mtd: rawnand: ingenic: Separate top-level and SoC specific code
[sfrench/cifs-2.6.git] / net / core / page_pool.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *      Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7 #include <linux/types.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10
11 #include <net/page_pool.h>
12 #include <linux/dma-direction.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/page-flags.h>
15 #include <linux/mm.h> /* for __put_page() */
16
17 static int page_pool_init(struct page_pool *pool,
18                           const struct page_pool_params *params)
19 {
20         unsigned int ring_qsize = 1024; /* Default */
21
22         memcpy(&pool->p, params, sizeof(pool->p));
23
24         /* Validate only known flags were used */
25         if (pool->p.flags & ~(PP_FLAG_ALL))
26                 return -EINVAL;
27
28         if (pool->p.pool_size)
29                 ring_qsize = pool->p.pool_size;
30
31         /* Sanity limit mem that can be pinned down */
32         if (ring_qsize > 32768)
33                 return -E2BIG;
34
35         /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
36          * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
37          * which is the XDP_TX use-case.
38          */
39         if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
40             (pool->p.dma_dir != DMA_BIDIRECTIONAL))
41                 return -EINVAL;
42
43         if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
44                 return -ENOMEM;
45
46         return 0;
47 }
48
49 struct page_pool *page_pool_create(const struct page_pool_params *params)
50 {
51         struct page_pool *pool;
52         int err = 0;
53
54         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
55         if (!pool)
56                 return ERR_PTR(-ENOMEM);
57
58         err = page_pool_init(pool, params);
59         if (err < 0) {
60                 pr_warn("%s() gave up with errno %d\n", __func__, err);
61                 kfree(pool);
62                 return ERR_PTR(err);
63         }
64         return pool;
65 }
66 EXPORT_SYMBOL(page_pool_create);
67
68 /* fast path */
69 static struct page *__page_pool_get_cached(struct page_pool *pool)
70 {
71         struct ptr_ring *r = &pool->ring;
72         struct page *page;
73
74         /* Quicker fallback, avoid locks when ring is empty */
75         if (__ptr_ring_empty(r))
76                 return NULL;
77
78         /* Test for safe-context, caller should provide this guarantee */
79         if (likely(in_serving_softirq())) {
80                 if (likely(pool->alloc.count)) {
81                         /* Fast-path */
82                         page = pool->alloc.cache[--pool->alloc.count];
83                         return page;
84                 }
85                 /* Slower-path: Alloc array empty, time to refill
86                  *
87                  * Open-coded bulk ptr_ring consumer.
88                  *
89                  * Discussion: the ring consumer lock is not really
90                  * needed due to the softirq/NAPI protection, but
91                  * later need the ability to reclaim pages on the
92                  * ring. Thus, keeping the locks.
93                  */
94                 spin_lock(&r->consumer_lock);
95                 while ((page = __ptr_ring_consume(r))) {
96                         if (pool->alloc.count == PP_ALLOC_CACHE_REFILL)
97                                 break;
98                         pool->alloc.cache[pool->alloc.count++] = page;
99                 }
100                 spin_unlock(&r->consumer_lock);
101                 return page;
102         }
103
104         /* Slow-path: Get page from locked ring queue */
105         page = ptr_ring_consume(&pool->ring);
106         return page;
107 }
108
109 /* slow path */
110 noinline
111 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
112                                                  gfp_t _gfp)
113 {
114         struct page *page;
115         gfp_t gfp = _gfp;
116         dma_addr_t dma;
117
118         /* We could always set __GFP_COMP, and avoid this branch, as
119          * prep_new_page() can handle order-0 with __GFP_COMP.
120          */
121         if (pool->p.order)
122                 gfp |= __GFP_COMP;
123
124         /* FUTURE development:
125          *
126          * Current slow-path essentially falls back to single page
127          * allocations, which doesn't improve performance.  This code
128          * need bulk allocation support from the page allocator code.
129          */
130
131         /* Cache was empty, do real allocation */
132         page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
133         if (!page)
134                 return NULL;
135
136         if (!(pool->p.flags & PP_FLAG_DMA_MAP))
137                 goto skip_dma_map;
138
139         /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
140          * since dma_addr_t can be either 32 or 64 bits and does not always fit
141          * into page private data (i.e 32bit cpu with 64bit DMA caps)
142          * This mapping is kept for lifetime of page, until leaving pool.
143          */
144         dma = dma_map_page_attrs(pool->p.dev, page, 0,
145                                  (PAGE_SIZE << pool->p.order),
146                                  pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
147         if (dma_mapping_error(pool->p.dev, dma)) {
148                 put_page(page);
149                 return NULL;
150         }
151         page->dma_addr = dma;
152
153 skip_dma_map:
154         /* When page just alloc'ed is should/must have refcnt 1. */
155         return page;
156 }
157
158 /* For using page_pool replace: alloc_pages() API calls, but provide
159  * synchronization guarantee for allocation side.
160  */
161 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
162 {
163         struct page *page;
164
165         /* Fast-path: Get a page from cache */
166         page = __page_pool_get_cached(pool);
167         if (page)
168                 return page;
169
170         /* Slow-path: cache empty, do real allocation */
171         page = __page_pool_alloc_pages_slow(pool, gfp);
172         return page;
173 }
174 EXPORT_SYMBOL(page_pool_alloc_pages);
175
176 /* Cleanup page_pool state from page */
177 static void __page_pool_clean_page(struct page_pool *pool,
178                                    struct page *page)
179 {
180         dma_addr_t dma;
181
182         if (!(pool->p.flags & PP_FLAG_DMA_MAP))
183                 return;
184
185         dma = page->dma_addr;
186         /* DMA unmap */
187         dma_unmap_page_attrs(pool->p.dev, dma,
188                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
189                              DMA_ATTR_SKIP_CPU_SYNC);
190         page->dma_addr = 0;
191 }
192
193 /* Return a page to the page allocator, cleaning up our state */
194 static void __page_pool_return_page(struct page_pool *pool, struct page *page)
195 {
196         __page_pool_clean_page(pool, page);
197         put_page(page);
198         /* An optimization would be to call __free_pages(page, pool->p.order)
199          * knowing page is not part of page-cache (thus avoiding a
200          * __page_cache_release() call).
201          */
202 }
203
204 static bool __page_pool_recycle_into_ring(struct page_pool *pool,
205                                    struct page *page)
206 {
207         int ret;
208         /* BH protection not needed if current is serving softirq */
209         if (in_serving_softirq())
210                 ret = ptr_ring_produce(&pool->ring, page);
211         else
212                 ret = ptr_ring_produce_bh(&pool->ring, page);
213
214         return (ret == 0) ? true : false;
215 }
216
217 /* Only allow direct recycling in special circumstances, into the
218  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
219  *
220  * Caller must provide appropriate safe context.
221  */
222 static bool __page_pool_recycle_direct(struct page *page,
223                                        struct page_pool *pool)
224 {
225         if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
226                 return false;
227
228         /* Caller MUST have verified/know (page_ref_count(page) == 1) */
229         pool->alloc.cache[pool->alloc.count++] = page;
230         return true;
231 }
232
233 void __page_pool_put_page(struct page_pool *pool,
234                           struct page *page, bool allow_direct)
235 {
236         /* This allocator is optimized for the XDP mode that uses
237          * one-frame-per-page, but have fallbacks that act like the
238          * regular page allocator APIs.
239          *
240          * refcnt == 1 means page_pool owns page, and can recycle it.
241          */
242         if (likely(page_ref_count(page) == 1)) {
243                 /* Read barrier done in page_ref_count / READ_ONCE */
244
245                 if (allow_direct && in_serving_softirq())
246                         if (__page_pool_recycle_direct(page, pool))
247                                 return;
248
249                 if (!__page_pool_recycle_into_ring(pool, page)) {
250                         /* Cache full, fallback to free pages */
251                         __page_pool_return_page(pool, page);
252                 }
253                 return;
254         }
255         /* Fallback/non-XDP mode: API user have elevated refcnt.
256          *
257          * Many drivers split up the page into fragments, and some
258          * want to keep doing this to save memory and do refcnt based
259          * recycling. Support this use case too, to ease drivers
260          * switching between XDP/non-XDP.
261          *
262          * In-case page_pool maintains the DMA mapping, API user must
263          * call page_pool_put_page once.  In this elevated refcnt
264          * case, the DMA is unmapped/released, as driver is likely
265          * doing refcnt based recycle tricks, meaning another process
266          * will be invoking put_page.
267          */
268         __page_pool_clean_page(pool, page);
269         put_page(page);
270 }
271 EXPORT_SYMBOL(__page_pool_put_page);
272
273 static void __page_pool_empty_ring(struct page_pool *pool)
274 {
275         struct page *page;
276
277         /* Empty recycle ring */
278         while ((page = ptr_ring_consume_bh(&pool->ring))) {
279                 /* Verify the refcnt invariant of cached pages */
280                 if (!(page_ref_count(page) == 1))
281                         pr_crit("%s() page_pool refcnt %d violation\n",
282                                 __func__, page_ref_count(page));
283
284                 __page_pool_return_page(pool, page);
285         }
286 }
287
288 static void __page_pool_destroy_rcu(struct rcu_head *rcu)
289 {
290         struct page_pool *pool;
291
292         pool = container_of(rcu, struct page_pool, rcu);
293
294         WARN(pool->alloc.count, "API usage violation");
295
296         __page_pool_empty_ring(pool);
297         ptr_ring_cleanup(&pool->ring, NULL);
298         kfree(pool);
299 }
300
301 /* Cleanup and release resources */
302 void page_pool_destroy(struct page_pool *pool)
303 {
304         struct page *page;
305
306         /* Empty alloc cache, assume caller made sure this is
307          * no-longer in use, and page_pool_alloc_pages() cannot be
308          * call concurrently.
309          */
310         while (pool->alloc.count) {
311                 page = pool->alloc.cache[--pool->alloc.count];
312                 __page_pool_return_page(pool, page);
313         }
314
315         /* No more consumers should exist, but producers could still
316          * be in-flight.
317          */
318         __page_pool_empty_ring(pool);
319
320         /* An xdp_mem_allocator can still ref page_pool pointer */
321         call_rcu(&pool->rcu, __page_pool_destroy_rcu);
322 }
323 EXPORT_SYMBOL(page_pool_destroy);