Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / net / sched / sch_netem.c
1 /*
2  * net/sched/sch_netem.c        Network emulator
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License.
8  *
9  *              Many of the algorithms and ideas for this came from
10  *              NIST Net which is not copyrighted.
11  *
12  * Authors:     Stephen Hemminger <shemminger@osdl.org>
13  *              Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31
32 #define VERSION "1.3"
33
34 /*      Network Emulation Queuing algorithm.
35         ====================================
36
37         Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38                  Network Emulation Tool
39                  [2] Luigi Rizzo, DummyNet for FreeBSD
40
41          ----------------------------------------------------------------
42
43          This started out as a simple way to delay outgoing packets to
44          test TCP but has grown to include most of the functionality
45          of a full blown network emulator like NISTnet. It can delay
46          packets and add random jitter (and correlation). The random
47          distribution can be loaded from a table as well to provide
48          normal, Pareto, or experimental curves. Packet loss,
49          duplication, and reordering can also be emulated.
50
51          This qdisc does not do classification that can be handled in
52          layering other disciplines.  It does not need to do bandwidth
53          control either since that can be handled by using token
54          bucket or other rate control.
55
56      Correlated Loss Generator models
57
58         Added generation of correlated loss according to the
59         "Gilbert-Elliot" model, a 4-state markov model.
60
61         References:
62         [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63         [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64         and intuitive loss model for packet networks and its implementation
65         in the Netem module in the Linux kernel", available in [1]
66
67         Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68                  Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70
71 struct netem_sched_data {
72         /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73         struct rb_root t_root;
74
75         /* optional qdisc for classful handling (NULL at netem init) */
76         struct Qdisc    *qdisc;
77
78         struct qdisc_watchdog watchdog;
79
80         s64 latency;
81         s64 jitter;
82
83         u32 loss;
84         u32 ecn;
85         u32 limit;
86         u32 counter;
87         u32 gap;
88         u32 duplicate;
89         u32 reorder;
90         u32 corrupt;
91         u64 rate;
92         s32 packet_overhead;
93         u32 cell_size;
94         struct reciprocal_value cell_size_reciprocal;
95         s32 cell_overhead;
96
97         struct crndstate {
98                 u32 last;
99                 u32 rho;
100         } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101
102         struct disttable {
103                 u32  size;
104                 s16 table[0];
105         } *delay_dist;
106
107         enum  {
108                 CLG_RANDOM,
109                 CLG_4_STATES,
110                 CLG_GILB_ELL,
111         } loss_model;
112
113         enum {
114                 TX_IN_GAP_PERIOD = 1,
115                 TX_IN_BURST_PERIOD,
116                 LOST_IN_GAP_PERIOD,
117                 LOST_IN_BURST_PERIOD,
118         } _4_state_model;
119
120         enum {
121                 GOOD_STATE = 1,
122                 BAD_STATE,
123         } GE_state_model;
124
125         /* Correlated Loss Generation models */
126         struct clgstate {
127                 /* state of the Markov chain */
128                 u8 state;
129
130                 /* 4-states and Gilbert-Elliot models */
131                 u32 a1; /* p13 for 4-states or p for GE */
132                 u32 a2; /* p31 for 4-states or r for GE */
133                 u32 a3; /* p32 for 4-states or h for GE */
134                 u32 a4; /* p14 for 4-states or 1-k for GE */
135                 u32 a5; /* p23 used only in 4-states */
136         } clg;
137
138         struct tc_netem_slot slot_config;
139         struct slotstate {
140                 u64 slot_next;
141                 s32 packets_left;
142                 s32 bytes_left;
143         } slot;
144
145 };
146
147 /* Time stamp put into socket buffer control block
148  * Only valid when skbs are in our internal t(ime)fifo queue.
149  *
150  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
151  * and skb->next & skb->prev are scratch space for a qdisc,
152  * we save skb->tstamp value in skb->cb[] before destroying it.
153  */
154 struct netem_skb_cb {
155         u64             time_to_send;
156 };
157
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160         /* we assume we can use skb next/prev/tstamp as storage for rb_node */
161         qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162         return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164
165 /* init_crandom - initialize correlated random number generator
166  * Use entropy source for initial seed.
167  */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170         state->rho = rho;
171         state->last = prandom_u32();
172 }
173
174 /* get_crandom - correlated random number generator
175  * Next number depends on last value.
176  * rho is scaled to avoid floating point.
177  */
178 static u32 get_crandom(struct crndstate *state)
179 {
180         u64 value, rho;
181         unsigned long answer;
182
183         if (state->rho == 0)    /* no correlation */
184                 return prandom_u32();
185
186         value = prandom_u32();
187         rho = (u64)state->rho + 1;
188         answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189         state->last = answer;
190         return answer;
191 }
192
193 /* loss_4state - 4-state model loss generator
194  * Generates losses according to the 4-state Markov chain adopted in
195  * the GI (General and Intuitive) loss model.
196  */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199         struct clgstate *clg = &q->clg;
200         u32 rnd = prandom_u32();
201
202         /*
203          * Makes a comparison between rnd and the transition
204          * probabilities outgoing from the current state, then decides the
205          * next state and if the next packet has to be transmitted or lost.
206          * The four states correspond to:
207          *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208          *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
209          *   LOST_IN_GAP_PERIOD => lost packets within a burst period
210          *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211          */
212         switch (clg->state) {
213         case TX_IN_GAP_PERIOD:
214                 if (rnd < clg->a4) {
215                         clg->state = LOST_IN_BURST_PERIOD;
216                         return true;
217                 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218                         clg->state = LOST_IN_GAP_PERIOD;
219                         return true;
220                 } else if (clg->a1 + clg->a4 < rnd) {
221                         clg->state = TX_IN_GAP_PERIOD;
222                 }
223
224                 break;
225         case TX_IN_BURST_PERIOD:
226                 if (rnd < clg->a5) {
227                         clg->state = LOST_IN_GAP_PERIOD;
228                         return true;
229                 } else {
230                         clg->state = TX_IN_BURST_PERIOD;
231                 }
232
233                 break;
234         case LOST_IN_GAP_PERIOD:
235                 if (rnd < clg->a3)
236                         clg->state = TX_IN_BURST_PERIOD;
237                 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238                         clg->state = TX_IN_GAP_PERIOD;
239                 } else if (clg->a2 + clg->a3 < rnd) {
240                         clg->state = LOST_IN_GAP_PERIOD;
241                         return true;
242                 }
243                 break;
244         case LOST_IN_BURST_PERIOD:
245                 clg->state = TX_IN_GAP_PERIOD;
246                 break;
247         }
248
249         return false;
250 }
251
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264         struct clgstate *clg = &q->clg;
265
266         switch (clg->state) {
267         case GOOD_STATE:
268                 if (prandom_u32() < clg->a1)
269                         clg->state = BAD_STATE;
270                 if (prandom_u32() < clg->a4)
271                         return true;
272                 break;
273         case BAD_STATE:
274                 if (prandom_u32() < clg->a2)
275                         clg->state = GOOD_STATE;
276                 if (prandom_u32() > clg->a3)
277                         return true;
278         }
279
280         return false;
281 }
282
283 static bool loss_event(struct netem_sched_data *q)
284 {
285         switch (q->loss_model) {
286         case CLG_RANDOM:
287                 /* Random packet drop 0 => none, ~0 => all */
288                 return q->loss && q->loss >= get_crandom(&q->loss_cor);
289
290         case CLG_4_STATES:
291                 /* 4state loss model algorithm (used also for GI model)
292                 * Extracts a value from the markov 4 state loss generator,
293                 * if it is 1 drops a packet and if needed writes the event in
294                 * the kernel logs
295                 */
296                 return loss_4state(q);
297
298         case CLG_GILB_ELL:
299                 /* Gilbert-Elliot loss model algorithm
300                 * Extracts a value from the Gilbert-Elliot loss generator,
301                 * if it is 1 drops a packet and if needed writes the event in
302                 * the kernel logs
303                 */
304                 return loss_gilb_ell(q);
305         }
306
307         return false;   /* not reached */
308 }
309
310
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312  * std deviation sigma.  Uses table lookup to approximate the desired
313  * distribution, and a uniformly-distributed pseudo-random source.
314  */
315 static s64 tabledist(s64 mu, s32 sigma,
316                      struct crndstate *state,
317                      const struct disttable *dist)
318 {
319         s64 x;
320         long t;
321         u32 rnd;
322
323         if (sigma == 0)
324                 return mu;
325
326         rnd = get_crandom(state);
327
328         /* default uniform distribution */
329         if (dist == NULL)
330                 return ((rnd % (2 * sigma)) + mu) - sigma;
331
332         t = dist->table[rnd % dist->size];
333         x = (sigma % NETEM_DIST_SCALE) * t;
334         if (x >= 0)
335                 x += NETEM_DIST_SCALE/2;
336         else
337                 x -= NETEM_DIST_SCALE/2;
338
339         return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341
342 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
343 {
344         len += q->packet_overhead;
345
346         if (q->cell_size) {
347                 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
348
349                 if (len > cells * q->cell_size) /* extra cell needed for remainder */
350                         cells++;
351                 len = cells * (q->cell_size + q->cell_overhead);
352         }
353
354         return div64_u64(len * NSEC_PER_SEC, q->rate);
355 }
356
357 static void tfifo_reset(struct Qdisc *sch)
358 {
359         struct netem_sched_data *q = qdisc_priv(sch);
360         struct rb_node *p = rb_first(&q->t_root);
361
362         while (p) {
363                 struct sk_buff *skb = rb_to_skb(p);
364
365                 p = rb_next(p);
366                 rb_erase(&skb->rbnode, &q->t_root);
367                 rtnl_kfree_skbs(skb, skb);
368         }
369 }
370
371 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
372 {
373         struct netem_sched_data *q = qdisc_priv(sch);
374         u64 tnext = netem_skb_cb(nskb)->time_to_send;
375         struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
376
377         while (*p) {
378                 struct sk_buff *skb;
379
380                 parent = *p;
381                 skb = rb_to_skb(parent);
382                 if (tnext >= netem_skb_cb(skb)->time_to_send)
383                         p = &parent->rb_right;
384                 else
385                         p = &parent->rb_left;
386         }
387         rb_link_node(&nskb->rbnode, parent, p);
388         rb_insert_color(&nskb->rbnode, &q->t_root);
389         sch->q.qlen++;
390 }
391
392 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
393  * when we statistically choose to corrupt one, we instead segment it, returning
394  * the first packet to be corrupted, and re-enqueue the remaining frames
395  */
396 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
397                                      struct sk_buff **to_free)
398 {
399         struct sk_buff *segs;
400         netdev_features_t features = netif_skb_features(skb);
401
402         segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
403
404         if (IS_ERR_OR_NULL(segs)) {
405                 qdisc_drop(skb, sch, to_free);
406                 return NULL;
407         }
408         consume_skb(skb);
409         return segs;
410 }
411
412 static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
413 {
414         skb->next = qh->head;
415
416         if (!qh->head)
417                 qh->tail = skb;
418         qh->head = skb;
419         qh->qlen++;
420 }
421
422 /*
423  * Insert one skb into qdisc.
424  * Note: parent depends on return value to account for queue length.
425  *      NET_XMIT_DROP: queue length didn't change.
426  *      NET_XMIT_SUCCESS: one skb was queued.
427  */
428 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
429                          struct sk_buff **to_free)
430 {
431         struct netem_sched_data *q = qdisc_priv(sch);
432         /* We don't fill cb now as skb_unshare() may invalidate it */
433         struct netem_skb_cb *cb;
434         struct sk_buff *skb2;
435         struct sk_buff *segs = NULL;
436         unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
437         int nb = 0;
438         int count = 1;
439         int rc = NET_XMIT_SUCCESS;
440
441         /* Random duplication */
442         if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
443                 ++count;
444
445         /* Drop packet? */
446         if (loss_event(q)) {
447                 if (q->ecn && INET_ECN_set_ce(skb))
448                         qdisc_qstats_drop(sch); /* mark packet */
449                 else
450                         --count;
451         }
452         if (count == 0) {
453                 qdisc_qstats_drop(sch);
454                 __qdisc_drop(skb, to_free);
455                 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
456         }
457
458         /* If a delay is expected, orphan the skb. (orphaning usually takes
459          * place at TX completion time, so _before_ the link transit delay)
460          */
461         if (q->latency || q->jitter || q->rate)
462                 skb_orphan_partial(skb);
463
464         /*
465          * If we need to duplicate packet, then re-insert at top of the
466          * qdisc tree, since parent queuer expects that only one
467          * skb will be queued.
468          */
469         if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
470                 struct Qdisc *rootq = qdisc_root(sch);
471                 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
472
473                 q->duplicate = 0;
474                 rootq->enqueue(skb2, rootq, to_free);
475                 q->duplicate = dupsave;
476         }
477
478         /*
479          * Randomized packet corruption.
480          * Make copy if needed since we are modifying
481          * If packet is going to be hardware checksummed, then
482          * do it now in software before we mangle it.
483          */
484         if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
485                 if (skb_is_gso(skb)) {
486                         segs = netem_segment(skb, sch, to_free);
487                         if (!segs)
488                                 return NET_XMIT_DROP;
489                 } else {
490                         segs = skb;
491                 }
492
493                 skb = segs;
494                 segs = segs->next;
495
496                 skb = skb_unshare(skb, GFP_ATOMIC);
497                 if (unlikely(!skb)) {
498                         qdisc_qstats_drop(sch);
499                         goto finish_segs;
500                 }
501                 if (skb->ip_summed == CHECKSUM_PARTIAL &&
502                     skb_checksum_help(skb)) {
503                         qdisc_drop(skb, sch, to_free);
504                         goto finish_segs;
505                 }
506
507                 skb->data[prandom_u32() % skb_headlen(skb)] ^=
508                         1<<(prandom_u32() % 8);
509         }
510
511         if (unlikely(sch->q.qlen >= sch->limit))
512                 return qdisc_drop_all(skb, sch, to_free);
513
514         qdisc_qstats_backlog_inc(sch, skb);
515
516         cb = netem_skb_cb(skb);
517         if (q->gap == 0 ||              /* not doing reordering */
518             q->counter < q->gap - 1 ||  /* inside last reordering gap */
519             q->reorder < get_crandom(&q->reorder_cor)) {
520                 u64 now;
521                 s64 delay;
522
523                 delay = tabledist(q->latency, q->jitter,
524                                   &q->delay_cor, q->delay_dist);
525
526                 now = ktime_get_ns();
527
528                 if (q->rate) {
529                         struct netem_skb_cb *last = NULL;
530
531                         if (sch->q.tail)
532                                 last = netem_skb_cb(sch->q.tail);
533                         if (q->t_root.rb_node) {
534                                 struct sk_buff *t_skb;
535                                 struct netem_skb_cb *t_last;
536
537                                 t_skb = skb_rb_last(&q->t_root);
538                                 t_last = netem_skb_cb(t_skb);
539                                 if (!last ||
540                                     t_last->time_to_send > last->time_to_send) {
541                                         last = t_last;
542                                 }
543                         }
544
545                         if (last) {
546                                 /*
547                                  * Last packet in queue is reference point (now),
548                                  * calculate this time bonus and subtract
549                                  * from delay.
550                                  */
551                                 delay -= last->time_to_send - now;
552                                 delay = max_t(s64, 0, delay);
553                                 now = last->time_to_send;
554                         }
555
556                         delay += packet_time_ns(qdisc_pkt_len(skb), q);
557                 }
558
559                 cb->time_to_send = now + delay;
560                 ++q->counter;
561                 tfifo_enqueue(skb, sch);
562         } else {
563                 /*
564                  * Do re-ordering by putting one out of N packets at the front
565                  * of the queue.
566                  */
567                 cb->time_to_send = ktime_get_ns();
568                 q->counter = 0;
569
570                 netem_enqueue_skb_head(&sch->q, skb);
571                 sch->qstats.requeues++;
572         }
573
574 finish_segs:
575         if (segs) {
576                 while (segs) {
577                         skb2 = segs->next;
578                         segs->next = NULL;
579                         qdisc_skb_cb(segs)->pkt_len = segs->len;
580                         last_len = segs->len;
581                         rc = qdisc_enqueue(segs, sch, to_free);
582                         if (rc != NET_XMIT_SUCCESS) {
583                                 if (net_xmit_drop_count(rc))
584                                         qdisc_qstats_drop(sch);
585                         } else {
586                                 nb++;
587                                 len += last_len;
588                         }
589                         segs = skb2;
590                 }
591                 sch->q.qlen += nb;
592                 if (nb > 1)
593                         qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
594         }
595         return NET_XMIT_SUCCESS;
596 }
597
598 /* Delay the next round with a new future slot with a
599  * correct number of bytes and packets.
600  */
601
602 static void get_slot_next(struct netem_sched_data *q, u64 now)
603 {
604         q->slot.slot_next = now + q->slot_config.min_delay +
605                 (prandom_u32() *
606                         (q->slot_config.max_delay -
607                                 q->slot_config.min_delay) >> 32);
608         q->slot.packets_left = q->slot_config.max_packets;
609         q->slot.bytes_left = q->slot_config.max_bytes;
610 }
611
612 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
613 {
614         struct netem_sched_data *q = qdisc_priv(sch);
615         struct sk_buff *skb;
616         struct rb_node *p;
617
618 tfifo_dequeue:
619         skb = __qdisc_dequeue_head(&sch->q);
620         if (skb) {
621                 qdisc_qstats_backlog_dec(sch, skb);
622 deliver:
623                 qdisc_bstats_update(sch, skb);
624                 return skb;
625         }
626         p = rb_first(&q->t_root);
627         if (p) {
628                 u64 time_to_send;
629                 u64 now = ktime_get_ns();
630
631                 skb = rb_to_skb(p);
632
633                 /* if more time remaining? */
634                 time_to_send = netem_skb_cb(skb)->time_to_send;
635                 if (q->slot.slot_next && q->slot.slot_next < time_to_send)
636                         get_slot_next(q, now);
637
638                 if (time_to_send <= now &&  q->slot.slot_next <= now) {
639                         rb_erase(p, &q->t_root);
640                         sch->q.qlen--;
641                         qdisc_qstats_backlog_dec(sch, skb);
642                         skb->next = NULL;
643                         skb->prev = NULL;
644                         /* skb->dev shares skb->rbnode area,
645                          * we need to restore its value.
646                          */
647                         skb->dev = qdisc_dev(sch);
648
649 #ifdef CONFIG_NET_CLS_ACT
650                         /*
651                          * If it's at ingress let's pretend the delay is
652                          * from the network (tstamp will be updated).
653                          */
654                         if (skb->tc_redirected && skb->tc_from_ingress)
655                                 skb->tstamp = 0;
656 #endif
657
658                         if (q->slot.slot_next) {
659                                 q->slot.packets_left--;
660                                 q->slot.bytes_left -= qdisc_pkt_len(skb);
661                                 if (q->slot.packets_left <= 0 ||
662                                     q->slot.bytes_left <= 0)
663                                         get_slot_next(q, now);
664                         }
665
666                         if (q->qdisc) {
667                                 unsigned int pkt_len = qdisc_pkt_len(skb);
668                                 struct sk_buff *to_free = NULL;
669                                 int err;
670
671                                 err = qdisc_enqueue(skb, q->qdisc, &to_free);
672                                 kfree_skb_list(to_free);
673                                 if (err != NET_XMIT_SUCCESS &&
674                                     net_xmit_drop_count(err)) {
675                                         qdisc_qstats_drop(sch);
676                                         qdisc_tree_reduce_backlog(sch, 1,
677                                                                   pkt_len);
678                                 }
679                                 goto tfifo_dequeue;
680                         }
681                         goto deliver;
682                 }
683
684                 if (q->qdisc) {
685                         skb = q->qdisc->ops->dequeue(q->qdisc);
686                         if (skb)
687                                 goto deliver;
688                 }
689
690                 qdisc_watchdog_schedule_ns(&q->watchdog,
691                                            max(time_to_send,
692                                                q->slot.slot_next));
693         }
694
695         if (q->qdisc) {
696                 skb = q->qdisc->ops->dequeue(q->qdisc);
697                 if (skb)
698                         goto deliver;
699         }
700         return NULL;
701 }
702
703 static void netem_reset(struct Qdisc *sch)
704 {
705         struct netem_sched_data *q = qdisc_priv(sch);
706
707         qdisc_reset_queue(sch);
708         tfifo_reset(sch);
709         if (q->qdisc)
710                 qdisc_reset(q->qdisc);
711         qdisc_watchdog_cancel(&q->watchdog);
712 }
713
714 static void dist_free(struct disttable *d)
715 {
716         kvfree(d);
717 }
718
719 /*
720  * Distribution data is a variable size payload containing
721  * signed 16 bit values.
722  */
723
724 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
725 {
726         struct netem_sched_data *q = qdisc_priv(sch);
727         size_t n = nla_len(attr)/sizeof(__s16);
728         const __s16 *data = nla_data(attr);
729         spinlock_t *root_lock;
730         struct disttable *d;
731         int i;
732
733         if (n > NETEM_DIST_MAX)
734                 return -EINVAL;
735
736         d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
737         if (!d)
738                 return -ENOMEM;
739
740         d->size = n;
741         for (i = 0; i < n; i++)
742                 d->table[i] = data[i];
743
744         root_lock = qdisc_root_sleeping_lock(sch);
745
746         spin_lock_bh(root_lock);
747         swap(q->delay_dist, d);
748         spin_unlock_bh(root_lock);
749
750         dist_free(d);
751         return 0;
752 }
753
754 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
755 {
756         const struct tc_netem_slot *c = nla_data(attr);
757
758         q->slot_config = *c;
759         if (q->slot_config.max_packets == 0)
760                 q->slot_config.max_packets = INT_MAX;
761         if (q->slot_config.max_bytes == 0)
762                 q->slot_config.max_bytes = INT_MAX;
763         q->slot.packets_left = q->slot_config.max_packets;
764         q->slot.bytes_left = q->slot_config.max_bytes;
765         if (q->slot_config.min_delay | q->slot_config.max_delay)
766                 q->slot.slot_next = ktime_get_ns();
767         else
768                 q->slot.slot_next = 0;
769 }
770
771 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
772 {
773         const struct tc_netem_corr *c = nla_data(attr);
774
775         init_crandom(&q->delay_cor, c->delay_corr);
776         init_crandom(&q->loss_cor, c->loss_corr);
777         init_crandom(&q->dup_cor, c->dup_corr);
778 }
779
780 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
781 {
782         const struct tc_netem_reorder *r = nla_data(attr);
783
784         q->reorder = r->probability;
785         init_crandom(&q->reorder_cor, r->correlation);
786 }
787
788 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
789 {
790         const struct tc_netem_corrupt *r = nla_data(attr);
791
792         q->corrupt = r->probability;
793         init_crandom(&q->corrupt_cor, r->correlation);
794 }
795
796 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
797 {
798         const struct tc_netem_rate *r = nla_data(attr);
799
800         q->rate = r->rate;
801         q->packet_overhead = r->packet_overhead;
802         q->cell_size = r->cell_size;
803         q->cell_overhead = r->cell_overhead;
804         if (q->cell_size)
805                 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
806         else
807                 q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
808 }
809
810 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
811 {
812         const struct nlattr *la;
813         int rem;
814
815         nla_for_each_nested(la, attr, rem) {
816                 u16 type = nla_type(la);
817
818                 switch (type) {
819                 case NETEM_LOSS_GI: {
820                         const struct tc_netem_gimodel *gi = nla_data(la);
821
822                         if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
823                                 pr_info("netem: incorrect gi model size\n");
824                                 return -EINVAL;
825                         }
826
827                         q->loss_model = CLG_4_STATES;
828
829                         q->clg.state = TX_IN_GAP_PERIOD;
830                         q->clg.a1 = gi->p13;
831                         q->clg.a2 = gi->p31;
832                         q->clg.a3 = gi->p32;
833                         q->clg.a4 = gi->p14;
834                         q->clg.a5 = gi->p23;
835                         break;
836                 }
837
838                 case NETEM_LOSS_GE: {
839                         const struct tc_netem_gemodel *ge = nla_data(la);
840
841                         if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
842                                 pr_info("netem: incorrect ge model size\n");
843                                 return -EINVAL;
844                         }
845
846                         q->loss_model = CLG_GILB_ELL;
847                         q->clg.state = GOOD_STATE;
848                         q->clg.a1 = ge->p;
849                         q->clg.a2 = ge->r;
850                         q->clg.a3 = ge->h;
851                         q->clg.a4 = ge->k1;
852                         break;
853                 }
854
855                 default:
856                         pr_info("netem: unknown loss type %u\n", type);
857                         return -EINVAL;
858                 }
859         }
860
861         return 0;
862 }
863
864 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
865         [TCA_NETEM_CORR]        = { .len = sizeof(struct tc_netem_corr) },
866         [TCA_NETEM_REORDER]     = { .len = sizeof(struct tc_netem_reorder) },
867         [TCA_NETEM_CORRUPT]     = { .len = sizeof(struct tc_netem_corrupt) },
868         [TCA_NETEM_RATE]        = { .len = sizeof(struct tc_netem_rate) },
869         [TCA_NETEM_LOSS]        = { .type = NLA_NESTED },
870         [TCA_NETEM_ECN]         = { .type = NLA_U32 },
871         [TCA_NETEM_RATE64]      = { .type = NLA_U64 },
872         [TCA_NETEM_LATENCY64]   = { .type = NLA_S64 },
873         [TCA_NETEM_JITTER64]    = { .type = NLA_S64 },
874         [TCA_NETEM_SLOT]        = { .len = sizeof(struct tc_netem_slot) },
875 };
876
877 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
878                       const struct nla_policy *policy, int len)
879 {
880         int nested_len = nla_len(nla) - NLA_ALIGN(len);
881
882         if (nested_len < 0) {
883                 pr_info("netem: invalid attributes len %d\n", nested_len);
884                 return -EINVAL;
885         }
886
887         if (nested_len >= nla_attr_size(0))
888                 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
889                                  nested_len, policy, NULL);
890
891         memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
892         return 0;
893 }
894
895 /* Parse netlink message to set options */
896 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
897                         struct netlink_ext_ack *extack)
898 {
899         struct netem_sched_data *q = qdisc_priv(sch);
900         struct nlattr *tb[TCA_NETEM_MAX + 1];
901         struct tc_netem_qopt *qopt;
902         struct clgstate old_clg;
903         int old_loss_model = CLG_RANDOM;
904         int ret;
905
906         if (opt == NULL)
907                 return -EINVAL;
908
909         qopt = nla_data(opt);
910         ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
911         if (ret < 0)
912                 return ret;
913
914         /* backup q->clg and q->loss_model */
915         old_clg = q->clg;
916         old_loss_model = q->loss_model;
917
918         if (tb[TCA_NETEM_LOSS]) {
919                 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
920                 if (ret) {
921                         q->loss_model = old_loss_model;
922                         return ret;
923                 }
924         } else {
925                 q->loss_model = CLG_RANDOM;
926         }
927
928         if (tb[TCA_NETEM_DELAY_DIST]) {
929                 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
930                 if (ret) {
931                         /* recover clg and loss_model, in case of
932                          * q->clg and q->loss_model were modified
933                          * in get_loss_clg()
934                          */
935                         q->clg = old_clg;
936                         q->loss_model = old_loss_model;
937                         return ret;
938                 }
939         }
940
941         sch->limit = qopt->limit;
942
943         q->latency = PSCHED_TICKS2NS(qopt->latency);
944         q->jitter = PSCHED_TICKS2NS(qopt->jitter);
945         q->limit = qopt->limit;
946         q->gap = qopt->gap;
947         q->counter = 0;
948         q->loss = qopt->loss;
949         q->duplicate = qopt->duplicate;
950
951         /* for compatibility with earlier versions.
952          * if gap is set, need to assume 100% probability
953          */
954         if (q->gap)
955                 q->reorder = ~0;
956
957         if (tb[TCA_NETEM_CORR])
958                 get_correlation(q, tb[TCA_NETEM_CORR]);
959
960         if (tb[TCA_NETEM_REORDER])
961                 get_reorder(q, tb[TCA_NETEM_REORDER]);
962
963         if (tb[TCA_NETEM_CORRUPT])
964                 get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
965
966         if (tb[TCA_NETEM_RATE])
967                 get_rate(q, tb[TCA_NETEM_RATE]);
968
969         if (tb[TCA_NETEM_RATE64])
970                 q->rate = max_t(u64, q->rate,
971                                 nla_get_u64(tb[TCA_NETEM_RATE64]));
972
973         if (tb[TCA_NETEM_LATENCY64])
974                 q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
975
976         if (tb[TCA_NETEM_JITTER64])
977                 q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
978
979         if (tb[TCA_NETEM_ECN])
980                 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
981
982         if (tb[TCA_NETEM_SLOT])
983                 get_slot(q, tb[TCA_NETEM_SLOT]);
984
985         return ret;
986 }
987
988 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
989                       struct netlink_ext_ack *extack)
990 {
991         struct netem_sched_data *q = qdisc_priv(sch);
992         int ret;
993
994         qdisc_watchdog_init(&q->watchdog, sch);
995
996         if (!opt)
997                 return -EINVAL;
998
999         q->loss_model = CLG_RANDOM;
1000         ret = netem_change(sch, opt, extack);
1001         if (ret)
1002                 pr_info("netem: change failed\n");
1003         return ret;
1004 }
1005
1006 static void netem_destroy(struct Qdisc *sch)
1007 {
1008         struct netem_sched_data *q = qdisc_priv(sch);
1009
1010         qdisc_watchdog_cancel(&q->watchdog);
1011         if (q->qdisc)
1012                 qdisc_destroy(q->qdisc);
1013         dist_free(q->delay_dist);
1014 }
1015
1016 static int dump_loss_model(const struct netem_sched_data *q,
1017                            struct sk_buff *skb)
1018 {
1019         struct nlattr *nest;
1020
1021         nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1022         if (nest == NULL)
1023                 goto nla_put_failure;
1024
1025         switch (q->loss_model) {
1026         case CLG_RANDOM:
1027                 /* legacy loss model */
1028                 nla_nest_cancel(skb, nest);
1029                 return 0;       /* no data */
1030
1031         case CLG_4_STATES: {
1032                 struct tc_netem_gimodel gi = {
1033                         .p13 = q->clg.a1,
1034                         .p31 = q->clg.a2,
1035                         .p32 = q->clg.a3,
1036                         .p14 = q->clg.a4,
1037                         .p23 = q->clg.a5,
1038                 };
1039
1040                 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1041                         goto nla_put_failure;
1042                 break;
1043         }
1044         case CLG_GILB_ELL: {
1045                 struct tc_netem_gemodel ge = {
1046                         .p = q->clg.a1,
1047                         .r = q->clg.a2,
1048                         .h = q->clg.a3,
1049                         .k1 = q->clg.a4,
1050                 };
1051
1052                 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1053                         goto nla_put_failure;
1054                 break;
1055         }
1056         }
1057
1058         nla_nest_end(skb, nest);
1059         return 0;
1060
1061 nla_put_failure:
1062         nla_nest_cancel(skb, nest);
1063         return -1;
1064 }
1065
1066 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1067 {
1068         const struct netem_sched_data *q = qdisc_priv(sch);
1069         struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1070         struct tc_netem_qopt qopt;
1071         struct tc_netem_corr cor;
1072         struct tc_netem_reorder reorder;
1073         struct tc_netem_corrupt corrupt;
1074         struct tc_netem_rate rate;
1075         struct tc_netem_slot slot;
1076
1077         qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1078                              UINT_MAX);
1079         qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1080                             UINT_MAX);
1081         qopt.limit = q->limit;
1082         qopt.loss = q->loss;
1083         qopt.gap = q->gap;
1084         qopt.duplicate = q->duplicate;
1085         if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1086                 goto nla_put_failure;
1087
1088         if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1089                 goto nla_put_failure;
1090
1091         if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1092                 goto nla_put_failure;
1093
1094         cor.delay_corr = q->delay_cor.rho;
1095         cor.loss_corr = q->loss_cor.rho;
1096         cor.dup_corr = q->dup_cor.rho;
1097         if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1098                 goto nla_put_failure;
1099
1100         reorder.probability = q->reorder;
1101         reorder.correlation = q->reorder_cor.rho;
1102         if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1103                 goto nla_put_failure;
1104
1105         corrupt.probability = q->corrupt;
1106         corrupt.correlation = q->corrupt_cor.rho;
1107         if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1108                 goto nla_put_failure;
1109
1110         if (q->rate >= (1ULL << 32)) {
1111                 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1112                                       TCA_NETEM_PAD))
1113                         goto nla_put_failure;
1114                 rate.rate = ~0U;
1115         } else {
1116                 rate.rate = q->rate;
1117         }
1118         rate.packet_overhead = q->packet_overhead;
1119         rate.cell_size = q->cell_size;
1120         rate.cell_overhead = q->cell_overhead;
1121         if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1122                 goto nla_put_failure;
1123
1124         if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1125                 goto nla_put_failure;
1126
1127         if (dump_loss_model(q, skb) != 0)
1128                 goto nla_put_failure;
1129
1130         if (q->slot_config.min_delay | q->slot_config.max_delay) {
1131                 slot = q->slot_config;
1132                 if (slot.max_packets == INT_MAX)
1133                         slot.max_packets = 0;
1134                 if (slot.max_bytes == INT_MAX)
1135                         slot.max_bytes = 0;
1136                 if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1137                         goto nla_put_failure;
1138         }
1139
1140         return nla_nest_end(skb, nla);
1141
1142 nla_put_failure:
1143         nlmsg_trim(skb, nla);
1144         return -1;
1145 }
1146
1147 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1148                           struct sk_buff *skb, struct tcmsg *tcm)
1149 {
1150         struct netem_sched_data *q = qdisc_priv(sch);
1151
1152         if (cl != 1 || !q->qdisc)       /* only one class */
1153                 return -ENOENT;
1154
1155         tcm->tcm_handle |= TC_H_MIN(1);
1156         tcm->tcm_info = q->qdisc->handle;
1157
1158         return 0;
1159 }
1160
1161 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1162                      struct Qdisc **old, struct netlink_ext_ack *extack)
1163 {
1164         struct netem_sched_data *q = qdisc_priv(sch);
1165
1166         *old = qdisc_replace(sch, new, &q->qdisc);
1167         return 0;
1168 }
1169
1170 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1171 {
1172         struct netem_sched_data *q = qdisc_priv(sch);
1173         return q->qdisc;
1174 }
1175
1176 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1177 {
1178         return 1;
1179 }
1180
1181 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1182 {
1183         if (!walker->stop) {
1184                 if (walker->count >= walker->skip)
1185                         if (walker->fn(sch, 1, walker) < 0) {
1186                                 walker->stop = 1;
1187                                 return;
1188                         }
1189                 walker->count++;
1190         }
1191 }
1192
1193 static const struct Qdisc_class_ops netem_class_ops = {
1194         .graft          =       netem_graft,
1195         .leaf           =       netem_leaf,
1196         .find           =       netem_find,
1197         .walk           =       netem_walk,
1198         .dump           =       netem_dump_class,
1199 };
1200
1201 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1202         .id             =       "netem",
1203         .cl_ops         =       &netem_class_ops,
1204         .priv_size      =       sizeof(struct netem_sched_data),
1205         .enqueue        =       netem_enqueue,
1206         .dequeue        =       netem_dequeue,
1207         .peek           =       qdisc_peek_dequeued,
1208         .init           =       netem_init,
1209         .reset          =       netem_reset,
1210         .destroy        =       netem_destroy,
1211         .change         =       netem_change,
1212         .dump           =       netem_dump,
1213         .owner          =       THIS_MODULE,
1214 };
1215
1216
1217 static int __init netem_module_init(void)
1218 {
1219         pr_info("netem: version " VERSION "\n");
1220         return register_qdisc(&netem_qdisc_ops);
1221 }
1222 static void __exit netem_module_exit(void)
1223 {
1224         unregister_qdisc(&netem_qdisc_ops);
1225 }
1226 module_init(netem_module_init)
1227 module_exit(netem_module_exit)
1228 MODULE_LICENSE("GPL");