81a8ef42b88d3893a210bea4f03b6eb4cbf04f99
[sfrench/cifs-2.6.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68         struct delayed_work     dwork;
69         u32                     last_bucket;
70         bool                    exiting;
71         bool                    early_drop;
72         long                    next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
77 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
81 #define GC_MAX_BUCKETS_DIV      128u
82 /* upper bound of full table scan */
83 #define GC_MAX_SCAN_JIFFIES     (16u * HZ)
84 /* desired ratio of entries found to be expired */
85 #define GC_EVICT_RATIO  50u
86
87 static struct conntrack_gc_work conntrack_gc_work;
88
89 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
90 {
91         /* 1) Acquire the lock */
92         spin_lock(lock);
93
94         /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
95          * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
96          */
97         if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
98                 return;
99
100         /* fast path failed, unlock */
101         spin_unlock(lock);
102
103         /* Slow path 1) get global lock */
104         spin_lock(&nf_conntrack_locks_all_lock);
105
106         /* Slow path 2) get the lock we want */
107         spin_lock(lock);
108
109         /* Slow path 3) release the global lock */
110         spin_unlock(&nf_conntrack_locks_all_lock);
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116         h1 %= CONNTRACK_LOCKS;
117         h2 %= CONNTRACK_LOCKS;
118         spin_unlock(&nf_conntrack_locks[h1]);
119         if (h1 != h2)
120                 spin_unlock(&nf_conntrack_locks[h2]);
121 }
122
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125                                      unsigned int h2, unsigned int sequence)
126 {
127         h1 %= CONNTRACK_LOCKS;
128         h2 %= CONNTRACK_LOCKS;
129         if (h1 <= h2) {
130                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
131                 if (h1 != h2)
132                         spin_lock_nested(&nf_conntrack_locks[h2],
133                                          SINGLE_DEPTH_NESTING);
134         } else {
135                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
136                 spin_lock_nested(&nf_conntrack_locks[h1],
137                                  SINGLE_DEPTH_NESTING);
138         }
139         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140                 nf_conntrack_double_unlock(h1, h2);
141                 return true;
142         }
143         return false;
144 }
145
146 static void nf_conntrack_all_lock(void)
147 {
148         int i;
149
150         spin_lock(&nf_conntrack_locks_all_lock);
151
152         nf_conntrack_locks_all = true;
153
154         for (i = 0; i < CONNTRACK_LOCKS; i++) {
155                 spin_lock(&nf_conntrack_locks[i]);
156
157                 /* This spin_unlock provides the "release" to ensure that
158                  * nf_conntrack_locks_all==true is visible to everyone that
159                  * acquired spin_lock(&nf_conntrack_locks[]).
160                  */
161                 spin_unlock(&nf_conntrack_locks[i]);
162         }
163 }
164
165 static void nf_conntrack_all_unlock(void)
166 {
167         /* All prior stores must be complete before we clear
168          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
169          * might observe the false value but not the entire
170          * critical section.
171          * It pairs with the smp_load_acquire() in nf_conntrack_lock()
172          */
173         smp_store_release(&nf_conntrack_locks_all, false);
174         spin_unlock(&nf_conntrack_locks_all_lock);
175 }
176
177 unsigned int nf_conntrack_htable_size __read_mostly;
178 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
179
180 unsigned int nf_conntrack_max __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_max);
182 seqcount_t nf_conntrack_generation __read_mostly;
183 static unsigned int nf_conntrack_hash_rnd __read_mostly;
184
185 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
186                               const struct net *net)
187 {
188         unsigned int n;
189         u32 seed;
190
191         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
192
193         /* The direction must be ignored, so we hash everything up to the
194          * destination ports (which is a multiple of 4) and treat the last
195          * three bytes manually.
196          */
197         seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
198         n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
199         return jhash2((u32 *)tuple, n, seed ^
200                       (((__force __u16)tuple->dst.u.all << 16) |
201                       tuple->dst.protonum));
202 }
203
204 static u32 scale_hash(u32 hash)
205 {
206         return reciprocal_scale(hash, nf_conntrack_htable_size);
207 }
208
209 static u32 __hash_conntrack(const struct net *net,
210                             const struct nf_conntrack_tuple *tuple,
211                             unsigned int size)
212 {
213         return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
214 }
215
216 static u32 hash_conntrack(const struct net *net,
217                           const struct nf_conntrack_tuple *tuple)
218 {
219         return scale_hash(hash_conntrack_raw(tuple, net));
220 }
221
222 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
223                                   unsigned int dataoff,
224                                   struct nf_conntrack_tuple *tuple)
225 {       struct {
226                 __be16 sport;
227                 __be16 dport;
228         } _inet_hdr, *inet_hdr;
229
230         /* Actually only need first 4 bytes to get ports. */
231         inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
232         if (!inet_hdr)
233                 return false;
234
235         tuple->src.u.udp.port = inet_hdr->sport;
236         tuple->dst.u.udp.port = inet_hdr->dport;
237         return true;
238 }
239
240 static bool
241 nf_ct_get_tuple(const struct sk_buff *skb,
242                 unsigned int nhoff,
243                 unsigned int dataoff,
244                 u_int16_t l3num,
245                 u_int8_t protonum,
246                 struct net *net,
247                 struct nf_conntrack_tuple *tuple)
248 {
249         unsigned int size;
250         const __be32 *ap;
251         __be32 _addrs[8];
252
253         memset(tuple, 0, sizeof(*tuple));
254
255         tuple->src.l3num = l3num;
256         switch (l3num) {
257         case NFPROTO_IPV4:
258                 nhoff += offsetof(struct iphdr, saddr);
259                 size = 2 * sizeof(__be32);
260                 break;
261         case NFPROTO_IPV6:
262                 nhoff += offsetof(struct ipv6hdr, saddr);
263                 size = sizeof(_addrs);
264                 break;
265         default:
266                 return true;
267         }
268
269         ap = skb_header_pointer(skb, nhoff, size, _addrs);
270         if (!ap)
271                 return false;
272
273         switch (l3num) {
274         case NFPROTO_IPV4:
275                 tuple->src.u3.ip = ap[0];
276                 tuple->dst.u3.ip = ap[1];
277                 break;
278         case NFPROTO_IPV6:
279                 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
280                 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
281                 break;
282         }
283
284         tuple->dst.protonum = protonum;
285         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
286
287         switch (protonum) {
288 #if IS_ENABLED(CONFIG_IPV6)
289         case IPPROTO_ICMPV6:
290                 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
291 #endif
292         case IPPROTO_ICMP:
293                 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
294 #ifdef CONFIG_NF_CT_PROTO_GRE
295         case IPPROTO_GRE:
296                 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
297 #endif
298         case IPPROTO_TCP:
299         case IPPROTO_UDP: /* fallthrough */
300                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
301 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
302         case IPPROTO_UDPLITE:
303                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
304 #endif
305 #ifdef CONFIG_NF_CT_PROTO_SCTP
306         case IPPROTO_SCTP:
307                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
308 #endif
309 #ifdef CONFIG_NF_CT_PROTO_DCCP
310         case IPPROTO_DCCP:
311                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
312 #endif
313         default:
314                 break;
315         }
316
317         return true;
318 }
319
320 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
321                             u_int8_t *protonum)
322 {
323         int dataoff = -1;
324         const struct iphdr *iph;
325         struct iphdr _iph;
326
327         iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
328         if (!iph)
329                 return -1;
330
331         /* Conntrack defragments packets, we might still see fragments
332          * inside ICMP packets though.
333          */
334         if (iph->frag_off & htons(IP_OFFSET))
335                 return -1;
336
337         dataoff = nhoff + (iph->ihl << 2);
338         *protonum = iph->protocol;
339
340         /* Check bogus IP headers */
341         if (dataoff > skb->len) {
342                 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
343                          nhoff, iph->ihl << 2, skb->len);
344                 return -1;
345         }
346         return dataoff;
347 }
348
349 #if IS_ENABLED(CONFIG_IPV6)
350 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351                             u8 *protonum)
352 {
353         int protoff = -1;
354         unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
355         __be16 frag_off;
356         u8 nexthdr;
357
358         if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
359                           &nexthdr, sizeof(nexthdr)) != 0) {
360                 pr_debug("can't get nexthdr\n");
361                 return -1;
362         }
363         protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
364         /*
365          * (protoff == skb->len) means the packet has not data, just
366          * IPv6 and possibly extensions headers, but it is tracked anyway
367          */
368         if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
369                 pr_debug("can't find proto in pkt\n");
370                 return -1;
371         }
372
373         *protonum = nexthdr;
374         return protoff;
375 }
376 #endif
377
378 static int get_l4proto(const struct sk_buff *skb,
379                        unsigned int nhoff, u8 pf, u8 *l4num)
380 {
381         switch (pf) {
382         case NFPROTO_IPV4:
383                 return ipv4_get_l4proto(skb, nhoff, l4num);
384 #if IS_ENABLED(CONFIG_IPV6)
385         case NFPROTO_IPV6:
386                 return ipv6_get_l4proto(skb, nhoff, l4num);
387 #endif
388         default:
389                 *l4num = 0;
390                 break;
391         }
392         return -1;
393 }
394
395 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
396                        u_int16_t l3num,
397                        struct net *net, struct nf_conntrack_tuple *tuple)
398 {
399         u8 protonum;
400         int protoff;
401
402         protoff = get_l4proto(skb, nhoff, l3num, &protonum);
403         if (protoff <= 0)
404                 return false;
405
406         return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
407 }
408 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
409
410 bool
411 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
412                    const struct nf_conntrack_tuple *orig)
413 {
414         memset(inverse, 0, sizeof(*inverse));
415
416         inverse->src.l3num = orig->src.l3num;
417
418         switch (orig->src.l3num) {
419         case NFPROTO_IPV4:
420                 inverse->src.u3.ip = orig->dst.u3.ip;
421                 inverse->dst.u3.ip = orig->src.u3.ip;
422                 break;
423         case NFPROTO_IPV6:
424                 inverse->src.u3.in6 = orig->dst.u3.in6;
425                 inverse->dst.u3.in6 = orig->src.u3.in6;
426                 break;
427         default:
428                 break;
429         }
430
431         inverse->dst.dir = !orig->dst.dir;
432
433         inverse->dst.protonum = orig->dst.protonum;
434
435         switch (orig->dst.protonum) {
436         case IPPROTO_ICMP:
437                 return nf_conntrack_invert_icmp_tuple(inverse, orig);
438 #if IS_ENABLED(CONFIG_IPV6)
439         case IPPROTO_ICMPV6:
440                 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
441 #endif
442         }
443
444         inverse->src.u.all = orig->dst.u.all;
445         inverse->dst.u.all = orig->src.u.all;
446         return true;
447 }
448 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
449
450 /* Generate a almost-unique pseudo-id for a given conntrack.
451  *
452  * intentionally doesn't re-use any of the seeds used for hash
453  * table location, we assume id gets exposed to userspace.
454  *
455  * Following nf_conn items do not change throughout lifetime
456  * of the nf_conn:
457  *
458  * 1. nf_conn address
459  * 2. nf_conn->master address (normally NULL)
460  * 3. the associated net namespace
461  * 4. the original direction tuple
462  */
463 u32 nf_ct_get_id(const struct nf_conn *ct)
464 {
465         static __read_mostly siphash_key_t ct_id_seed;
466         unsigned long a, b, c, d;
467
468         net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
469
470         a = (unsigned long)ct;
471         b = (unsigned long)ct->master;
472         c = (unsigned long)nf_ct_net(ct);
473         d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
474                                    sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
475                                    &ct_id_seed);
476 #ifdef CONFIG_64BIT
477         return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
478 #else
479         return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
480 #endif
481 }
482 EXPORT_SYMBOL_GPL(nf_ct_get_id);
483
484 static void
485 clean_from_lists(struct nf_conn *ct)
486 {
487         pr_debug("clean_from_lists(%p)\n", ct);
488         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
489         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
490
491         /* Destroy all pending expectations */
492         nf_ct_remove_expectations(ct);
493 }
494
495 /* must be called with local_bh_disable */
496 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
497 {
498         struct ct_pcpu *pcpu;
499
500         /* add this conntrack to the (per cpu) dying list */
501         ct->cpu = smp_processor_id();
502         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
503
504         spin_lock(&pcpu->lock);
505         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
506                              &pcpu->dying);
507         spin_unlock(&pcpu->lock);
508 }
509
510 /* must be called with local_bh_disable */
511 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
512 {
513         struct ct_pcpu *pcpu;
514
515         /* add this conntrack to the (per cpu) unconfirmed list */
516         ct->cpu = smp_processor_id();
517         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
518
519         spin_lock(&pcpu->lock);
520         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
521                              &pcpu->unconfirmed);
522         spin_unlock(&pcpu->lock);
523 }
524
525 /* must be called with local_bh_disable */
526 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
527 {
528         struct ct_pcpu *pcpu;
529
530         /* We overload first tuple to link into unconfirmed or dying list.*/
531         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
532
533         spin_lock(&pcpu->lock);
534         BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
535         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
536         spin_unlock(&pcpu->lock);
537 }
538
539 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
540
541 /* Released via destroy_conntrack() */
542 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
543                                  const struct nf_conntrack_zone *zone,
544                                  gfp_t flags)
545 {
546         struct nf_conn *tmpl, *p;
547
548         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
549                 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
550                 if (!tmpl)
551                         return NULL;
552
553                 p = tmpl;
554                 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
555                 if (tmpl != p) {
556                         tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
557                         tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
558                 }
559         } else {
560                 tmpl = kzalloc(sizeof(*tmpl), flags);
561                 if (!tmpl)
562                         return NULL;
563         }
564
565         tmpl->status = IPS_TEMPLATE;
566         write_pnet(&tmpl->ct_net, net);
567         nf_ct_zone_add(tmpl, zone);
568         atomic_set(&tmpl->ct_general.use, 0);
569
570         return tmpl;
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
573
574 void nf_ct_tmpl_free(struct nf_conn *tmpl)
575 {
576         nf_ct_ext_destroy(tmpl);
577         nf_ct_ext_free(tmpl);
578
579         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580                 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581         else
582                 kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585
586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589         struct nf_conn *master = ct->master;
590
591         if (master)
592                 nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595
596 static void
597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599         struct nf_conn *ct = (struct nf_conn *)nfct;
600
601         pr_debug("destroy_conntrack(%p)\n", ct);
602         WARN_ON(atomic_read(&nfct->use) != 0);
603
604         if (unlikely(nf_ct_is_template(ct))) {
605                 nf_ct_tmpl_free(ct);
606                 return;
607         }
608
609         if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610                 destroy_gre_conntrack(ct);
611
612         local_bh_disable();
613         /* Expectations will have been removed in clean_from_lists,
614          * except TFTP can create an expectation on the first packet,
615          * before connection is in the list, so we need to clean here,
616          * too.
617          */
618         nf_ct_remove_expectations(ct);
619
620         nf_ct_del_from_dying_or_unconfirmed_list(ct);
621
622         local_bh_enable();
623
624         if (ct->master)
625                 nf_ct_put(ct->master);
626
627         pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628         nf_conntrack_free(ct);
629 }
630
631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633         struct net *net = nf_ct_net(ct);
634         unsigned int hash, reply_hash;
635         unsigned int sequence;
636
637         nf_ct_helper_destroy(ct);
638
639         local_bh_disable();
640         do {
641                 sequence = read_seqcount_begin(&nf_conntrack_generation);
642                 hash = hash_conntrack(net,
643                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644                 reply_hash = hash_conntrack(net,
645                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647
648         clean_from_lists(ct);
649         nf_conntrack_double_unlock(hash, reply_hash);
650
651         nf_ct_add_to_dying_list(ct);
652
653         local_bh_enable();
654 }
655
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658         struct nf_conn_tstamp *tstamp;
659
660         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661                 return false;
662
663         tstamp = nf_conn_tstamp_find(ct);
664         if (tstamp && tstamp->stop == 0)
665                 tstamp->stop = ktime_get_real_ns();
666
667         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668                                     portid, report) < 0) {
669                 /* destroy event was not delivered. nf_ct_put will
670                  * be done by event cache worker on redelivery.
671                  */
672                 nf_ct_delete_from_lists(ct);
673                 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674                 return false;
675         }
676
677         nf_conntrack_ecache_work(nf_ct_net(ct));
678         nf_ct_delete_from_lists(ct);
679         nf_ct_put(ct);
680         return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686                 const struct nf_conntrack_tuple *tuple,
687                 const struct nf_conntrack_zone *zone,
688                 const struct net *net)
689 {
690         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692         /* A conntrack can be recreated with the equal tuple,
693          * so we need to check that the conntrack is confirmed
694          */
695         return nf_ct_tuple_equal(tuple, &h->tuple) &&
696                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697                nf_ct_is_confirmed(ct) &&
698                net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704         return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705                                  &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706                nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707                                  &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710                net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716         if (!atomic_inc_not_zero(&ct->ct_general.use))
717                 return;
718
719         if (nf_ct_should_gc(ct))
720                 nf_ct_kill(ct);
721
722         nf_ct_put(ct);
723 }
724
725 /*
726  * Warning :
727  * - Caller must take a reference on returned object
728  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729  */
730 static struct nf_conntrack_tuple_hash *
731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732                       const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734         struct nf_conntrack_tuple_hash *h;
735         struct hlist_nulls_head *ct_hash;
736         struct hlist_nulls_node *n;
737         unsigned int bucket, hsize;
738
739 begin:
740         nf_conntrack_get_ht(&ct_hash, &hsize);
741         bucket = reciprocal_scale(hash, hsize);
742
743         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744                 struct nf_conn *ct;
745
746                 ct = nf_ct_tuplehash_to_ctrack(h);
747                 if (nf_ct_is_expired(ct)) {
748                         nf_ct_gc_expired(ct);
749                         continue;
750                 }
751
752                 if (nf_ct_key_equal(h, tuple, zone, net))
753                         return h;
754         }
755         /*
756          * if the nulls value we got at the end of this lookup is
757          * not the expected one, we must restart lookup.
758          * We probably met an item that was moved to another chain.
759          */
760         if (get_nulls_value(n) != bucket) {
761                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
762                 goto begin;
763         }
764
765         return NULL;
766 }
767
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771                         const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773         struct nf_conntrack_tuple_hash *h;
774         struct nf_conn *ct;
775
776         rcu_read_lock();
777
778         h = ____nf_conntrack_find(net, zone, tuple, hash);
779         if (h) {
780                 /* We have a candidate that matches the tuple we're interested
781                  * in, try to obtain a reference and re-check tuple
782                  */
783                 ct = nf_ct_tuplehash_to_ctrack(h);
784                 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785                         if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786                                 goto found;
787
788                         /* TYPESAFE_BY_RCU recycled the candidate */
789                         nf_ct_put(ct);
790                 }
791
792                 h = NULL;
793         }
794 found:
795         rcu_read_unlock();
796
797         return h;
798 }
799
800 struct nf_conntrack_tuple_hash *
801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802                       const struct nf_conntrack_tuple *tuple)
803 {
804         return __nf_conntrack_find_get(net, zone, tuple,
805                                        hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808
809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810                                        unsigned int hash,
811                                        unsigned int reply_hash)
812 {
813         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814                            &nf_conntrack_hash[hash]);
815         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816                            &nf_conntrack_hash[reply_hash]);
817 }
818
819 int
820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822         const struct nf_conntrack_zone *zone;
823         struct net *net = nf_ct_net(ct);
824         unsigned int hash, reply_hash;
825         struct nf_conntrack_tuple_hash *h;
826         struct hlist_nulls_node *n;
827         unsigned int sequence;
828
829         zone = nf_ct_zone(ct);
830
831         local_bh_disable();
832         do {
833                 sequence = read_seqcount_begin(&nf_conntrack_generation);
834                 hash = hash_conntrack(net,
835                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836                 reply_hash = hash_conntrack(net,
837                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839
840         /* See if there's one in the list already, including reverse */
841         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843                                     zone, net))
844                         goto out;
845
846         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848                                     zone, net))
849                         goto out;
850
851         smp_wmb();
852         /* The caller holds a reference to this object */
853         atomic_set(&ct->ct_general.use, 2);
854         __nf_conntrack_hash_insert(ct, hash, reply_hash);
855         nf_conntrack_double_unlock(hash, reply_hash);
856         NF_CT_STAT_INC(net, insert);
857         local_bh_enable();
858         return 0;
859
860 out:
861         nf_conntrack_double_unlock(hash, reply_hash);
862         NF_CT_STAT_INC(net, insert_failed);
863         local_bh_enable();
864         return -EEXIST;
865 }
866 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
867
868 static inline void nf_ct_acct_update(struct nf_conn *ct,
869                                      enum ip_conntrack_info ctinfo,
870                                      unsigned int len)
871 {
872         struct nf_conn_acct *acct;
873
874         acct = nf_conn_acct_find(ct);
875         if (acct) {
876                 struct nf_conn_counter *counter = acct->counter;
877
878                 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
879                 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
880         }
881 }
882
883 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
884                              const struct nf_conn *loser_ct)
885 {
886         struct nf_conn_acct *acct;
887
888         acct = nf_conn_acct_find(loser_ct);
889         if (acct) {
890                 struct nf_conn_counter *counter = acct->counter;
891                 unsigned int bytes;
892
893                 /* u32 should be fine since we must have seen one packet. */
894                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
895                 nf_ct_acct_update(ct, ctinfo, bytes);
896         }
897 }
898
899 /* Resolve race on insertion if this protocol allows this. */
900 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
901                                enum ip_conntrack_info ctinfo,
902                                struct nf_conntrack_tuple_hash *h)
903 {
904         /* This is the conntrack entry already in hashes that won race. */
905         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
906         const struct nf_conntrack_l4proto *l4proto;
907         enum ip_conntrack_info oldinfo;
908         struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
909
910         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
911         if (l4proto->allow_clash &&
912             !nf_ct_is_dying(ct) &&
913             atomic_inc_not_zero(&ct->ct_general.use)) {
914                 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
915                     nf_ct_match(ct, loser_ct)) {
916                         nf_ct_acct_merge(ct, ctinfo, loser_ct);
917                         nf_conntrack_put(&loser_ct->ct_general);
918                         nf_ct_set(skb, ct, oldinfo);
919                         return NF_ACCEPT;
920                 }
921                 nf_ct_put(ct);
922         }
923         NF_CT_STAT_INC(net, drop);
924         return NF_DROP;
925 }
926
927 /* Confirm a connection given skb; places it in hash table */
928 int
929 __nf_conntrack_confirm(struct sk_buff *skb)
930 {
931         const struct nf_conntrack_zone *zone;
932         unsigned int hash, reply_hash;
933         struct nf_conntrack_tuple_hash *h;
934         struct nf_conn *ct;
935         struct nf_conn_help *help;
936         struct nf_conn_tstamp *tstamp;
937         struct hlist_nulls_node *n;
938         enum ip_conntrack_info ctinfo;
939         struct net *net;
940         unsigned int sequence;
941         int ret = NF_DROP;
942
943         ct = nf_ct_get(skb, &ctinfo);
944         net = nf_ct_net(ct);
945
946         /* ipt_REJECT uses nf_conntrack_attach to attach related
947            ICMP/TCP RST packets in other direction.  Actual packet
948            which created connection will be IP_CT_NEW or for an
949            expected connection, IP_CT_RELATED. */
950         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
951                 return NF_ACCEPT;
952
953         zone = nf_ct_zone(ct);
954         local_bh_disable();
955
956         do {
957                 sequence = read_seqcount_begin(&nf_conntrack_generation);
958                 /* reuse the hash saved before */
959                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
960                 hash = scale_hash(hash);
961                 reply_hash = hash_conntrack(net,
962                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
963
964         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
965
966         /* We're not in hash table, and we refuse to set up related
967          * connections for unconfirmed conns.  But packet copies and
968          * REJECT will give spurious warnings here.
969          */
970
971         /* Another skb with the same unconfirmed conntrack may
972          * win the race. This may happen for bridge(br_flood)
973          * or broadcast/multicast packets do skb_clone with
974          * unconfirmed conntrack.
975          */
976         if (unlikely(nf_ct_is_confirmed(ct))) {
977                 WARN_ON_ONCE(1);
978                 nf_conntrack_double_unlock(hash, reply_hash);
979                 local_bh_enable();
980                 return NF_DROP;
981         }
982
983         pr_debug("Confirming conntrack %p\n", ct);
984         /* We have to check the DYING flag after unlink to prevent
985          * a race against nf_ct_get_next_corpse() possibly called from
986          * user context, else we insert an already 'dead' hash, blocking
987          * further use of that particular connection -JM.
988          */
989         nf_ct_del_from_dying_or_unconfirmed_list(ct);
990
991         if (unlikely(nf_ct_is_dying(ct))) {
992                 nf_ct_add_to_dying_list(ct);
993                 goto dying;
994         }
995
996         /* See if there's one in the list already, including reverse:
997            NAT could have grabbed it without realizing, since we're
998            not in the hash.  If there is, we lost race. */
999         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1000                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1001                                     zone, net))
1002                         goto out;
1003
1004         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1005                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1006                                     zone, net))
1007                         goto out;
1008
1009         /* Timer relative to confirmation time, not original
1010            setting time, otherwise we'd get timer wrap in
1011            weird delay cases. */
1012         ct->timeout += nfct_time_stamp;
1013         atomic_inc(&ct->ct_general.use);
1014         ct->status |= IPS_CONFIRMED;
1015
1016         /* set conntrack timestamp, if enabled. */
1017         tstamp = nf_conn_tstamp_find(ct);
1018         if (tstamp)
1019                 tstamp->start = ktime_get_real_ns();
1020
1021         /* Since the lookup is lockless, hash insertion must be done after
1022          * starting the timer and setting the CONFIRMED bit. The RCU barriers
1023          * guarantee that no other CPU can find the conntrack before the above
1024          * stores are visible.
1025          */
1026         __nf_conntrack_hash_insert(ct, hash, reply_hash);
1027         nf_conntrack_double_unlock(hash, reply_hash);
1028         local_bh_enable();
1029
1030         help = nfct_help(ct);
1031         if (help && help->helper)
1032                 nf_conntrack_event_cache(IPCT_HELPER, ct);
1033
1034         nf_conntrack_event_cache(master_ct(ct) ?
1035                                  IPCT_RELATED : IPCT_NEW, ct);
1036         return NF_ACCEPT;
1037
1038 out:
1039         nf_ct_add_to_dying_list(ct);
1040         ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1041 dying:
1042         nf_conntrack_double_unlock(hash, reply_hash);
1043         NF_CT_STAT_INC(net, insert_failed);
1044         local_bh_enable();
1045         return ret;
1046 }
1047 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1048
1049 /* Returns true if a connection correspondings to the tuple (required
1050    for NAT). */
1051 int
1052 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1053                          const struct nf_conn *ignored_conntrack)
1054 {
1055         struct net *net = nf_ct_net(ignored_conntrack);
1056         const struct nf_conntrack_zone *zone;
1057         struct nf_conntrack_tuple_hash *h;
1058         struct hlist_nulls_head *ct_hash;
1059         unsigned int hash, hsize;
1060         struct hlist_nulls_node *n;
1061         struct nf_conn *ct;
1062
1063         zone = nf_ct_zone(ignored_conntrack);
1064
1065         rcu_read_lock();
1066  begin:
1067         nf_conntrack_get_ht(&ct_hash, &hsize);
1068         hash = __hash_conntrack(net, tuple, hsize);
1069
1070         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1071                 ct = nf_ct_tuplehash_to_ctrack(h);
1072
1073                 if (ct == ignored_conntrack)
1074                         continue;
1075
1076                 if (nf_ct_is_expired(ct)) {
1077                         nf_ct_gc_expired(ct);
1078                         continue;
1079                 }
1080
1081                 if (nf_ct_key_equal(h, tuple, zone, net)) {
1082                         /* Tuple is taken already, so caller will need to find
1083                          * a new source port to use.
1084                          *
1085                          * Only exception:
1086                          * If the *original tuples* are identical, then both
1087                          * conntracks refer to the same flow.
1088                          * This is a rare situation, it can occur e.g. when
1089                          * more than one UDP packet is sent from same socket
1090                          * in different threads.
1091                          *
1092                          * Let nf_ct_resolve_clash() deal with this later.
1093                          */
1094                         if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1095                                               &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1096                                 continue;
1097
1098                         NF_CT_STAT_INC_ATOMIC(net, found);
1099                         rcu_read_unlock();
1100                         return 1;
1101                 }
1102         }
1103
1104         if (get_nulls_value(n) != hash) {
1105                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1106                 goto begin;
1107         }
1108
1109         rcu_read_unlock();
1110
1111         return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1114
1115 #define NF_CT_EVICTION_RANGE    8
1116
1117 /* There's a small race here where we may free a just-assured
1118    connection.  Too bad: we're in trouble anyway. */
1119 static unsigned int early_drop_list(struct net *net,
1120                                     struct hlist_nulls_head *head)
1121 {
1122         struct nf_conntrack_tuple_hash *h;
1123         struct hlist_nulls_node *n;
1124         unsigned int drops = 0;
1125         struct nf_conn *tmp;
1126
1127         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1128                 tmp = nf_ct_tuplehash_to_ctrack(h);
1129
1130                 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1131                         continue;
1132
1133                 if (nf_ct_is_expired(tmp)) {
1134                         nf_ct_gc_expired(tmp);
1135                         continue;
1136                 }
1137
1138                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1139                     !net_eq(nf_ct_net(tmp), net) ||
1140                     nf_ct_is_dying(tmp))
1141                         continue;
1142
1143                 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1144                         continue;
1145
1146                 /* kill only if still in same netns -- might have moved due to
1147                  * SLAB_TYPESAFE_BY_RCU rules.
1148                  *
1149                  * We steal the timer reference.  If that fails timer has
1150                  * already fired or someone else deleted it. Just drop ref
1151                  * and move to next entry.
1152                  */
1153                 if (net_eq(nf_ct_net(tmp), net) &&
1154                     nf_ct_is_confirmed(tmp) &&
1155                     nf_ct_delete(tmp, 0, 0))
1156                         drops++;
1157
1158                 nf_ct_put(tmp);
1159         }
1160
1161         return drops;
1162 }
1163
1164 static noinline int early_drop(struct net *net, unsigned int hash)
1165 {
1166         unsigned int i, bucket;
1167
1168         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1169                 struct hlist_nulls_head *ct_hash;
1170                 unsigned int hsize, drops;
1171
1172                 rcu_read_lock();
1173                 nf_conntrack_get_ht(&ct_hash, &hsize);
1174                 if (!i)
1175                         bucket = reciprocal_scale(hash, hsize);
1176                 else
1177                         bucket = (bucket + 1) % hsize;
1178
1179                 drops = early_drop_list(net, &ct_hash[bucket]);
1180                 rcu_read_unlock();
1181
1182                 if (drops) {
1183                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1184                         return true;
1185                 }
1186         }
1187
1188         return false;
1189 }
1190
1191 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1192 {
1193         return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1194 }
1195
1196 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1197 {
1198         const struct nf_conntrack_l4proto *l4proto;
1199
1200         if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1201                 return true;
1202
1203         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1204         if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1205                 return true;
1206
1207         return false;
1208 }
1209
1210 #define DAY     (86400 * HZ)
1211
1212 /* Set an arbitrary timeout large enough not to ever expire, this save
1213  * us a check for the IPS_OFFLOAD_BIT from the packet path via
1214  * nf_ct_is_expired().
1215  */
1216 static void nf_ct_offload_timeout(struct nf_conn *ct)
1217 {
1218         if (nf_ct_expires(ct) < DAY / 2)
1219                 ct->timeout = nfct_time_stamp + DAY;
1220 }
1221
1222 static void gc_worker(struct work_struct *work)
1223 {
1224         unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1225         unsigned int i, goal, buckets = 0, expired_count = 0;
1226         unsigned int nf_conntrack_max95 = 0;
1227         struct conntrack_gc_work *gc_work;
1228         unsigned int ratio, scanned = 0;
1229         unsigned long next_run;
1230
1231         gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1232
1233         goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1234         i = gc_work->last_bucket;
1235         if (gc_work->early_drop)
1236                 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1237
1238         do {
1239                 struct nf_conntrack_tuple_hash *h;
1240                 struct hlist_nulls_head *ct_hash;
1241                 struct hlist_nulls_node *n;
1242                 unsigned int hashsz;
1243                 struct nf_conn *tmp;
1244
1245                 i++;
1246                 rcu_read_lock();
1247
1248                 nf_conntrack_get_ht(&ct_hash, &hashsz);
1249                 if (i >= hashsz)
1250                         i = 0;
1251
1252                 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1253                         struct net *net;
1254
1255                         tmp = nf_ct_tuplehash_to_ctrack(h);
1256
1257                         scanned++;
1258                         if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1259                                 nf_ct_offload_timeout(tmp);
1260                                 continue;
1261                         }
1262
1263                         if (nf_ct_is_expired(tmp)) {
1264                                 nf_ct_gc_expired(tmp);
1265                                 expired_count++;
1266                                 continue;
1267                         }
1268
1269                         if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1270                                 continue;
1271
1272                         net = nf_ct_net(tmp);
1273                         if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1274                                 continue;
1275
1276                         /* need to take reference to avoid possible races */
1277                         if (!atomic_inc_not_zero(&tmp->ct_general.use))
1278                                 continue;
1279
1280                         if (gc_worker_skip_ct(tmp)) {
1281                                 nf_ct_put(tmp);
1282                                 continue;
1283                         }
1284
1285                         if (gc_worker_can_early_drop(tmp))
1286                                 nf_ct_kill(tmp);
1287
1288                         nf_ct_put(tmp);
1289                 }
1290
1291                 /* could check get_nulls_value() here and restart if ct
1292                  * was moved to another chain.  But given gc is best-effort
1293                  * we will just continue with next hash slot.
1294                  */
1295                 rcu_read_unlock();
1296                 cond_resched();
1297         } while (++buckets < goal);
1298
1299         if (gc_work->exiting)
1300                 return;
1301
1302         /*
1303          * Eviction will normally happen from the packet path, and not
1304          * from this gc worker.
1305          *
1306          * This worker is only here to reap expired entries when system went
1307          * idle after a busy period.
1308          *
1309          * The heuristics below are supposed to balance conflicting goals:
1310          *
1311          * 1. Minimize time until we notice a stale entry
1312          * 2. Maximize scan intervals to not waste cycles
1313          *
1314          * Normally, expire ratio will be close to 0.
1315          *
1316          * As soon as a sizeable fraction of the entries have expired
1317          * increase scan frequency.
1318          */
1319         ratio = scanned ? expired_count * 100 / scanned : 0;
1320         if (ratio > GC_EVICT_RATIO) {
1321                 gc_work->next_gc_run = min_interval;
1322         } else {
1323                 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1324
1325                 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1326
1327                 gc_work->next_gc_run += min_interval;
1328                 if (gc_work->next_gc_run > max)
1329                         gc_work->next_gc_run = max;
1330         }
1331
1332         next_run = gc_work->next_gc_run;
1333         gc_work->last_bucket = i;
1334         gc_work->early_drop = false;
1335         queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1336 }
1337
1338 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1339 {
1340         INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1341         gc_work->next_gc_run = HZ;
1342         gc_work->exiting = false;
1343 }
1344
1345 static struct nf_conn *
1346 __nf_conntrack_alloc(struct net *net,
1347                      const struct nf_conntrack_zone *zone,
1348                      const struct nf_conntrack_tuple *orig,
1349                      const struct nf_conntrack_tuple *repl,
1350                      gfp_t gfp, u32 hash)
1351 {
1352         struct nf_conn *ct;
1353
1354         /* We don't want any race condition at early drop stage */
1355         atomic_inc(&net->ct.count);
1356
1357         if (nf_conntrack_max &&
1358             unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1359                 if (!early_drop(net, hash)) {
1360                         if (!conntrack_gc_work.early_drop)
1361                                 conntrack_gc_work.early_drop = true;
1362                         atomic_dec(&net->ct.count);
1363                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1364                         return ERR_PTR(-ENOMEM);
1365                 }
1366         }
1367
1368         /*
1369          * Do not use kmem_cache_zalloc(), as this cache uses
1370          * SLAB_TYPESAFE_BY_RCU.
1371          */
1372         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1373         if (ct == NULL)
1374                 goto out;
1375
1376         spin_lock_init(&ct->lock);
1377         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1378         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1379         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1380         /* save hash for reusing when confirming */
1381         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1382         ct->status = 0;
1383         ct->timeout = 0;
1384         write_pnet(&ct->ct_net, net);
1385         memset(&ct->__nfct_init_offset[0], 0,
1386                offsetof(struct nf_conn, proto) -
1387                offsetof(struct nf_conn, __nfct_init_offset[0]));
1388
1389         nf_ct_zone_add(ct, zone);
1390
1391         /* Because we use RCU lookups, we set ct_general.use to zero before
1392          * this is inserted in any list.
1393          */
1394         atomic_set(&ct->ct_general.use, 0);
1395         return ct;
1396 out:
1397         atomic_dec(&net->ct.count);
1398         return ERR_PTR(-ENOMEM);
1399 }
1400
1401 struct nf_conn *nf_conntrack_alloc(struct net *net,
1402                                    const struct nf_conntrack_zone *zone,
1403                                    const struct nf_conntrack_tuple *orig,
1404                                    const struct nf_conntrack_tuple *repl,
1405                                    gfp_t gfp)
1406 {
1407         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1408 }
1409 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1410
1411 void nf_conntrack_free(struct nf_conn *ct)
1412 {
1413         struct net *net = nf_ct_net(ct);
1414
1415         /* A freed object has refcnt == 0, that's
1416          * the golden rule for SLAB_TYPESAFE_BY_RCU
1417          */
1418         WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1419
1420         nf_ct_ext_destroy(ct);
1421         nf_ct_ext_free(ct);
1422         kmem_cache_free(nf_conntrack_cachep, ct);
1423         smp_mb__before_atomic();
1424         atomic_dec(&net->ct.count);
1425 }
1426 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1427
1428
1429 /* Allocate a new conntrack: we return -ENOMEM if classification
1430    failed due to stress.  Otherwise it really is unclassifiable. */
1431 static noinline struct nf_conntrack_tuple_hash *
1432 init_conntrack(struct net *net, struct nf_conn *tmpl,
1433                const struct nf_conntrack_tuple *tuple,
1434                struct sk_buff *skb,
1435                unsigned int dataoff, u32 hash)
1436 {
1437         struct nf_conn *ct;
1438         struct nf_conn_help *help;
1439         struct nf_conntrack_tuple repl_tuple;
1440         struct nf_conntrack_ecache *ecache;
1441         struct nf_conntrack_expect *exp = NULL;
1442         const struct nf_conntrack_zone *zone;
1443         struct nf_conn_timeout *timeout_ext;
1444         struct nf_conntrack_zone tmp;
1445
1446         if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1447                 pr_debug("Can't invert tuple.\n");
1448                 return NULL;
1449         }
1450
1451         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1452         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1453                                   hash);
1454         if (IS_ERR(ct))
1455                 return (struct nf_conntrack_tuple_hash *)ct;
1456
1457         if (!nf_ct_add_synproxy(ct, tmpl)) {
1458                 nf_conntrack_free(ct);
1459                 return ERR_PTR(-ENOMEM);
1460         }
1461
1462         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1463
1464         if (timeout_ext)
1465                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1466                                       GFP_ATOMIC);
1467
1468         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1469         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1470         nf_ct_labels_ext_add(ct);
1471
1472         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1473         nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1474                                  ecache ? ecache->expmask : 0,
1475                              GFP_ATOMIC);
1476
1477         local_bh_disable();
1478         if (net->ct.expect_count) {
1479                 spin_lock(&nf_conntrack_expect_lock);
1480                 exp = nf_ct_find_expectation(net, zone, tuple);
1481                 if (exp) {
1482                         pr_debug("expectation arrives ct=%p exp=%p\n",
1483                                  ct, exp);
1484                         /* Welcome, Mr. Bond.  We've been expecting you... */
1485                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1486                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1487                         ct->master = exp->master;
1488                         if (exp->helper) {
1489                                 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1490                                 if (help)
1491                                         rcu_assign_pointer(help->helper, exp->helper);
1492                         }
1493
1494 #ifdef CONFIG_NF_CONNTRACK_MARK
1495                         ct->mark = exp->master->mark;
1496 #endif
1497 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1498                         ct->secmark = exp->master->secmark;
1499 #endif
1500                         NF_CT_STAT_INC(net, expect_new);
1501                 }
1502                 spin_unlock(&nf_conntrack_expect_lock);
1503         }
1504         if (!exp)
1505                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1506
1507         /* Now it is inserted into the unconfirmed list, bump refcount */
1508         nf_conntrack_get(&ct->ct_general);
1509         nf_ct_add_to_unconfirmed_list(ct);
1510
1511         local_bh_enable();
1512
1513         if (exp) {
1514                 if (exp->expectfn)
1515                         exp->expectfn(ct, exp);
1516                 nf_ct_expect_put(exp);
1517         }
1518
1519         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1520 }
1521
1522 /* On success, returns 0, sets skb->_nfct | ctinfo */
1523 static int
1524 resolve_normal_ct(struct nf_conn *tmpl,
1525                   struct sk_buff *skb,
1526                   unsigned int dataoff,
1527                   u_int8_t protonum,
1528                   const struct nf_hook_state *state)
1529 {
1530         const struct nf_conntrack_zone *zone;
1531         struct nf_conntrack_tuple tuple;
1532         struct nf_conntrack_tuple_hash *h;
1533         enum ip_conntrack_info ctinfo;
1534         struct nf_conntrack_zone tmp;
1535         struct nf_conn *ct;
1536         u32 hash;
1537
1538         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1539                              dataoff, state->pf, protonum, state->net,
1540                              &tuple)) {
1541                 pr_debug("Can't get tuple\n");
1542                 return 0;
1543         }
1544
1545         /* look for tuple match */
1546         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1547         hash = hash_conntrack_raw(&tuple, state->net);
1548         h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1549         if (!h) {
1550                 h = init_conntrack(state->net, tmpl, &tuple,
1551                                    skb, dataoff, hash);
1552                 if (!h)
1553                         return 0;
1554                 if (IS_ERR(h))
1555                         return PTR_ERR(h);
1556         }
1557         ct = nf_ct_tuplehash_to_ctrack(h);
1558
1559         /* It exists; we have (non-exclusive) reference. */
1560         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1561                 ctinfo = IP_CT_ESTABLISHED_REPLY;
1562         } else {
1563                 /* Once we've had two way comms, always ESTABLISHED. */
1564                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1565                         pr_debug("normal packet for %p\n", ct);
1566                         ctinfo = IP_CT_ESTABLISHED;
1567                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1568                         pr_debug("related packet for %p\n", ct);
1569                         ctinfo = IP_CT_RELATED;
1570                 } else {
1571                         pr_debug("new packet for %p\n", ct);
1572                         ctinfo = IP_CT_NEW;
1573                 }
1574         }
1575         nf_ct_set(skb, ct, ctinfo);
1576         return 0;
1577 }
1578
1579 /*
1580  * icmp packets need special treatment to handle error messages that are
1581  * related to a connection.
1582  *
1583  * Callers need to check if skb has a conntrack assigned when this
1584  * helper returns; in such case skb belongs to an already known connection.
1585  */
1586 static unsigned int __cold
1587 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1588                          struct sk_buff *skb,
1589                          unsigned int dataoff,
1590                          u8 protonum,
1591                          const struct nf_hook_state *state)
1592 {
1593         int ret;
1594
1595         if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1596                 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1597 #if IS_ENABLED(CONFIG_IPV6)
1598         else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1599                 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1600 #endif
1601         else
1602                 return NF_ACCEPT;
1603
1604         if (ret <= 0) {
1605                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1606                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1607         }
1608
1609         return ret;
1610 }
1611
1612 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1613                           enum ip_conntrack_info ctinfo)
1614 {
1615         const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1616
1617         if (!timeout)
1618                 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1619
1620         nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1621         return NF_ACCEPT;
1622 }
1623
1624 /* Returns verdict for packet, or -1 for invalid. */
1625 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1626                                       struct sk_buff *skb,
1627                                       unsigned int dataoff,
1628                                       enum ip_conntrack_info ctinfo,
1629                                       const struct nf_hook_state *state)
1630 {
1631         switch (nf_ct_protonum(ct)) {
1632         case IPPROTO_TCP:
1633                 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1634                                                ctinfo, state);
1635         case IPPROTO_UDP:
1636                 return nf_conntrack_udp_packet(ct, skb, dataoff,
1637                                                ctinfo, state);
1638         case IPPROTO_ICMP:
1639                 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1640 #if IS_ENABLED(CONFIG_IPV6)
1641         case IPPROTO_ICMPV6:
1642                 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1643 #endif
1644 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1645         case IPPROTO_UDPLITE:
1646                 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1647                                                    ctinfo, state);
1648 #endif
1649 #ifdef CONFIG_NF_CT_PROTO_SCTP
1650         case IPPROTO_SCTP:
1651                 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1652                                                 ctinfo, state);
1653 #endif
1654 #ifdef CONFIG_NF_CT_PROTO_DCCP
1655         case IPPROTO_DCCP:
1656                 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1657                                                 ctinfo, state);
1658 #endif
1659 #ifdef CONFIG_NF_CT_PROTO_GRE
1660         case IPPROTO_GRE:
1661                 return nf_conntrack_gre_packet(ct, skb, dataoff,
1662                                                ctinfo, state);
1663 #endif
1664         }
1665
1666         return generic_packet(ct, skb, ctinfo);
1667 }
1668
1669 unsigned int
1670 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1671 {
1672         enum ip_conntrack_info ctinfo;
1673         struct nf_conn *ct, *tmpl;
1674         u_int8_t protonum;
1675         int dataoff, ret;
1676
1677         tmpl = nf_ct_get(skb, &ctinfo);
1678         if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1679                 /* Previously seen (loopback or untracked)?  Ignore. */
1680                 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1681                      ctinfo == IP_CT_UNTRACKED) {
1682                         NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1683                         return NF_ACCEPT;
1684                 }
1685                 skb->_nfct = 0;
1686         }
1687
1688         /* rcu_read_lock()ed by nf_hook_thresh */
1689         dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1690         if (dataoff <= 0) {
1691                 pr_debug("not prepared to track yet or error occurred\n");
1692                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1693                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1694                 ret = NF_ACCEPT;
1695                 goto out;
1696         }
1697
1698         if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1699                 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1700                                                protonum, state);
1701                 if (ret <= 0) {
1702                         ret = -ret;
1703                         goto out;
1704                 }
1705                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1706                 if (skb->_nfct)
1707                         goto out;
1708         }
1709 repeat:
1710         ret = resolve_normal_ct(tmpl, skb, dataoff,
1711                                 protonum, state);
1712         if (ret < 0) {
1713                 /* Too stressed to deal. */
1714                 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1715                 ret = NF_DROP;
1716                 goto out;
1717         }
1718
1719         ct = nf_ct_get(skb, &ctinfo);
1720         if (!ct) {
1721                 /* Not valid part of a connection */
1722                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1723                 ret = NF_ACCEPT;
1724                 goto out;
1725         }
1726
1727         ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1728         if (ret <= 0) {
1729                 /* Invalid: inverse of the return code tells
1730                  * the netfilter core what to do */
1731                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1732                 nf_conntrack_put(&ct->ct_general);
1733                 skb->_nfct = 0;
1734                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1735                 if (ret == -NF_DROP)
1736                         NF_CT_STAT_INC_ATOMIC(state->net, drop);
1737                 /* Special case: TCP tracker reports an attempt to reopen a
1738                  * closed/aborted connection. We have to go back and create a
1739                  * fresh conntrack.
1740                  */
1741                 if (ret == -NF_REPEAT)
1742                         goto repeat;
1743                 ret = -ret;
1744                 goto out;
1745         }
1746
1747         if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1748             !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1749                 nf_conntrack_event_cache(IPCT_REPLY, ct);
1750 out:
1751         if (tmpl)
1752                 nf_ct_put(tmpl);
1753
1754         return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1757
1758 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1759    implicitly racy: see __nf_conntrack_confirm */
1760 void nf_conntrack_alter_reply(struct nf_conn *ct,
1761                               const struct nf_conntrack_tuple *newreply)
1762 {
1763         struct nf_conn_help *help = nfct_help(ct);
1764
1765         /* Should be unconfirmed, so not in hash table yet */
1766         WARN_ON(nf_ct_is_confirmed(ct));
1767
1768         pr_debug("Altering reply tuple of %p to ", ct);
1769         nf_ct_dump_tuple(newreply);
1770
1771         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1772         if (ct->master || (help && !hlist_empty(&help->expectations)))
1773                 return;
1774
1775         rcu_read_lock();
1776         __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1777         rcu_read_unlock();
1778 }
1779 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1780
1781 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1782 void __nf_ct_refresh_acct(struct nf_conn *ct,
1783                           enum ip_conntrack_info ctinfo,
1784                           const struct sk_buff *skb,
1785                           u32 extra_jiffies,
1786                           bool do_acct)
1787 {
1788         /* Only update if this is not a fixed timeout */
1789         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1790                 goto acct;
1791
1792         /* If not in hash table, timer will not be active yet */
1793         if (nf_ct_is_confirmed(ct))
1794                 extra_jiffies += nfct_time_stamp;
1795
1796         if (ct->timeout != extra_jiffies)
1797                 ct->timeout = extra_jiffies;
1798 acct:
1799         if (do_acct)
1800                 nf_ct_acct_update(ct, ctinfo, skb->len);
1801 }
1802 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1803
1804 bool nf_ct_kill_acct(struct nf_conn *ct,
1805                      enum ip_conntrack_info ctinfo,
1806                      const struct sk_buff *skb)
1807 {
1808         nf_ct_acct_update(ct, ctinfo, skb->len);
1809
1810         return nf_ct_delete(ct, 0, 0);
1811 }
1812 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1813
1814 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1815
1816 #include <linux/netfilter/nfnetlink.h>
1817 #include <linux/netfilter/nfnetlink_conntrack.h>
1818 #include <linux/mutex.h>
1819
1820 /* Generic function for tcp/udp/sctp/dccp and alike. */
1821 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1822                                const struct nf_conntrack_tuple *tuple)
1823 {
1824         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1825             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1826                 goto nla_put_failure;
1827         return 0;
1828
1829 nla_put_failure:
1830         return -1;
1831 }
1832 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1833
1834 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1835         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1836         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1837 };
1838 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1839
1840 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1841                                struct nf_conntrack_tuple *t)
1842 {
1843         if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1844                 return -EINVAL;
1845
1846         t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1847         t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1848
1849         return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1852
1853 unsigned int nf_ct_port_nlattr_tuple_size(void)
1854 {
1855         static unsigned int size __read_mostly;
1856
1857         if (!size)
1858                 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1859
1860         return size;
1861 }
1862 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1863 #endif
1864
1865 /* Used by ipt_REJECT and ip6t_REJECT. */
1866 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1867 {
1868         struct nf_conn *ct;
1869         enum ip_conntrack_info ctinfo;
1870
1871         /* This ICMP is in reverse direction to the packet which caused it */
1872         ct = nf_ct_get(skb, &ctinfo);
1873         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1874                 ctinfo = IP_CT_RELATED_REPLY;
1875         else
1876                 ctinfo = IP_CT_RELATED;
1877
1878         /* Attach to new skbuff, and increment count */
1879         nf_ct_set(nskb, ct, ctinfo);
1880         nf_conntrack_get(skb_nfct(nskb));
1881 }
1882
1883 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1884 {
1885         struct nf_conntrack_tuple_hash *h;
1886         struct nf_conntrack_tuple tuple;
1887         enum ip_conntrack_info ctinfo;
1888         struct nf_nat_hook *nat_hook;
1889         unsigned int status;
1890         struct nf_conn *ct;
1891         int dataoff;
1892         u16 l3num;
1893         u8 l4num;
1894
1895         ct = nf_ct_get(skb, &ctinfo);
1896         if (!ct || nf_ct_is_confirmed(ct))
1897                 return 0;
1898
1899         l3num = nf_ct_l3num(ct);
1900
1901         dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1902         if (dataoff <= 0)
1903                 return -1;
1904
1905         if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1906                              l4num, net, &tuple))
1907                 return -1;
1908
1909         if (ct->status & IPS_SRC_NAT) {
1910                 memcpy(tuple.src.u3.all,
1911                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1912                        sizeof(tuple.src.u3.all));
1913                 tuple.src.u.all =
1914                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1915         }
1916
1917         if (ct->status & IPS_DST_NAT) {
1918                 memcpy(tuple.dst.u3.all,
1919                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1920                        sizeof(tuple.dst.u3.all));
1921                 tuple.dst.u.all =
1922                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1923         }
1924
1925         h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1926         if (!h)
1927                 return 0;
1928
1929         /* Store status bits of the conntrack that is clashing to re-do NAT
1930          * mangling according to what it has been done already to this packet.
1931          */
1932         status = ct->status;
1933
1934         nf_ct_put(ct);
1935         ct = nf_ct_tuplehash_to_ctrack(h);
1936         nf_ct_set(skb, ct, ctinfo);
1937
1938         nat_hook = rcu_dereference(nf_nat_hook);
1939         if (!nat_hook)
1940                 return 0;
1941
1942         if (status & IPS_SRC_NAT &&
1943             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1944                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
1945                 return -1;
1946
1947         if (status & IPS_DST_NAT &&
1948             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1949                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
1950                 return -1;
1951
1952         return 0;
1953 }
1954
1955 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1956                                        const struct sk_buff *skb)
1957 {
1958         const struct nf_conntrack_tuple *src_tuple;
1959         const struct nf_conntrack_tuple_hash *hash;
1960         struct nf_conntrack_tuple srctuple;
1961         enum ip_conntrack_info ctinfo;
1962         struct nf_conn *ct;
1963
1964         ct = nf_ct_get(skb, &ctinfo);
1965         if (ct) {
1966                 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1967                 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1968                 return true;
1969         }
1970
1971         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1972                                NFPROTO_IPV4, dev_net(skb->dev),
1973                                &srctuple))
1974                 return false;
1975
1976         hash = nf_conntrack_find_get(dev_net(skb->dev),
1977                                      &nf_ct_zone_dflt,
1978                                      &srctuple);
1979         if (!hash)
1980                 return false;
1981
1982         ct = nf_ct_tuplehash_to_ctrack(hash);
1983         src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1984         memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1985         nf_ct_put(ct);
1986
1987         return true;
1988 }
1989
1990 /* Bring out ya dead! */
1991 static struct nf_conn *
1992 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1993                 void *data, unsigned int *bucket)
1994 {
1995         struct nf_conntrack_tuple_hash *h;
1996         struct nf_conn *ct;
1997         struct hlist_nulls_node *n;
1998         spinlock_t *lockp;
1999
2000         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2001                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2002                 local_bh_disable();
2003                 nf_conntrack_lock(lockp);
2004                 if (*bucket < nf_conntrack_htable_size) {
2005                         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2006                                 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2007                                         continue;
2008                                 ct = nf_ct_tuplehash_to_ctrack(h);
2009                                 if (iter(ct, data))
2010                                         goto found;
2011                         }
2012                 }
2013                 spin_unlock(lockp);
2014                 local_bh_enable();
2015                 cond_resched();
2016         }
2017
2018         return NULL;
2019 found:
2020         atomic_inc(&ct->ct_general.use);
2021         spin_unlock(lockp);
2022         local_bh_enable();
2023         return ct;
2024 }
2025
2026 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2027                                   void *data, u32 portid, int report)
2028 {
2029         unsigned int bucket = 0, sequence;
2030         struct nf_conn *ct;
2031
2032         might_sleep();
2033
2034         for (;;) {
2035                 sequence = read_seqcount_begin(&nf_conntrack_generation);
2036
2037                 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2038                         /* Time to push up daises... */
2039
2040                         nf_ct_delete(ct, portid, report);
2041                         nf_ct_put(ct);
2042                         cond_resched();
2043                 }
2044
2045                 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2046                         break;
2047                 bucket = 0;
2048         }
2049 }
2050
2051 struct iter_data {
2052         int (*iter)(struct nf_conn *i, void *data);
2053         void *data;
2054         struct net *net;
2055 };
2056
2057 static int iter_net_only(struct nf_conn *i, void *data)
2058 {
2059         struct iter_data *d = data;
2060
2061         if (!net_eq(d->net, nf_ct_net(i)))
2062                 return 0;
2063
2064         return d->iter(i, d->data);
2065 }
2066
2067 static void
2068 __nf_ct_unconfirmed_destroy(struct net *net)
2069 {
2070         int cpu;
2071
2072         for_each_possible_cpu(cpu) {
2073                 struct nf_conntrack_tuple_hash *h;
2074                 struct hlist_nulls_node *n;
2075                 struct ct_pcpu *pcpu;
2076
2077                 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2078
2079                 spin_lock_bh(&pcpu->lock);
2080                 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2081                         struct nf_conn *ct;
2082
2083                         ct = nf_ct_tuplehash_to_ctrack(h);
2084
2085                         /* we cannot call iter() on unconfirmed list, the
2086                          * owning cpu can reallocate ct->ext at any time.
2087                          */
2088                         set_bit(IPS_DYING_BIT, &ct->status);
2089                 }
2090                 spin_unlock_bh(&pcpu->lock);
2091                 cond_resched();
2092         }
2093 }
2094
2095 void nf_ct_unconfirmed_destroy(struct net *net)
2096 {
2097         might_sleep();
2098
2099         if (atomic_read(&net->ct.count) > 0) {
2100                 __nf_ct_unconfirmed_destroy(net);
2101                 nf_queue_nf_hook_drop(net);
2102                 synchronize_net();
2103         }
2104 }
2105 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2106
2107 void nf_ct_iterate_cleanup_net(struct net *net,
2108                                int (*iter)(struct nf_conn *i, void *data),
2109                                void *data, u32 portid, int report)
2110 {
2111         struct iter_data d;
2112
2113         might_sleep();
2114
2115         if (atomic_read(&net->ct.count) == 0)
2116                 return;
2117
2118         d.iter = iter;
2119         d.data = data;
2120         d.net = net;
2121
2122         nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2123 }
2124 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2125
2126 /**
2127  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2128  * @iter: callback to invoke for each conntrack
2129  * @data: data to pass to @iter
2130  *
2131  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2132  * unconfirmed list as dying (so they will not be inserted into
2133  * main table).
2134  *
2135  * Can only be called in module exit path.
2136  */
2137 void
2138 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2139 {
2140         struct net *net;
2141
2142         down_read(&net_rwsem);
2143         for_each_net(net) {
2144                 if (atomic_read(&net->ct.count) == 0)
2145                         continue;
2146                 __nf_ct_unconfirmed_destroy(net);
2147                 nf_queue_nf_hook_drop(net);
2148         }
2149         up_read(&net_rwsem);
2150
2151         /* Need to wait for netns cleanup worker to finish, if its
2152          * running -- it might have deleted a net namespace from
2153          * the global list, so our __nf_ct_unconfirmed_destroy() might
2154          * not have affected all namespaces.
2155          */
2156         net_ns_barrier();
2157
2158         /* a conntrack could have been unlinked from unconfirmed list
2159          * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2160          * This makes sure its inserted into conntrack table.
2161          */
2162         synchronize_net();
2163
2164         nf_ct_iterate_cleanup(iter, data, 0, 0);
2165 }
2166 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2167
2168 static int kill_all(struct nf_conn *i, void *data)
2169 {
2170         return net_eq(nf_ct_net(i), data);
2171 }
2172
2173 void nf_conntrack_cleanup_start(void)
2174 {
2175         conntrack_gc_work.exiting = true;
2176         RCU_INIT_POINTER(ip_ct_attach, NULL);
2177 }
2178
2179 void nf_conntrack_cleanup_end(void)
2180 {
2181         RCU_INIT_POINTER(nf_ct_hook, NULL);
2182         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2183         kvfree(nf_conntrack_hash);
2184
2185         nf_conntrack_proto_fini();
2186         nf_conntrack_seqadj_fini();
2187         nf_conntrack_labels_fini();
2188         nf_conntrack_helper_fini();
2189         nf_conntrack_timeout_fini();
2190         nf_conntrack_ecache_fini();
2191         nf_conntrack_tstamp_fini();
2192         nf_conntrack_acct_fini();
2193         nf_conntrack_expect_fini();
2194
2195         kmem_cache_destroy(nf_conntrack_cachep);
2196 }
2197
2198 /*
2199  * Mishearing the voices in his head, our hero wonders how he's
2200  * supposed to kill the mall.
2201  */
2202 void nf_conntrack_cleanup_net(struct net *net)
2203 {
2204         LIST_HEAD(single);
2205
2206         list_add(&net->exit_list, &single);
2207         nf_conntrack_cleanup_net_list(&single);
2208 }
2209
2210 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2211 {
2212         int busy;
2213         struct net *net;
2214
2215         /*
2216          * This makes sure all current packets have passed through
2217          *  netfilter framework.  Roll on, two-stage module
2218          *  delete...
2219          */
2220         synchronize_net();
2221 i_see_dead_people:
2222         busy = 0;
2223         list_for_each_entry(net, net_exit_list, exit_list) {
2224                 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2225                 if (atomic_read(&net->ct.count) != 0)
2226                         busy = 1;
2227         }
2228         if (busy) {
2229                 schedule();
2230                 goto i_see_dead_people;
2231         }
2232
2233         list_for_each_entry(net, net_exit_list, exit_list) {
2234                 nf_conntrack_proto_pernet_fini(net);
2235                 nf_conntrack_ecache_pernet_fini(net);
2236                 nf_conntrack_expect_pernet_fini(net);
2237                 free_percpu(net->ct.stat);
2238                 free_percpu(net->ct.pcpu_lists);
2239         }
2240 }
2241
2242 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2243 {
2244         struct hlist_nulls_head *hash;
2245         unsigned int nr_slots, i;
2246
2247         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2248                 return NULL;
2249
2250         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2251         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2252
2253         hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2254                               GFP_KERNEL | __GFP_ZERO);
2255
2256         if (hash && nulls)
2257                 for (i = 0; i < nr_slots; i++)
2258                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
2259
2260         return hash;
2261 }
2262 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2263
2264 int nf_conntrack_hash_resize(unsigned int hashsize)
2265 {
2266         int i, bucket;
2267         unsigned int old_size;
2268         struct hlist_nulls_head *hash, *old_hash;
2269         struct nf_conntrack_tuple_hash *h;
2270         struct nf_conn *ct;
2271
2272         if (!hashsize)
2273                 return -EINVAL;
2274
2275         hash = nf_ct_alloc_hashtable(&hashsize, 1);
2276         if (!hash)
2277                 return -ENOMEM;
2278
2279         old_size = nf_conntrack_htable_size;
2280         if (old_size == hashsize) {
2281                 kvfree(hash);
2282                 return 0;
2283         }
2284
2285         local_bh_disable();
2286         nf_conntrack_all_lock();
2287         write_seqcount_begin(&nf_conntrack_generation);
2288
2289         /* Lookups in the old hash might happen in parallel, which means we
2290          * might get false negatives during connection lookup. New connections
2291          * created because of a false negative won't make it into the hash
2292          * though since that required taking the locks.
2293          */
2294
2295         for (i = 0; i < nf_conntrack_htable_size; i++) {
2296                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2297                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2298                                               struct nf_conntrack_tuple_hash, hnnode);
2299                         ct = nf_ct_tuplehash_to_ctrack(h);
2300                         hlist_nulls_del_rcu(&h->hnnode);
2301                         bucket = __hash_conntrack(nf_ct_net(ct),
2302                                                   &h->tuple, hashsize);
2303                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2304                 }
2305         }
2306         old_size = nf_conntrack_htable_size;
2307         old_hash = nf_conntrack_hash;
2308
2309         nf_conntrack_hash = hash;
2310         nf_conntrack_htable_size = hashsize;
2311
2312         write_seqcount_end(&nf_conntrack_generation);
2313         nf_conntrack_all_unlock();
2314         local_bh_enable();
2315
2316         synchronize_net();
2317         kvfree(old_hash);
2318         return 0;
2319 }
2320
2321 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2322 {
2323         unsigned int hashsize;
2324         int rc;
2325
2326         if (current->nsproxy->net_ns != &init_net)
2327                 return -EOPNOTSUPP;
2328
2329         /* On boot, we can set this without any fancy locking. */
2330         if (!nf_conntrack_hash)
2331                 return param_set_uint(val, kp);
2332
2333         rc = kstrtouint(val, 0, &hashsize);
2334         if (rc)
2335                 return rc;
2336
2337         return nf_conntrack_hash_resize(hashsize);
2338 }
2339 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2340
2341 static __always_inline unsigned int total_extension_size(void)
2342 {
2343         /* remember to add new extensions below */
2344         BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2345
2346         return sizeof(struct nf_ct_ext) +
2347                sizeof(struct nf_conn_help)
2348 #if IS_ENABLED(CONFIG_NF_NAT)
2349                 + sizeof(struct nf_conn_nat)
2350 #endif
2351                 + sizeof(struct nf_conn_seqadj)
2352                 + sizeof(struct nf_conn_acct)
2353 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2354                 + sizeof(struct nf_conntrack_ecache)
2355 #endif
2356 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2357                 + sizeof(struct nf_conn_tstamp)
2358 #endif
2359 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2360                 + sizeof(struct nf_conn_timeout)
2361 #endif
2362 #ifdef CONFIG_NF_CONNTRACK_LABELS
2363                 + sizeof(struct nf_conn_labels)
2364 #endif
2365 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2366                 + sizeof(struct nf_conn_synproxy)
2367 #endif
2368         ;
2369 };
2370
2371 int nf_conntrack_init_start(void)
2372 {
2373         unsigned long nr_pages = totalram_pages();
2374         int max_factor = 8;
2375         int ret = -ENOMEM;
2376         int i;
2377
2378         /* struct nf_ct_ext uses u8 to store offsets/size */
2379         BUILD_BUG_ON(total_extension_size() > 255u);
2380
2381         seqcount_init(&nf_conntrack_generation);
2382
2383         for (i = 0; i < CONNTRACK_LOCKS; i++)
2384                 spin_lock_init(&nf_conntrack_locks[i]);
2385
2386         if (!nf_conntrack_htable_size) {
2387                 /* Idea from tcp.c: use 1/16384 of memory.
2388                  * On i386: 32MB machine has 512 buckets.
2389                  * >= 1GB machines have 16384 buckets.
2390                  * >= 4GB machines have 65536 buckets.
2391                  */
2392                 nf_conntrack_htable_size
2393                         = (((nr_pages << PAGE_SHIFT) / 16384)
2394                            / sizeof(struct hlist_head));
2395                 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2396                         nf_conntrack_htable_size = 65536;
2397                 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2398                         nf_conntrack_htable_size = 16384;
2399                 if (nf_conntrack_htable_size < 32)
2400                         nf_conntrack_htable_size = 32;
2401
2402                 /* Use a max. factor of four by default to get the same max as
2403                  * with the old struct list_heads. When a table size is given
2404                  * we use the old value of 8 to avoid reducing the max.
2405                  * entries. */
2406                 max_factor = 4;
2407         }
2408
2409         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2410         if (!nf_conntrack_hash)
2411                 return -ENOMEM;
2412
2413         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2414
2415         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2416                                                 sizeof(struct nf_conn),
2417                                                 NFCT_INFOMASK + 1,
2418                                                 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2419         if (!nf_conntrack_cachep)
2420                 goto err_cachep;
2421
2422         ret = nf_conntrack_expect_init();
2423         if (ret < 0)
2424                 goto err_expect;
2425
2426         ret = nf_conntrack_acct_init();
2427         if (ret < 0)
2428                 goto err_acct;
2429
2430         ret = nf_conntrack_tstamp_init();
2431         if (ret < 0)
2432                 goto err_tstamp;
2433
2434         ret = nf_conntrack_ecache_init();
2435         if (ret < 0)
2436                 goto err_ecache;
2437
2438         ret = nf_conntrack_timeout_init();
2439         if (ret < 0)
2440                 goto err_timeout;
2441
2442         ret = nf_conntrack_helper_init();
2443         if (ret < 0)
2444                 goto err_helper;
2445
2446         ret = nf_conntrack_labels_init();
2447         if (ret < 0)
2448                 goto err_labels;
2449
2450         ret = nf_conntrack_seqadj_init();
2451         if (ret < 0)
2452                 goto err_seqadj;
2453
2454         ret = nf_conntrack_proto_init();
2455         if (ret < 0)
2456                 goto err_proto;
2457
2458         conntrack_gc_work_init(&conntrack_gc_work);
2459         queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2460
2461         return 0;
2462
2463 err_proto:
2464         nf_conntrack_seqadj_fini();
2465 err_seqadj:
2466         nf_conntrack_labels_fini();
2467 err_labels:
2468         nf_conntrack_helper_fini();
2469 err_helper:
2470         nf_conntrack_timeout_fini();
2471 err_timeout:
2472         nf_conntrack_ecache_fini();
2473 err_ecache:
2474         nf_conntrack_tstamp_fini();
2475 err_tstamp:
2476         nf_conntrack_acct_fini();
2477 err_acct:
2478         nf_conntrack_expect_fini();
2479 err_expect:
2480         kmem_cache_destroy(nf_conntrack_cachep);
2481 err_cachep:
2482         kvfree(nf_conntrack_hash);
2483         return ret;
2484 }
2485
2486 static struct nf_ct_hook nf_conntrack_hook = {
2487         .update         = nf_conntrack_update,
2488         .destroy        = destroy_conntrack,
2489         .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2490 };
2491
2492 void nf_conntrack_init_end(void)
2493 {
2494         /* For use by REJECT target */
2495         RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2496         RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2497 }
2498
2499 /*
2500  * We need to use special "null" values, not used in hash table
2501  */
2502 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2503 #define DYING_NULLS_VAL         ((1<<30)+1)
2504 #define TEMPLATE_NULLS_VAL      ((1<<30)+2)
2505
2506 int nf_conntrack_init_net(struct net *net)
2507 {
2508         int ret = -ENOMEM;
2509         int cpu;
2510
2511         BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2512         BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2513         atomic_set(&net->ct.count, 0);
2514
2515         net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2516         if (!net->ct.pcpu_lists)
2517                 goto err_stat;
2518
2519         for_each_possible_cpu(cpu) {
2520                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2521
2522                 spin_lock_init(&pcpu->lock);
2523                 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2524                 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2525         }
2526
2527         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2528         if (!net->ct.stat)
2529                 goto err_pcpu_lists;
2530
2531         ret = nf_conntrack_expect_pernet_init(net);
2532         if (ret < 0)
2533                 goto err_expect;
2534
2535         nf_conntrack_acct_pernet_init(net);
2536         nf_conntrack_tstamp_pernet_init(net);
2537         nf_conntrack_ecache_pernet_init(net);
2538         nf_conntrack_helper_pernet_init(net);
2539         nf_conntrack_proto_pernet_init(net);
2540
2541         return 0;
2542
2543 err_expect:
2544         free_percpu(net->ct.stat);
2545 err_pcpu_lists:
2546         free_percpu(net->ct.pcpu_lists);
2547 err_stat:
2548         return ret;
2549 }