ctx->netdev,
106                                            !refcount_read(&ctx->refcount));
107
108         async_cleanup = netdev && ctx->tx_conf == TLS_HW;
109         if (async_cleanup) {
110                 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
111
112                 /* queue_work inside the spinlock
113                  * to make sure tls_device_down waits for that work.
114                  */
115                 queue_work(destruct_wq, &offload_ctx->destruct_work);
116         }
117         spin_unlock_irqrestore(&tls_device_lock, flags);
118
119         if (!async_cleanup)
120                 tls_device_free_ctx(ctx);
121 }
122
123 /* We assume that the socket is already connected */
124 static struct net_device *get_netdev_for_sock(struct sock *sk)
125 {
126         struct dst_entry *dst = sk_dst_get(sk);
127         struct net_device *netdev = NULL;
128
129         if (likely(dst)) {
130                 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
131                 dev_hold(netdev);
132         }
133
134         dst_release(dst);
135
136         return netdev;
137 }
138
139 static void destroy_record(struct tls_record_info *record)
140 {
141         int i;
142
143         for (i = 0; i < record->num_frags; i++)
144                 __skb_frag_unref(&record->frags[i], false);
145         kfree(record);
146 }
147
148 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
149 {
150         struct tls_record_info *info, *temp;
151
152         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
153                 list_del(&info->list);
154                 destroy_record(info);
155         }
156
157         offload_ctx->retransmit_hint = NULL;
158 }
159
160 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
161 {
162         struct tls_context *tls_ctx = tls_get_ctx(sk);
163         struct tls_record_info *info, *temp;
164         struct tls_offload_context_tx *ctx;
165         u64 deleted_records = 0;
166         unsigned long flags;
167
168         if (!tls_ctx)
169                 return;
170
171         ctx = tls_offload_ctx_tx(tls_ctx);
172
173         spin_lock_irqsave(&ctx->lock, flags);
174         info = ctx->retransmit_hint;
175         if (info && !before(acked_seq, info->end_seq))
176                 ctx->retransmit_hint = NULL;
177
178         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
179                 if (before(acked_seq, info->end_seq))
180                         break;
181                 list_del(&info->list);
182
183                 destroy_record(info);
184                 deleted_records++;
185         }
186
187         ctx->unacked_record_sn += deleted_records;
188         spin_unlock_irqrestore(&ctx->lock, flags);
189 }
190
191 /* At this point, there should be no references on this
192  * socket and no in-flight SKBs associated with this
193  * socket, so it is safe to free all the resources.
194  */
195 void tls_device_sk_destruct(struct sock *sk)
196 {
197         struct tls_context *tls_ctx = tls_get_ctx(sk);
198         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
199
200         tls_ctx->sk_destruct(sk);
201
202         if (tls_ctx->tx_conf == TLS_HW) {
203                 if (ctx->open_record)
204                         destroy_record(ctx->open_record);
205                 delete_all_records(ctx);
206                 crypto_free_aead(ctx->aead_send);
207                 clean_acked_data_disable(inet_csk(sk));
208         }
209
210         tls_device_queue_ctx_destruction(tls_ctx);
211 }
212 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
213
214 void tls_device_free_resources_tx(struct sock *sk)
215 {
216         struct tls_context *tls_ctx = tls_get_ctx(sk);
217
218         tls_free_partial_record(sk, tls_ctx);
219 }
220
221 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
222 {
223         struct tls_context *tls_ctx = tls_get_ctx(sk);
224
225         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
226         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
227 }
228 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
229
230 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
231                                  u32 seq)
232 {
233         struct net_device *netdev;
234         struct sk_buff *skb;
235         int err = 0;
236         u8 *rcd_sn;
237
238         skb = tcp_write_queue_tail(sk);
239         if (skb)
240                 TCP_SKB_CB(skb)->eor = 1;
241
242         rcd_sn = tls_ctx->tx.rec_seq;
243
244         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
245         down_read(&device_offload_lock);
246         netdev = rcu_dereference_protected(tls_ctx->netdev,
247                                            lockdep_is_held(&device_offload_lock));
248         if (netdev)
249                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
250                                                          rcd_sn,
251                                                          TLS_OFFLOAD_CTX_DIR_TX);
252         up_read(&device_offload_lock);
253         if (err)
254                 return;
255
256         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
257 }
258
259 static void tls_append_frag(struct tls_record_info *record,
260                             struct page_frag *pfrag,
261                             int size)
262 {
263         skb_frag_t *frag;
264
265         frag = &record->frags[record->num_frags - 1];
266         if (skb_frag_page(frag) == pfrag->page &&
267             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
268                 skb_frag_size_add(frag, size);
269         } else {
270                 ++frag;
271                 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
272                                         size);
273                 ++record->num_frags;
274                 get_page(pfrag->page);
275         }
276
277         pfrag->offset += size;
278         record->len += size;
279 }
280
281 static int tls_push_record(struct sock *sk,
282                            struct tls_context *ctx,
283                            struct tls_offload_context_tx *offload_ctx,
284                            struct tls_record_info *record,
285                            int flags)
286 {
287         struct tls_prot_info *prot = &ctx->prot_info;
288         struct tcp_sock *tp = tcp_sk(sk);
289         skb_frag_t *frag;
290         int i;
291
292         record->end_seq = tp->write_seq + record->len;
293         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
294         offload_ctx->open_record = NULL;
295
296         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
297                 tls_device_resync_tx(sk, ctx, tp->write_seq);
298
299         tls_advance_record_sn(sk, prot, &ctx->tx);
300
301         for (i = 0; i < record->num_frags; i++) {
302                 frag = &record->frags[i];
303                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
304                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
305                             skb_frag_size(frag), skb_frag_off(frag));
306                 sk_mem_charge(sk, skb_frag_size(frag));
307                 get_page(skb_frag_page(frag));
308         }
309         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
310
311         /* all ready, send */
312         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
313 }
314
315 static int tls_device_record_close(struct sock *sk,
316                                    struct tls_context *ctx,
317                                    struct tls_record_info *record,
318                                    struct page_frag *pfrag,
319                                    unsigned char record_type)
320 {
321         struct tls_prot_info *prot = &ctx->prot_info;
322         int ret;
323
324         /* append tag
325          * device will fill in the tag, we just need to append a placeholder
326          * use socket memory to improve coalescing (re-using a single buffer
327          * increases frag count)
328          * if we can't allocate memory now, steal some back from data
329          */
330         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
331                                         sk->sk_allocation))) {
332                 ret = 0;
333                 tls_append_frag(record, pfrag, prot->tag_size);
334         } else {
335                 ret = prot->tag_size;
336                 if (record->len <= prot->overhead_size)
337                         return -ENOMEM;
338         }
339
340         /* fill prepend */
341         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
342                          record->len - prot->overhead_size,
343                          record_type);
344         return ret;
345 }
346
347 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
348                                  struct page_frag *pfrag,
349                                  size_t prepend_size)
350 {
351         struct tls_record_info *record;
352         skb_frag_t *frag;
353
354         record = kmalloc(sizeof(*record), GFP_KERNEL);
355         if (!record)
356                 return -ENOMEM;
357
358         frag = &record->frags[0];
359         skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
360                                 prepend_size);
361
362         get_page(pfrag->page);
363         pfrag->offset += prepend_size;
364
365         record->num_frags = 1;
366         record->len = prepend_size;
367         offload_ctx->open_record = record;
368         return 0;
369 }
370
371 static int tls_do_allocation(struct sock *sk,
372                              struct tls_offload_context_tx *offload_ctx,
373                              struct page_frag *pfrag,
374                              size_t prepend_size)
375 {
376         int ret;
377
378         if (!offload_ctx->open_record) {
379                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
380                                                    sk->sk_allocation))) {
381                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
382                         sk_stream_moderate_sndbuf(sk);
383                         return -ENOMEM;
384                 }
385
386                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
387                 if (ret)
388                         return ret;
389
390                 if (pfrag->size > pfrag->offset)
391                         return 0;
392         }
393
394         if (!sk_page_frag_refill(sk, pfrag))
395                 return -ENOMEM;
396
397         return 0;
398 }
399
400 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
401 {
402         size_t pre_copy, nocache;
403
404         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
405         if (pre_copy) {
406                 pre_copy = min(pre_copy, bytes);
407                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
408                         return -EFAULT;
409                 bytes -= pre_copy;
410                 addr += pre_copy;
411         }
412
413         nocache = round_down(bytes, SMP_CACHE_BYTES);
414         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
415                 return -EFAULT;
416         bytes -= nocache;
417         addr += nocache;
418
419         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
420                 return -EFAULT;
421
422         return 0;
423 }
424
425 static int tls_push_data(struct sock *sk,
426                          struct iov_iter *iter,
427                          size_t size, int flags,
428                          unsigned char record_type)
429 {
430         struct tls_context *tls_ctx = tls_get_ctx(sk);
431         struct tls_prot_info *prot = &tls_ctx->prot_info;
432         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
433         struct tls_record_info *record;
434         int tls_push_record_flags;
435         struct page_frag *pfrag;
436         size_t orig_size = size;
437         u32 max_open_record_len;
438         bool more = false;
439         bool done = false;
440         int copy, rc = 0;
441         long timeo;
442
443         if (flags &
444             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST |
445               MSG_SPLICE_PAGES))
446                 return -EOPNOTSUPP;
447
448         if (unlikely(sk->sk_err))
449                 return -sk->sk_err;
450
451         flags |= MSG_SENDPAGE_DECRYPTED;
452         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
453
454         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
455         if (tls_is_partially_sent_record(tls_ctx)) {
456                 rc = tls_push_partial_record(sk, tls_ctx, flags);
457                 if (rc < 0)
458                         return rc;
459         }
460
461         pfrag = sk_page_frag(sk);
462
463         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
464          * we need to leave room for an authentication tag.
465          */
466         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
467                               prot->prepend_size;
468         do {
469                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
470                 if (unlikely(rc)) {
471                         rc = sk_stream_wait_memory(sk, &timeo);
472                         if (!rc)
473                                 continue;
474
475                         record = ctx->open_record;
476                         if (!record)
477                                 break;
478 handle_error:
479                         if (record_type != TLS_RECORD_TYPE_DATA) {
480                                 /* avoid sending partial
481                                  * record with type !=
482                                  * application_data
483                                  */
484                                 size = orig_size;
485                                 destroy_record(record);
486                                 ctx->open_record = NULL;
487                         } else if (record->len > prot->prepend_size) {
488                                 goto last_record;
489                         }
490
491                         break;
492                 }
493
494                 record = ctx->open_record;
495
496                 copy = min_t(size_t, size, max_open_record_len - record->len);
497                 if (copy && (flags & MSG_SPLICE_PAGES)) {
498                         struct page_frag zc_pfrag;
499                         struct page **pages = &zc_pfrag.page;
500                         size_t off;
501
502                         rc = iov_iter_extract_pages(iter, &pages,
503                                                     copy, 1, 0, &off);
504                         if (rc <= 0) {
505                                 if (rc == 0)
506                                         rc = -EIO;
507                                 goto handle_error;
508                         }
509                         copy = rc;
510
511                         if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
512                                 iov_iter_revert(iter, copy);
513                                 rc = -EIO;
514                                 goto handle_error;
515                         }
516
517                         zc_pfrag.offset = off;
518                         zc_pfrag.size = copy;
519                         tls_append_frag(record, &zc_pfrag, copy);
520                 } else if (copy) {
521                         copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
522
523                         rc = tls_device_copy_data(page_address(pfrag->page) +
524                                                   pfrag->offset, copy,
525                                                   iter);
526                         if (rc)
527                                 goto handle_error;
528                         tls_append_frag(record, pfrag, copy);
529                 }
530
531                 size -= copy;
532                 if (!size) {
533 last_record:
534                         tls_push_record_flags = flags;
535                         if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
536                                 more = true;
537                                 break;
538                         }
539
540                         done = true;
541                 }
542
543                 if (done || record->len >= max_open_record_len ||
544                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
545                         rc = tls_device_record_close(sk, tls_ctx, record,
546                                                      pfrag, record_type);
547                         if (rc) {
548                                 if (rc > 0) {
549                                         size += rc;
550                                 } else {
551                                         size = orig_size;
552                                         destroy_record(record);
553                                         ctx->open_record = NULL;
554                                         break;
555                                 }
556                         }
557
558                         rc = tls_push_record(sk,
559                                              tls_ctx,
560                                              ctx,
561                                              record,
562                                              tls_push_record_flags);
563                         if (rc < 0)
564                                 break;
565                 }
566         } while (!done);
567
568         tls_ctx->pending_open_record_frags = more;
569
570         if (orig_size - size > 0)
571                 rc = orig_size - size;
572
573         return rc;
574 }
575
576 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
577 {
578         unsigned char record_type = TLS_RECORD_TYPE_DATA;
579         struct tls_context *tls_ctx = tls_get_ctx(sk);
580         int rc;
581
582         if (!tls_ctx->zerocopy_sendfile)
583                 msg->msg_flags &= ~MSG_SPLICE_PAGES;
584
585         mutex_lock(&tls_ctx->tx_lock);
586         lock_sock(sk);
587
588         if (unlikely(msg->msg_controllen)) {
589                 rc = tls_process_cmsg(sk, msg, &record_type);
590                 if (rc)
591                         goto out;
592         }
593
594         rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
595                            record_type);
596
597 out:
598         release_sock(sk);
599         mutex_unlock(&tls_ctx->tx_lock);
600         return rc;
601 }
602
603 void tls_device_splice_eof(struct socket *sock)
604 {
605         struct sock *sk = sock->sk;
606         struct tls_context *tls_ctx = tls_get_ctx(sk);
607         struct iov_iter iter = {};
608
609         if (!tls_is_partially_sent_record(tls_ctx))
610                 return;
611
612         mutex_lock(&tls_ctx->tx_lock);
613         lock_sock(sk);
614
615         if (tls_is_partially_sent_record(tls_ctx)) {
616                 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
617                 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
618         }
619
620         release_sock(sk);
621         mutex_unlock(&tls_ctx->tx_lock);
622 }
623
624 int tls_device_sendpage(struct sock *sk, struct page *page,
625                         int offset, size_t size, int flags)
626 {
627         struct bio_vec bvec;
628         struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, };
629
630         if (flags & MSG_SENDPAGE_NOTLAST)
631                 msg.msg_flags |= MSG_MORE;
632
633         if (flags & MSG_OOB)
634                 return -EOPNOTSUPP;
635
636         bvec_set_page(&bvec, page, size, offset);
637         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
638         return tls_device_sendmsg(sk, &msg, size);
639 }
640
641 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
642                                        u32 seq, u64 *p_record_sn)
643 {
644         u64 record_sn = context->hint_record_sn;
645         struct tls_record_info *info, *last;
646
647         info = context->retransmit_hint;
648         if (!info ||
649             before(seq, info->end_seq - info->len)) {
650                 /* if retransmit_hint is irrelevant start
651                  * from the beginning of the list
652                  */
653                 info = list_first_entry_or_null(&context->records_list,
654                                                 struct tls_record_info, list);
655                 if (!info)
656                         return NULL;
657                 /* send the start_marker record if seq number is before the
658                  * tls offload start marker sequence number. This record is
659                  * required to handle TCP packets which are before TLS offload
660                  * started.
661                  *  And if it's not start marker, look if this seq number
662                  * belongs to the list.
663                  */
664                 if (likely(!tls_record_is_start_marker(info))) {
665                         /* we have the first record, get the last record to see
666                          * if this seq number belongs to the list.
667                          */
668                         last = list_last_entry(&context->records_list,
669                                                struct tls_record_info, list);
670
671                         if (!between(seq, tls_record_start_seq(info),
672                                      last->end_seq))
673                                 return NULL;
674                 }
675                 record_sn = context->unacked_record_sn;
676         }
677
678         /* We just need the _rcu for the READ_ONCE() */
679         rcu_read_lock();
680         list_for_each_entry_from_rcu(info, &context->records_list, list) {
681                 if (before(seq, info->end_seq)) {
682                         if (!context->retransmit_hint ||
683                             after(info->end_seq,
684                                   context->retransmit_hint->end_seq)) {
685                                 context->hint_record_sn = record_sn;
686                                 context->retransmit_hint = info;
687                         }
688                         *p_record_sn = record_sn;
689                         goto exit_rcu_unlock;
690                 }
691                 record_sn++;
692         }
693         info = NULL;
694
695 exit_rcu_unlock:
696         rcu_read_unlock();
697         return info;
698 }
699 EXPORT_SYMBOL(tls_get_record);
700
701 static int tls_device_push_pending_record(struct sock *sk, int flags)
702 {
703         struct iov_iter iter;
704
705         iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
706         return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
707 }
708
709 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
710 {
711         if (tls_is_partially_sent_record(ctx)) {
712                 gfp_t sk_allocation = sk->sk_allocation;
713
714                 WARN_ON_ONCE(sk->sk_write_pending);
715
716                 sk->sk_allocation = GFP_ATOMIC;
717                 tls_push_partial_record(sk, ctx,
718                                         MSG_DONTWAIT | MSG_NOSIGNAL |
719                                         MSG_SENDPAGE_DECRYPTED);
720                 sk->sk_allocation = sk_allocation;
721         }
722 }
723
724 static void tls_device_resync_rx(struct tls_context *tls_ctx,
725                                  struct sock *sk, u32 seq, u8 *rcd_sn)
726 {
727         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
728         struct net_device *netdev;
729
730         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
731         rcu_read_lock();
732         netdev = rcu_dereference(tls_ctx->netdev);
733         if (netdev)
734                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
735                                                    TLS_OFFLOAD_CTX_DIR_RX);
736         rcu_read_unlock();
737         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
738 }
739
740 static bool
741 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
742                            s64 resync_req, u32 *seq, u16 *rcd_delta)
743 {
744         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
745         u32 req_seq = resync_req >> 32;
746         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
747         u16 i;
748
749         *rcd_delta = 0;
750
751         if (is_async) {
752                 /* shouldn't get to wraparound:
753                  * too long in async stage, something bad happened
754                  */
755                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
756                         return false;
757
758                 /* asynchronous stage: log all headers seq such that
759                  * req_seq <= seq <= end_seq, and wait for real resync request
760                  */
761                 if (before(*seq, req_seq))
762                         return false;
763                 if (!after(*seq, req_end) &&
764                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
765                         resync_async->log[resync_async->loglen++] = *seq;
766
767                 resync_async->rcd_delta++;
768
769                 return false;
770         }
771
772         /* synchronous stage: check against the logged entries and
773          * proceed to check the next entries if no match was found
774          */
775         for (i = 0; i < resync_async->loglen; i++)
776                 if (req_seq == resync_async->log[i] &&
777                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
778                         *rcd_delta = resync_async->rcd_delta - i;
779                         *seq = req_seq;
780                         resync_async->loglen = 0;
781                         resync_async->rcd_delta = 0;
782                         return true;
783                 }
784
785         resync_async->loglen = 0;
786         resync_async->rcd_delta = 0;
787
788         if (req_seq == *seq &&
789             atomic64_try_cmpxchg(&resync_async->req,
790                                  &resync_req, 0))
791                 return true;
792
793         return false;
794 }
795
796 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
797 {
798         struct tls_context *tls_ctx = tls_get_ctx(sk);
799         struct tls_offload_context_rx *rx_ctx;
800         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
801         u32 sock_data, is_req_pending;
802         struct tls_prot_info *prot;
803         s64 resync_req;
804         u16 rcd_delta;
805         u32 req_seq;
806
807         if (tls_ctx->rx_conf != TLS_HW)
808                 return;
809         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
810                 return;
811
812         prot = &tls_ctx->prot_info;
813         rx_ctx = tls_offload_ctx_rx(tls_ctx);
814         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
815
816         switch (rx_ctx->resync_type) {
817         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
818                 resync_req = atomic64_read(&rx_ctx->resync_req);
819                 req_seq = resync_req >> 32;
820                 seq += TLS_HEADER_SIZE - 1;
821                 is_req_pending = resync_req;
822
823                 if (likely(!is_req_pending) || req_seq != seq ||
824                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
825                         return;
826                 break;
827         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
828                 if (likely(!rx_ctx->resync_nh_do_now))
829                         return;
830
831                 /* head of next rec is already in, note that the sock_inq will
832                  * include the currently parsed message when called from parser
833                  */
834                 sock_data = tcp_inq(sk);
835                 if (sock_data > rcd_len) {
836                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
837                                                             rcd_len);
838                         return;
839                 }
840
841                 rx_ctx->resync_nh_do_now = 0;
842                 seq += rcd_len;
843                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
844                 break;
845         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
846                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
847                 is_req_pending = resync_req;
848                 if (likely(!is_req_pending))
849                         return;
850
851                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
852                                                 resync_req, &seq, &rcd_delta))
853                         return;
854                 tls_bigint_subtract(rcd_sn, rcd_delta);
855                 break;
856         }
857
858         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
859 }
860
861 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
862                                            struct tls_offload_context_rx *ctx,
863                                            struct sock *sk, struct sk_buff *skb)
864 {
865         struct strp_msg *rxm;
866
867         /* device will request resyncs by itself based on stream scan */
868         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
869                 return;
870         /* already scheduled */
871         if (ctx->resync_nh_do_now)
872                 return;
873         /* seen decrypted fragments since last fully-failed record */
874         if (ctx->resync_nh_reset) {
875                 ctx->resync_nh_reset = 0;
876                 ctx->resync_nh.decrypted_failed = 1;
877                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
878                 return;
879         }
880
881         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
882                 return;
883
884         /* doing resync, bump the next target in case it fails */
885         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
886                 ctx->resync_nh.decrypted_tgt *= 2;
887         else
888                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
889
890         rxm = strp_msg(skb);
891
892         /* head of next rec is already in, parser will sync for us */
893         if (tcp_inq(sk) > rxm->full_len) {
894                 trace_tls_device_rx_resync_nh_schedule(sk);
895                 ctx->resync_nh_do_now = 1;
896         } else {
897                 struct tls_prot_info *prot = &tls_ctx->prot_info;
898                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
899
900                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
901                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
902
903                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
904                                      rcd_sn);
905         }
906 }
907
908 static int
909 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
910 {
911         struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
912         const struct tls_cipher_size_desc *cipher_sz;
913         int err, offset, copy, data_len, pos;
914         struct sk_buff *skb, *skb_iter;
915         struct scatterlist sg[1];
916         struct strp_msg *rxm;
917         char *orig_buf, *buf;
918
919         switch (tls_ctx->crypto_recv.info.cipher_type) {
920         case TLS_CIPHER_AES_GCM_128:
921         case TLS_CIPHER_AES_GCM_256:
922                 break;
923         default:
924                 return -EINVAL;
925         }
926         cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type];
927
928         rxm = strp_msg(tls_strp_msg(sw_ctx));
929         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv,
930                            sk->sk_allocation);
931         if (!orig_buf)
932                 return -ENOMEM;
933         buf = orig_buf;
934
935         err = tls_strp_msg_cow(sw_ctx);
936         if (unlikely(err))
937                 goto free_buf;
938
939         skb = tls_strp_msg(sw_ctx);
940         rxm = strp_msg(skb);
941         offset = rxm->offset;
942
943         sg_init_table(sg, 1);
944         sg_set_buf(&sg[0], buf,
945                    rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv);
946         err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv);
947         if (err)
948                 goto free_buf;
949
950         /* We are interested only in the decrypted data not the auth */
951         err = decrypt_skb(sk, sg);
952         if (err != -EBADMSG)
953                 goto free_buf;
954         else
955                 err = 0;
956
957         data_len = rxm->full_len - cipher_sz->tag;
958
959         if (skb_pagelen(skb) > offset) {
960                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
961
962                 if (skb->decrypted) {
963                         err = skb_store_bits(skb, offset, buf, copy);
964                         if (err)
965                                 goto free_buf;
966                 }
967
968                 offset += copy;
969                 buf += copy;
970         }
971
972         pos = skb_pagelen(skb);
973         skb_walk_frags(skb, skb_iter) {
974                 int frag_pos;
975
976                 /* Practically all frags must belong to msg if reencrypt
977                  * is needed with current strparser and coalescing logic,
978                  * but strparser may "get optimized", so let's be safe.
979                  */
980                 if (pos + skb_iter->len <= offset)
981                         goto done_with_frag;
982                 if (pos >= data_len + rxm->offset)
983                         break;
984
985                 frag_pos = offset - pos;
986                 copy = min_t(int, skb_iter->len - frag_pos,
987                              data_len + rxm->offset - offset);
988
989                 if (skb_iter->decrypted) {
990                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
991                         if (err)
992                                 goto free_buf;
993                 }
994
995                 offset += copy;
996                 buf += copy;
997 done_with_frag:
998                 pos += skb_iter->len;
999         }
1000
1001 free_buf:
1002         kfree(orig_buf);
1003         return err;
1004 }
1005
1006 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
1007 {
1008         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
1009         struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
1010         struct sk_buff *skb = tls_strp_msg(sw_ctx);
1011         struct strp_msg *rxm = strp_msg(skb);
1012         int is_decrypted, is_encrypted;
1013
1014         if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
1015                 is_decrypted = skb->decrypted;
1016                 is_encrypted = !is_decrypted;
1017         } else {
1018                 is_decrypted = 0;
1019                 is_encrypted = 0;
1020         }
1021
1022         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
1023                                    tls_ctx->rx.rec_seq, rxm->full_len,
1024                                    is_encrypted, is_decrypted);
1025
1026         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1027                 if (likely(is_encrypted || is_decrypted))
1028                         return is_decrypted;
1029
1030                 /* After tls_device_down disables the offload, the next SKB will
1031                  * likely have initial fragments decrypted, and final ones not
1032                  * decrypted. We need to reencrypt that single SKB.
1033                  */
1034                 return tls_device_reencrypt(sk, tls_ctx);
1035         }
1036
1037         /* Return immediately if the record is either entirely plaintext or
1038          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1039          * record.
1040          */
1041         if (is_decrypted) {
1042                 ctx->resync_nh_reset = 1;
1043                 return is_decrypted;
1044         }
1045         if (is_encrypted) {
1046                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1047                 return 0;
1048         }
1049
1050         ctx->resync_nh_reset = 1;
1051         return tls_device_reencrypt(sk, tls_ctx);
1052 }
1053
1054 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1055                               struct net_device *netdev)
1056 {
1057         if (sk->sk_destruct != tls_device_sk_destruct) {
1058                 refcount_set(&ctx->refcount, 1);
1059                 dev_hold(netdev);
1060                 RCU_INIT_POINTER(ctx->netdev, netdev);
1061                 spin_lock_irq(&tls_device_lock);
1062                 list_add_tail(&ctx->list, &tls_device_list);
1063                 spin_unlock_irq(&tls_device_lock);
1064
1065                 ctx->sk_destruct = sk->sk_destruct;
1066                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1067         }
1068 }
1069
1070 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1071 {
1072         struct tls_context *tls_ctx = tls_get_ctx(sk);
1073         struct tls_prot_info *prot = &tls_ctx->prot_info;
1074         const struct tls_cipher_size_desc *cipher_sz;
1075         struct tls_record_info *start_marker_record;
1076         struct tls_offload_context_tx *offload_ctx;
1077         struct tls_crypto_info *crypto_info;
1078         struct net_device *netdev;
1079         char *iv, *rec_seq;
1080         struct sk_buff *skb;
1081         __be64 rcd_sn;
1082         int rc;
1083
1084         if (!ctx)
1085                 return -EINVAL;
1086
1087         if (ctx->priv_ctx_tx)
1088                 return -EEXIST;
1089
1090         netdev = get_netdev_for_sock(sk);
1091         if (!netdev) {
1092                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1093                 return -EINVAL;
1094         }
1095
1096         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1097                 rc = -EOPNOTSUPP;
1098                 goto release_netdev;
1099         }
1100
1101         crypto_info = &ctx->crypto_send.info;
1102         if (crypto_info->version != TLS_1_2_VERSION) {
1103                 rc = -EOPNOTSUPP;
1104                 goto release_netdev;
1105         }
1106
1107         switch (crypto_info->cipher_type) {
1108         case TLS_CIPHER_AES_GCM_128:
1109                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1110                 rec_seq =
1111                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1112                 break;
1113         case TLS_CIPHER_AES_GCM_256:
1114                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
1115                 rec_seq =
1116                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
1117                 break;
1118         default:
1119                 rc = -EINVAL;
1120                 goto release_netdev;
1121         }
1122         cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type];
1123
1124         /* Sanity-check the rec_seq_size for stack allocations */
1125         if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) {
1126                 rc = -EINVAL;
1127                 goto release_netdev;
1128         }
1129
1130         prot->version = crypto_info->version;
1131         prot->cipher_type = crypto_info->cipher_type;
1132         prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv;
1133         prot->tag_size = cipher_sz->tag;
1134         prot->overhead_size = prot->prepend_size + prot->tag_size;
1135         prot->iv_size = cipher_sz->iv;
1136         prot->salt_size = cipher_sz->salt;
1137         ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL);
1138         if (!ctx->tx.iv) {
1139                 rc = -ENOMEM;
1140                 goto release_netdev;
1141         }
1142
1143         memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv);
1144
1145         prot->rec_seq_size = cipher_sz->rec_seq;
1146         ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL);
1147         if (!ctx->tx.rec_seq) {
1148                 rc = -ENOMEM;
1149                 goto free_iv;
1150         }
1151
1152         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1153         if (!start_marker_record) {
1154                 rc = -ENOMEM;
1155                 goto free_rec_seq;
1156         }
1157
1158         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1159         if (!offload_ctx) {
1160                 rc = -ENOMEM;
1161                 goto free_marker_record;
1162         }
1163
1164         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1165         if (rc)
1166                 goto free_offload_ctx;
1167
1168         /* start at rec_seq - 1 to account for the start marker record */
1169         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1170         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1171
1172         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1173         start_marker_record->len = 0;
1174         start_marker_record->num_frags = 0;
1175
1176         INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1177         offload_ctx->ctx = ctx;
1178
1179         INIT_LIST_HEAD(&offload_ctx->records_list);
1180         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1181         spin_lock_init(&offload_ctx->lock);
1182         sg_init_table(offload_ctx->sg_tx_data,
1183                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1184
1185         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1186         ctx->push_pending_record = tls_device_push_pending_record;
1187
1188         /* TLS offload is greatly simplified if we don't send
1189          * SKBs where only part of the payload needs to be encrypted.
1190          * So mark the last skb in the write queue as end of record.
1191          */
1192         skb = tcp_write_queue_tail(sk);
1193         if (skb)
1194                 TCP_SKB_CB(skb)->eor = 1;
1195
1196         /* Avoid offloading if the device is down
1197          * We don't want to offload new flows after
1198          * the NETDEV_DOWN event
1199          *
1200          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1201          * handler thus protecting from the device going down before
1202          * ctx was added to tls_device_list.
1203          */
1204         down_read(&device_offload_lock);
1205         if (!(netdev->flags & IFF_UP)) {
1206                 rc = -EINVAL;
1207                 goto release_lock;
1208         }
1209
1210         ctx->priv_ctx_tx = offload_ctx;
1211         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1212                                              &ctx->crypto_send.info,
1213                                              tcp_sk(sk)->write_seq);
1214         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1215                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1216         if (rc)
1217                 goto release_lock;
1218
1219         tls_device_attach(ctx, sk, netdev);
1220         up_read(&device_offload_lock);
1221
1222         /* following this assignment tls_is_skb_tx_device_offloaded
1223          * will return true and the context might be accessed
1224          * by the netdev's xmit function.
1225          */
1226         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1227         dev_put(netdev);
1228
1229         return 0;
1230
1231 release_lock:
1232         up_read(&device_offload_lock);
1233         clean_acked_data_disable(inet_csk(sk));
1234         crypto_free_aead(offload_ctx->aead_send);
1235 free_offload_ctx:
1236         kfree(offload_ctx);
1237         ctx->priv_ctx_tx = NULL;
1238 free_marker_record:
1239         kfree(start_marker_record);
1240 free_rec_seq:
1241         kfree(ctx->tx.rec_seq);
1242 free_iv:
1243         kfree(ctx->tx.iv);
1244 release_netdev:
1245         dev_put(netdev);
1246         return rc;
1247 }
1248
1249 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1250 {
1251         struct tls12_crypto_info_aes_gcm_128 *info;
1252         struct tls_offload_context_rx *context;
1253         struct net_device *netdev;
1254         int rc = 0;
1255
1256         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1257                 return -EOPNOTSUPP;
1258
1259         netdev = get_netdev_for_sock(sk);
1260         if (!netdev) {
1261                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1262                 return -EINVAL;
1263         }
1264
1265         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1266                 rc = -EOPNOTSUPP;
1267                 goto release_netdev;
1268         }
1269
1270         /* Avoid offloading if the device is down
1271          * We don't want to offload new flows after
1272          * the NETDEV_DOWN event
1273          *
1274          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1275          * handler thus protecting from the device going down before
1276          * ctx was added to tls_device_list.
1277          */
1278         down_read(&device_offload_lock);
1279         if (!(netdev->flags & IFF_UP)) {
1280                 rc = -EINVAL;
1281                 goto release_lock;
1282         }
1283
1284         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1285         if (!context) {
1286                 rc = -ENOMEM;
1287                 goto release_lock;
1288         }
1289         context->resync_nh_reset = 1;
1290
1291         ctx->priv_ctx_rx = context;
1292         rc = tls_set_sw_offload(sk, ctx, 0);
1293         if (rc)
1294                 goto release_ctx;
1295
1296         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1297                                              &ctx->crypto_recv.info,
1298                                              tcp_sk(sk)->copied_seq);
1299         info = (void *)&ctx->crypto_recv.info;
1300         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1301                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1302         if (rc)
1303                 goto free_sw_resources;
1304
1305         tls_device_attach(ctx, sk, netdev);
1306         up_read(&device_offload_lock);
1307
1308         dev_put(netdev);
1309
1310         return 0;
1311
1312 free_sw_resources:
1313         up_read(&device_offload_lock);
1314         tls_sw_free_resources_rx(sk);
1315         down_read(&device_offload_lock);
1316 release_ctx:
1317         ctx->priv_ctx_rx = NULL;
1318 release_lock:
1319         up_read(&device_offload_lock);
1320 release_netdev:
1321         dev_put(netdev);
1322         return rc;
1323 }
1324
1325 void tls_device_offload_cleanup_rx(struct sock *sk)
1326 {
1327         struct tls_context *tls_ctx = tls_get_ctx(sk);
1328         struct net_device *netdev;
1329
1330         down_read(&device_offload_lock);
1331         netdev = rcu_dereference_protected(tls_ctx->netdev,
1332                                            lockdep_is_held(&device_offload_lock));
1333         if (!netdev)
1334                 goto out;
1335
1336         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1337                                         TLS_OFFLOAD_CTX_DIR_RX);
1338
1339         if (tls_ctx->tx_conf != TLS_HW) {
1340                 dev_put(netdev);
1341                 rcu_assign_pointer(tls_ctx->netdev, NULL);
1342         } else {
1343                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1344         }
1345 out:
1346         up_read(&device_offload_lock);
1347         tls_sw_release_resources_rx(sk);
1348 }
1349
1350 static int tls_device_down(struct net_device *netdev)
1351 {
1352         struct tls_context *ctx, *tmp;
1353         unsigned long flags;
1354         LIST_HEAD(list);
1355
1356         /* Request a write lock to block new offload attempts */
1357         down_write(&device_offload_lock);
1358
1359         spin_lock_irqsave(&tls_device_lock, flags);
1360         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1361                 struct net_device *ctx_netdev =
1362                         rcu_dereference_protected(ctx->netdev,
1363                                                   lockdep_is_held(&device_offload_lock));
1364
1365                 if (ctx_netdev != netdev ||
1366                     !refcount_inc_not_zero(&ctx->refcount))
1367                         continue;
1368
1369                 list_move(&ctx->list, &list);
1370         }
1371         spin_unlock_irqrestore(&tls_device_lock, flags);
1372
1373         list_for_each_entry_safe(ctx, tmp, &list, list) {
1374                 /* Stop offloaded TX and switch to the fallback.
1375                  * tls_is_skb_tx_device_offloaded will return false.
1376                  */
1377                 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1378
1379                 /* Stop the RX and TX resync.
1380                  * tls_dev_resync must not be called after tls_dev_del.
1381                  */
1382                 rcu_assign_pointer(ctx->netdev, NULL);
1383
1384                 /* Start skipping the RX resync logic completely. */
1385                 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1386
1387                 /* Sync with inflight packets. After this point:
1388                  * TX: no non-encrypted packets will be passed to the driver.
1389                  * RX: resync requests from the driver will be ignored.
1390                  */
1391                 synchronize_net();
1392
1393                 /* Release the offload context on the driver side. */
1394                 if (ctx->tx_conf == TLS_HW)
1395                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1396                                                         TLS_OFFLOAD_CTX_DIR_TX);
1397                 if (ctx->rx_conf == TLS_HW &&
1398                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1399                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1400                                                         TLS_OFFLOAD_CTX_DIR_RX);
1401
1402                 dev_put(netdev);
1403
1404                 /* Move the context to a separate list for two reasons:
1405                  * 1. When the context is deallocated, list_del is called.
1406                  * 2. It's no longer an offloaded context, so we don't want to
1407                  *    run offload-specific code on this context.
1408                  */
1409                 spin_lock_irqsave(&tls_device_lock, flags);
1410                 list_move_tail(&ctx->list, &tls_device_down_list);
1411                 spin_unlock_irqrestore(&tls_device_lock, flags);
1412
1413                 /* Device contexts for RX and TX will be freed in on sk_destruct
1414                  * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1415                  * Now release the ref taken above.
1416                  */
1417                 if (refcount_dec_and_test(&ctx->refcount)) {
1418                         /* sk_destruct ran after tls_device_down took a ref, and
1419                          * it returned early. Complete the destruction here.
1420                          */
1421                         list_del(&ctx->list);
1422                         tls_device_free_ctx(ctx);
1423                 }
1424         }
1425
1426         up_write(&device_offload_lock);
1427
1428         flush_workqueue(destruct_wq);
1429
1430         return NOTIFY_DONE;
1431 }
1432
1433 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1434                          void *ptr)
1435 {
1436         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1437
1438         if (!dev->tlsdev_ops &&
1439             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1440                 return NOTIFY_DONE;
1441
1442         switch (event) {
1443         case NETDEV_REGISTER:
1444         case NETDEV_FEAT_CHANGE:
1445                 if (netif_is_bond_master(dev))
1446                         return NOTIFY_DONE;
1447                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1448                     !dev->tlsdev_ops->tls_dev_resync)
1449                         return NOTIFY_BAD;
1450
1451                 if  (dev->tlsdev_ops &&
1452                      dev->tlsdev_ops->tls_dev_add &&
1453                      dev->tlsdev_ops->tls_dev_del)
1454                         return NOTIFY_DONE;
1455                 else
1456                         return NOTIFY_BAD;
1457         case NETDEV_DOWN:
1458                 return tls_device_down(dev);
1459         }
1460         return NOTIFY_DONE;
1461 }
1462
1463 static struct notifier_block tls_dev_notifier = {
1464         .notifier_call  = tls_dev_event,
1465 };
1466
1467 int __init tls_device_init(void)
1468 {
1469         int err;
1470
1471         destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1472         if (!destruct_wq)
1473                 return -ENOMEM;
1474
1475         err = register_netdevice_notifier(&tls_dev_notifier);
1476         if (err)
1477                 destroy_workqueue(destruct_wq);
1478
1479         return err;
1480 }
1481
1482 void __exit tls_device_cleanup(void)
1483 {
1484         unregister_netdevice_notifier(&tls_dev_notifier);
1485         destroy_workqueue(destruct_wq);
1486         clean_acked_data_flush();
1487 }