Linux 4.12-rc7
[sfrench/cifs-2.6.git] / net / bluetooth / hci_request.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3
4    Copyright (C) 2014 Intel Corporation
5
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License version 2 as
8    published by the Free Software Foundation;
9
10    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21    SOFTWARE IS DISCLAIMED.
22 */
23
24 #include <linux/sched/signal.h>
25
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
29
30 #include "smp.h"
31 #include "hci_request.h"
32
33 #define HCI_REQ_DONE      0
34 #define HCI_REQ_PEND      1
35 #define HCI_REQ_CANCELED  2
36
37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38 {
39         skb_queue_head_init(&req->cmd_q);
40         req->hdev = hdev;
41         req->err = 0;
42 }
43
44 static int req_run(struct hci_request *req, hci_req_complete_t complete,
45                    hci_req_complete_skb_t complete_skb)
46 {
47         struct hci_dev *hdev = req->hdev;
48         struct sk_buff *skb;
49         unsigned long flags;
50
51         BT_DBG("length %u", skb_queue_len(&req->cmd_q));
52
53         /* If an error occurred during request building, remove all HCI
54          * commands queued on the HCI request queue.
55          */
56         if (req->err) {
57                 skb_queue_purge(&req->cmd_q);
58                 return req->err;
59         }
60
61         /* Do not allow empty requests */
62         if (skb_queue_empty(&req->cmd_q))
63                 return -ENODATA;
64
65         skb = skb_peek_tail(&req->cmd_q);
66         if (complete) {
67                 bt_cb(skb)->hci.req_complete = complete;
68         } else if (complete_skb) {
69                 bt_cb(skb)->hci.req_complete_skb = complete_skb;
70                 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
71         }
72
73         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
74         skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
75         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
76
77         queue_work(hdev->workqueue, &hdev->cmd_work);
78
79         return 0;
80 }
81
82 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
83 {
84         return req_run(req, complete, NULL);
85 }
86
87 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
88 {
89         return req_run(req, NULL, complete);
90 }
91
92 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
93                                   struct sk_buff *skb)
94 {
95         BT_DBG("%s result 0x%2.2x", hdev->name, result);
96
97         if (hdev->req_status == HCI_REQ_PEND) {
98                 hdev->req_result = result;
99                 hdev->req_status = HCI_REQ_DONE;
100                 if (skb)
101                         hdev->req_skb = skb_get(skb);
102                 wake_up_interruptible(&hdev->req_wait_q);
103         }
104 }
105
106 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
107 {
108         BT_DBG("%s err 0x%2.2x", hdev->name, err);
109
110         if (hdev->req_status == HCI_REQ_PEND) {
111                 hdev->req_result = err;
112                 hdev->req_status = HCI_REQ_CANCELED;
113                 wake_up_interruptible(&hdev->req_wait_q);
114         }
115 }
116
117 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
118                                   const void *param, u8 event, u32 timeout)
119 {
120         DECLARE_WAITQUEUE(wait, current);
121         struct hci_request req;
122         struct sk_buff *skb;
123         int err = 0;
124
125         BT_DBG("%s", hdev->name);
126
127         hci_req_init(&req, hdev);
128
129         hci_req_add_ev(&req, opcode, plen, param, event);
130
131         hdev->req_status = HCI_REQ_PEND;
132
133         add_wait_queue(&hdev->req_wait_q, &wait);
134         set_current_state(TASK_INTERRUPTIBLE);
135
136         err = hci_req_run_skb(&req, hci_req_sync_complete);
137         if (err < 0) {
138                 remove_wait_queue(&hdev->req_wait_q, &wait);
139                 set_current_state(TASK_RUNNING);
140                 return ERR_PTR(err);
141         }
142
143         schedule_timeout(timeout);
144
145         remove_wait_queue(&hdev->req_wait_q, &wait);
146
147         if (signal_pending(current))
148                 return ERR_PTR(-EINTR);
149
150         switch (hdev->req_status) {
151         case HCI_REQ_DONE:
152                 err = -bt_to_errno(hdev->req_result);
153                 break;
154
155         case HCI_REQ_CANCELED:
156                 err = -hdev->req_result;
157                 break;
158
159         default:
160                 err = -ETIMEDOUT;
161                 break;
162         }
163
164         hdev->req_status = hdev->req_result = 0;
165         skb = hdev->req_skb;
166         hdev->req_skb = NULL;
167
168         BT_DBG("%s end: err %d", hdev->name, err);
169
170         if (err < 0) {
171                 kfree_skb(skb);
172                 return ERR_PTR(err);
173         }
174
175         if (!skb)
176                 return ERR_PTR(-ENODATA);
177
178         return skb;
179 }
180 EXPORT_SYMBOL(__hci_cmd_sync_ev);
181
182 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
183                                const void *param, u32 timeout)
184 {
185         return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
186 }
187 EXPORT_SYMBOL(__hci_cmd_sync);
188
189 /* Execute request and wait for completion. */
190 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
191                                                      unsigned long opt),
192                    unsigned long opt, u32 timeout, u8 *hci_status)
193 {
194         struct hci_request req;
195         DECLARE_WAITQUEUE(wait, current);
196         int err = 0;
197
198         BT_DBG("%s start", hdev->name);
199
200         hci_req_init(&req, hdev);
201
202         hdev->req_status = HCI_REQ_PEND;
203
204         err = func(&req, opt);
205         if (err) {
206                 if (hci_status)
207                         *hci_status = HCI_ERROR_UNSPECIFIED;
208                 return err;
209         }
210
211         add_wait_queue(&hdev->req_wait_q, &wait);
212         set_current_state(TASK_INTERRUPTIBLE);
213
214         err = hci_req_run_skb(&req, hci_req_sync_complete);
215         if (err < 0) {
216                 hdev->req_status = 0;
217
218                 remove_wait_queue(&hdev->req_wait_q, &wait);
219                 set_current_state(TASK_RUNNING);
220
221                 /* ENODATA means the HCI request command queue is empty.
222                  * This can happen when a request with conditionals doesn't
223                  * trigger any commands to be sent. This is normal behavior
224                  * and should not trigger an error return.
225                  */
226                 if (err == -ENODATA) {
227                         if (hci_status)
228                                 *hci_status = 0;
229                         return 0;
230                 }
231
232                 if (hci_status)
233                         *hci_status = HCI_ERROR_UNSPECIFIED;
234
235                 return err;
236         }
237
238         schedule_timeout(timeout);
239
240         remove_wait_queue(&hdev->req_wait_q, &wait);
241
242         if (signal_pending(current))
243                 return -EINTR;
244
245         switch (hdev->req_status) {
246         case HCI_REQ_DONE:
247                 err = -bt_to_errno(hdev->req_result);
248                 if (hci_status)
249                         *hci_status = hdev->req_result;
250                 break;
251
252         case HCI_REQ_CANCELED:
253                 err = -hdev->req_result;
254                 if (hci_status)
255                         *hci_status = HCI_ERROR_UNSPECIFIED;
256                 break;
257
258         default:
259                 err = -ETIMEDOUT;
260                 if (hci_status)
261                         *hci_status = HCI_ERROR_UNSPECIFIED;
262                 break;
263         }
264
265         kfree_skb(hdev->req_skb);
266         hdev->req_skb = NULL;
267         hdev->req_status = hdev->req_result = 0;
268
269         BT_DBG("%s end: err %d", hdev->name, err);
270
271         return err;
272 }
273
274 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
275                                                   unsigned long opt),
276                  unsigned long opt, u32 timeout, u8 *hci_status)
277 {
278         int ret;
279
280         if (!test_bit(HCI_UP, &hdev->flags))
281                 return -ENETDOWN;
282
283         /* Serialize all requests */
284         hci_req_sync_lock(hdev);
285         ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
286         hci_req_sync_unlock(hdev);
287
288         return ret;
289 }
290
291 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
292                                 const void *param)
293 {
294         int len = HCI_COMMAND_HDR_SIZE + plen;
295         struct hci_command_hdr *hdr;
296         struct sk_buff *skb;
297
298         skb = bt_skb_alloc(len, GFP_ATOMIC);
299         if (!skb)
300                 return NULL;
301
302         hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
303         hdr->opcode = cpu_to_le16(opcode);
304         hdr->plen   = plen;
305
306         if (plen)
307                 memcpy(skb_put(skb, plen), param, plen);
308
309         BT_DBG("skb len %d", skb->len);
310
311         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
312         hci_skb_opcode(skb) = opcode;
313
314         return skb;
315 }
316
317 /* Queue a command to an asynchronous HCI request */
318 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
319                     const void *param, u8 event)
320 {
321         struct hci_dev *hdev = req->hdev;
322         struct sk_buff *skb;
323
324         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
325
326         /* If an error occurred during request building, there is no point in
327          * queueing the HCI command. We can simply return.
328          */
329         if (req->err)
330                 return;
331
332         skb = hci_prepare_cmd(hdev, opcode, plen, param);
333         if (!skb) {
334                 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
335                        hdev->name, opcode);
336                 req->err = -ENOMEM;
337                 return;
338         }
339
340         if (skb_queue_empty(&req->cmd_q))
341                 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
342
343         bt_cb(skb)->hci.req_event = event;
344
345         skb_queue_tail(&req->cmd_q, skb);
346 }
347
348 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
349                  const void *param)
350 {
351         hci_req_add_ev(req, opcode, plen, param, 0);
352 }
353
354 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
355 {
356         struct hci_dev *hdev = req->hdev;
357         struct hci_cp_write_page_scan_activity acp;
358         u8 type;
359
360         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
361                 return;
362
363         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
364                 return;
365
366         if (enable) {
367                 type = PAGE_SCAN_TYPE_INTERLACED;
368
369                 /* 160 msec page scan interval */
370                 acp.interval = cpu_to_le16(0x0100);
371         } else {
372                 type = PAGE_SCAN_TYPE_STANDARD; /* default */
373
374                 /* default 1.28 sec page scan */
375                 acp.interval = cpu_to_le16(0x0800);
376         }
377
378         acp.window = cpu_to_le16(0x0012);
379
380         if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
381             __cpu_to_le16(hdev->page_scan_window) != acp.window)
382                 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
383                             sizeof(acp), &acp);
384
385         if (hdev->page_scan_type != type)
386                 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
387 }
388
389 /* This function controls the background scanning based on hdev->pend_le_conns
390  * list. If there are pending LE connection we start the background scanning,
391  * otherwise we stop it.
392  *
393  * This function requires the caller holds hdev->lock.
394  */
395 static void __hci_update_background_scan(struct hci_request *req)
396 {
397         struct hci_dev *hdev = req->hdev;
398
399         if (!test_bit(HCI_UP, &hdev->flags) ||
400             test_bit(HCI_INIT, &hdev->flags) ||
401             hci_dev_test_flag(hdev, HCI_SETUP) ||
402             hci_dev_test_flag(hdev, HCI_CONFIG) ||
403             hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
404             hci_dev_test_flag(hdev, HCI_UNREGISTER))
405                 return;
406
407         /* No point in doing scanning if LE support hasn't been enabled */
408         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
409                 return;
410
411         /* If discovery is active don't interfere with it */
412         if (hdev->discovery.state != DISCOVERY_STOPPED)
413                 return;
414
415         /* Reset RSSI and UUID filters when starting background scanning
416          * since these filters are meant for service discovery only.
417          *
418          * The Start Discovery and Start Service Discovery operations
419          * ensure to set proper values for RSSI threshold and UUID
420          * filter list. So it is safe to just reset them here.
421          */
422         hci_discovery_filter_clear(hdev);
423
424         if (list_empty(&hdev->pend_le_conns) &&
425             list_empty(&hdev->pend_le_reports)) {
426                 /* If there is no pending LE connections or devices
427                  * to be scanned for, we should stop the background
428                  * scanning.
429                  */
430
431                 /* If controller is not scanning we are done. */
432                 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
433                         return;
434
435                 hci_req_add_le_scan_disable(req);
436
437                 BT_DBG("%s stopping background scanning", hdev->name);
438         } else {
439                 /* If there is at least one pending LE connection, we should
440                  * keep the background scan running.
441                  */
442
443                 /* If controller is connecting, we should not start scanning
444                  * since some controllers are not able to scan and connect at
445                  * the same time.
446                  */
447                 if (hci_lookup_le_connect(hdev))
448                         return;
449
450                 /* If controller is currently scanning, we stop it to ensure we
451                  * don't miss any advertising (due to duplicates filter).
452                  */
453                 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
454                         hci_req_add_le_scan_disable(req);
455
456                 hci_req_add_le_passive_scan(req);
457
458                 BT_DBG("%s starting background scanning", hdev->name);
459         }
460 }
461
462 void __hci_req_update_name(struct hci_request *req)
463 {
464         struct hci_dev *hdev = req->hdev;
465         struct hci_cp_write_local_name cp;
466
467         memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
468
469         hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
470 }
471
472 #define PNP_INFO_SVCLASS_ID             0x1200
473
474 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
475 {
476         u8 *ptr = data, *uuids_start = NULL;
477         struct bt_uuid *uuid;
478
479         if (len < 4)
480                 return ptr;
481
482         list_for_each_entry(uuid, &hdev->uuids, list) {
483                 u16 uuid16;
484
485                 if (uuid->size != 16)
486                         continue;
487
488                 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
489                 if (uuid16 < 0x1100)
490                         continue;
491
492                 if (uuid16 == PNP_INFO_SVCLASS_ID)
493                         continue;
494
495                 if (!uuids_start) {
496                         uuids_start = ptr;
497                         uuids_start[0] = 1;
498                         uuids_start[1] = EIR_UUID16_ALL;
499                         ptr += 2;
500                 }
501
502                 /* Stop if not enough space to put next UUID */
503                 if ((ptr - data) + sizeof(u16) > len) {
504                         uuids_start[1] = EIR_UUID16_SOME;
505                         break;
506                 }
507
508                 *ptr++ = (uuid16 & 0x00ff);
509                 *ptr++ = (uuid16 & 0xff00) >> 8;
510                 uuids_start[0] += sizeof(uuid16);
511         }
512
513         return ptr;
514 }
515
516 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
517 {
518         u8 *ptr = data, *uuids_start = NULL;
519         struct bt_uuid *uuid;
520
521         if (len < 6)
522                 return ptr;
523
524         list_for_each_entry(uuid, &hdev->uuids, list) {
525                 if (uuid->size != 32)
526                         continue;
527
528                 if (!uuids_start) {
529                         uuids_start = ptr;
530                         uuids_start[0] = 1;
531                         uuids_start[1] = EIR_UUID32_ALL;
532                         ptr += 2;
533                 }
534
535                 /* Stop if not enough space to put next UUID */
536                 if ((ptr - data) + sizeof(u32) > len) {
537                         uuids_start[1] = EIR_UUID32_SOME;
538                         break;
539                 }
540
541                 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
542                 ptr += sizeof(u32);
543                 uuids_start[0] += sizeof(u32);
544         }
545
546         return ptr;
547 }
548
549 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
550 {
551         u8 *ptr = data, *uuids_start = NULL;
552         struct bt_uuid *uuid;
553
554         if (len < 18)
555                 return ptr;
556
557         list_for_each_entry(uuid, &hdev->uuids, list) {
558                 if (uuid->size != 128)
559                         continue;
560
561                 if (!uuids_start) {
562                         uuids_start = ptr;
563                         uuids_start[0] = 1;
564                         uuids_start[1] = EIR_UUID128_ALL;
565                         ptr += 2;
566                 }
567
568                 /* Stop if not enough space to put next UUID */
569                 if ((ptr - data) + 16 > len) {
570                         uuids_start[1] = EIR_UUID128_SOME;
571                         break;
572                 }
573
574                 memcpy(ptr, uuid->uuid, 16);
575                 ptr += 16;
576                 uuids_start[0] += 16;
577         }
578
579         return ptr;
580 }
581
582 static void create_eir(struct hci_dev *hdev, u8 *data)
583 {
584         u8 *ptr = data;
585         size_t name_len;
586
587         name_len = strlen(hdev->dev_name);
588
589         if (name_len > 0) {
590                 /* EIR Data type */
591                 if (name_len > 48) {
592                         name_len = 48;
593                         ptr[1] = EIR_NAME_SHORT;
594                 } else
595                         ptr[1] = EIR_NAME_COMPLETE;
596
597                 /* EIR Data length */
598                 ptr[0] = name_len + 1;
599
600                 memcpy(ptr + 2, hdev->dev_name, name_len);
601
602                 ptr += (name_len + 2);
603         }
604
605         if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
606                 ptr[0] = 2;
607                 ptr[1] = EIR_TX_POWER;
608                 ptr[2] = (u8) hdev->inq_tx_power;
609
610                 ptr += 3;
611         }
612
613         if (hdev->devid_source > 0) {
614                 ptr[0] = 9;
615                 ptr[1] = EIR_DEVICE_ID;
616
617                 put_unaligned_le16(hdev->devid_source, ptr + 2);
618                 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
619                 put_unaligned_le16(hdev->devid_product, ptr + 6);
620                 put_unaligned_le16(hdev->devid_version, ptr + 8);
621
622                 ptr += 10;
623         }
624
625         ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
626         ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
627         ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
628 }
629
630 void __hci_req_update_eir(struct hci_request *req)
631 {
632         struct hci_dev *hdev = req->hdev;
633         struct hci_cp_write_eir cp;
634
635         if (!hdev_is_powered(hdev))
636                 return;
637
638         if (!lmp_ext_inq_capable(hdev))
639                 return;
640
641         if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
642                 return;
643
644         if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
645                 return;
646
647         memset(&cp, 0, sizeof(cp));
648
649         create_eir(hdev, cp.data);
650
651         if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
652                 return;
653
654         memcpy(hdev->eir, cp.data, sizeof(cp.data));
655
656         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
657 }
658
659 void hci_req_add_le_scan_disable(struct hci_request *req)
660 {
661         struct hci_cp_le_set_scan_enable cp;
662
663         memset(&cp, 0, sizeof(cp));
664         cp.enable = LE_SCAN_DISABLE;
665         hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
666 }
667
668 static void add_to_white_list(struct hci_request *req,
669                               struct hci_conn_params *params)
670 {
671         struct hci_cp_le_add_to_white_list cp;
672
673         cp.bdaddr_type = params->addr_type;
674         bacpy(&cp.bdaddr, &params->addr);
675
676         hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
677 }
678
679 static u8 update_white_list(struct hci_request *req)
680 {
681         struct hci_dev *hdev = req->hdev;
682         struct hci_conn_params *params;
683         struct bdaddr_list *b;
684         uint8_t white_list_entries = 0;
685
686         /* Go through the current white list programmed into the
687          * controller one by one and check if that address is still
688          * in the list of pending connections or list of devices to
689          * report. If not present in either list, then queue the
690          * command to remove it from the controller.
691          */
692         list_for_each_entry(b, &hdev->le_white_list, list) {
693                 /* If the device is neither in pend_le_conns nor
694                  * pend_le_reports then remove it from the whitelist.
695                  */
696                 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
697                                                &b->bdaddr, b->bdaddr_type) &&
698                     !hci_pend_le_action_lookup(&hdev->pend_le_reports,
699                                                &b->bdaddr, b->bdaddr_type)) {
700                         struct hci_cp_le_del_from_white_list cp;
701
702                         cp.bdaddr_type = b->bdaddr_type;
703                         bacpy(&cp.bdaddr, &b->bdaddr);
704
705                         hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
706                                     sizeof(cp), &cp);
707                         continue;
708                 }
709
710                 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
711                         /* White list can not be used with RPAs */
712                         return 0x00;
713                 }
714
715                 white_list_entries++;
716         }
717
718         /* Since all no longer valid white list entries have been
719          * removed, walk through the list of pending connections
720          * and ensure that any new device gets programmed into
721          * the controller.
722          *
723          * If the list of the devices is larger than the list of
724          * available white list entries in the controller, then
725          * just abort and return filer policy value to not use the
726          * white list.
727          */
728         list_for_each_entry(params, &hdev->pend_le_conns, action) {
729                 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
730                                            &params->addr, params->addr_type))
731                         continue;
732
733                 if (white_list_entries >= hdev->le_white_list_size) {
734                         /* Select filter policy to accept all advertising */
735                         return 0x00;
736                 }
737
738                 if (hci_find_irk_by_addr(hdev, &params->addr,
739                                          params->addr_type)) {
740                         /* White list can not be used with RPAs */
741                         return 0x00;
742                 }
743
744                 white_list_entries++;
745                 add_to_white_list(req, params);
746         }
747
748         /* After adding all new pending connections, walk through
749          * the list of pending reports and also add these to the
750          * white list if there is still space.
751          */
752         list_for_each_entry(params, &hdev->pend_le_reports, action) {
753                 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
754                                            &params->addr, params->addr_type))
755                         continue;
756
757                 if (white_list_entries >= hdev->le_white_list_size) {
758                         /* Select filter policy to accept all advertising */
759                         return 0x00;
760                 }
761
762                 if (hci_find_irk_by_addr(hdev, &params->addr,
763                                          params->addr_type)) {
764                         /* White list can not be used with RPAs */
765                         return 0x00;
766                 }
767
768                 white_list_entries++;
769                 add_to_white_list(req, params);
770         }
771
772         /* Select filter policy to use white list */
773         return 0x01;
774 }
775
776 static bool scan_use_rpa(struct hci_dev *hdev)
777 {
778         return hci_dev_test_flag(hdev, HCI_PRIVACY);
779 }
780
781 void hci_req_add_le_passive_scan(struct hci_request *req)
782 {
783         struct hci_cp_le_set_scan_param param_cp;
784         struct hci_cp_le_set_scan_enable enable_cp;
785         struct hci_dev *hdev = req->hdev;
786         u8 own_addr_type;
787         u8 filter_policy;
788
789         /* Set require_privacy to false since no SCAN_REQ are send
790          * during passive scanning. Not using an non-resolvable address
791          * here is important so that peer devices using direct
792          * advertising with our address will be correctly reported
793          * by the controller.
794          */
795         if (hci_update_random_address(req, false, scan_use_rpa(hdev),
796                                       &own_addr_type))
797                 return;
798
799         /* Adding or removing entries from the white list must
800          * happen before enabling scanning. The controller does
801          * not allow white list modification while scanning.
802          */
803         filter_policy = update_white_list(req);
804
805         /* When the controller is using random resolvable addresses and
806          * with that having LE privacy enabled, then controllers with
807          * Extended Scanner Filter Policies support can now enable support
808          * for handling directed advertising.
809          *
810          * So instead of using filter polices 0x00 (no whitelist)
811          * and 0x01 (whitelist enabled) use the new filter policies
812          * 0x02 (no whitelist) and 0x03 (whitelist enabled).
813          */
814         if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
815             (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
816                 filter_policy |= 0x02;
817
818         memset(&param_cp, 0, sizeof(param_cp));
819         param_cp.type = LE_SCAN_PASSIVE;
820         param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
821         param_cp.window = cpu_to_le16(hdev->le_scan_window);
822         param_cp.own_address_type = own_addr_type;
823         param_cp.filter_policy = filter_policy;
824         hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
825                     &param_cp);
826
827         memset(&enable_cp, 0, sizeof(enable_cp));
828         enable_cp.enable = LE_SCAN_ENABLE;
829         enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
830         hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
831                     &enable_cp);
832 }
833
834 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
835 {
836         u8 instance = hdev->cur_adv_instance;
837         struct adv_info *adv_instance;
838
839         /* Ignore instance 0 */
840         if (instance == 0x00)
841                 return 0;
842
843         adv_instance = hci_find_adv_instance(hdev, instance);
844         if (!adv_instance)
845                 return 0;
846
847         /* TODO: Take into account the "appearance" and "local-name" flags here.
848          * These are currently being ignored as they are not supported.
849          */
850         return adv_instance->scan_rsp_len;
851 }
852
853 void __hci_req_disable_advertising(struct hci_request *req)
854 {
855         u8 enable = 0x00;
856
857         hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
858 }
859
860 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
861 {
862         u32 flags;
863         struct adv_info *adv_instance;
864
865         if (instance == 0x00) {
866                 /* Instance 0 always manages the "Tx Power" and "Flags"
867                  * fields
868                  */
869                 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
870
871                 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
872                  * corresponds to the "connectable" instance flag.
873                  */
874                 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
875                         flags |= MGMT_ADV_FLAG_CONNECTABLE;
876
877                 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
878                         flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
879                 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
880                         flags |= MGMT_ADV_FLAG_DISCOV;
881
882                 return flags;
883         }
884
885         adv_instance = hci_find_adv_instance(hdev, instance);
886
887         /* Return 0 when we got an invalid instance identifier. */
888         if (!adv_instance)
889                 return 0;
890
891         return adv_instance->flags;
892 }
893
894 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
895 {
896         /* If privacy is not enabled don't use RPA */
897         if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
898                 return false;
899
900         /* If basic privacy mode is enabled use RPA */
901         if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
902                 return true;
903
904         /* If limited privacy mode is enabled don't use RPA if we're
905          * both discoverable and bondable.
906          */
907         if ((flags & MGMT_ADV_FLAG_DISCOV) &&
908             hci_dev_test_flag(hdev, HCI_BONDABLE))
909                 return false;
910
911         /* We're neither bondable nor discoverable in the limited
912          * privacy mode, therefore use RPA.
913          */
914         return true;
915 }
916
917 void __hci_req_enable_advertising(struct hci_request *req)
918 {
919         struct hci_dev *hdev = req->hdev;
920         struct hci_cp_le_set_adv_param cp;
921         u8 own_addr_type, enable = 0x01;
922         bool connectable;
923         u32 flags;
924
925         if (hci_conn_num(hdev, LE_LINK) > 0)
926                 return;
927
928         if (hci_dev_test_flag(hdev, HCI_LE_ADV))
929                 __hci_req_disable_advertising(req);
930
931         /* Clear the HCI_LE_ADV bit temporarily so that the
932          * hci_update_random_address knows that it's safe to go ahead
933          * and write a new random address. The flag will be set back on
934          * as soon as the SET_ADV_ENABLE HCI command completes.
935          */
936         hci_dev_clear_flag(hdev, HCI_LE_ADV);
937
938         flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
939
940         /* If the "connectable" instance flag was not set, then choose between
941          * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
942          */
943         connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
944                       mgmt_get_connectable(hdev);
945
946         /* Set require_privacy to true only when non-connectable
947          * advertising is used. In that case it is fine to use a
948          * non-resolvable private address.
949          */
950         if (hci_update_random_address(req, !connectable,
951                                       adv_use_rpa(hdev, flags),
952                                       &own_addr_type) < 0)
953                 return;
954
955         memset(&cp, 0, sizeof(cp));
956         cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
957         cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
958
959         if (connectable)
960                 cp.type = LE_ADV_IND;
961         else if (get_cur_adv_instance_scan_rsp_len(hdev))
962                 cp.type = LE_ADV_SCAN_IND;
963         else
964                 cp.type = LE_ADV_NONCONN_IND;
965
966         cp.own_address_type = own_addr_type;
967         cp.channel_map = hdev->le_adv_channel_map;
968
969         hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
970
971         hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
972 }
973
974 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
975 {
976         size_t short_len;
977         size_t complete_len;
978
979         /* no space left for name (+ NULL + type + len) */
980         if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
981                 return ad_len;
982
983         /* use complete name if present and fits */
984         complete_len = strlen(hdev->dev_name);
985         if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
986                 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
987                                        hdev->dev_name, complete_len + 1);
988
989         /* use short name if present */
990         short_len = strlen(hdev->short_name);
991         if (short_len)
992                 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
993                                        hdev->short_name, short_len + 1);
994
995         /* use shortened full name if present, we already know that name
996          * is longer then HCI_MAX_SHORT_NAME_LENGTH
997          */
998         if (complete_len) {
999                 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1000
1001                 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1002                 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1003
1004                 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1005                                        sizeof(name));
1006         }
1007
1008         return ad_len;
1009 }
1010
1011 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1012 {
1013         return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1014 }
1015
1016 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1017 {
1018         u8 scan_rsp_len = 0;
1019
1020         if (hdev->appearance) {
1021                 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1022         }
1023
1024         return append_local_name(hdev, ptr, scan_rsp_len);
1025 }
1026
1027 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1028                                         u8 *ptr)
1029 {
1030         struct adv_info *adv_instance;
1031         u32 instance_flags;
1032         u8 scan_rsp_len = 0;
1033
1034         adv_instance = hci_find_adv_instance(hdev, instance);
1035         if (!adv_instance)
1036                 return 0;
1037
1038         instance_flags = adv_instance->flags;
1039
1040         if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1041                 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1042         }
1043
1044         memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1045                adv_instance->scan_rsp_len);
1046
1047         scan_rsp_len += adv_instance->scan_rsp_len;
1048
1049         if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1050                 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1051
1052         return scan_rsp_len;
1053 }
1054
1055 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1056 {
1057         struct hci_dev *hdev = req->hdev;
1058         struct hci_cp_le_set_scan_rsp_data cp;
1059         u8 len;
1060
1061         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1062                 return;
1063
1064         memset(&cp, 0, sizeof(cp));
1065
1066         if (instance)
1067                 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1068         else
1069                 len = create_default_scan_rsp_data(hdev, cp.data);
1070
1071         if (hdev->scan_rsp_data_len == len &&
1072             !memcmp(cp.data, hdev->scan_rsp_data, len))
1073                 return;
1074
1075         memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1076         hdev->scan_rsp_data_len = len;
1077
1078         cp.length = len;
1079
1080         hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1081 }
1082
1083 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1084 {
1085         struct adv_info *adv_instance = NULL;
1086         u8 ad_len = 0, flags = 0;
1087         u32 instance_flags;
1088
1089         /* Return 0 when the current instance identifier is invalid. */
1090         if (instance) {
1091                 adv_instance = hci_find_adv_instance(hdev, instance);
1092                 if (!adv_instance)
1093                         return 0;
1094         }
1095
1096         instance_flags = get_adv_instance_flags(hdev, instance);
1097
1098         /* The Add Advertising command allows userspace to set both the general
1099          * and limited discoverable flags.
1100          */
1101         if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1102                 flags |= LE_AD_GENERAL;
1103
1104         if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1105                 flags |= LE_AD_LIMITED;
1106
1107         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1108                 flags |= LE_AD_NO_BREDR;
1109
1110         if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1111                 /* If a discovery flag wasn't provided, simply use the global
1112                  * settings.
1113                  */
1114                 if (!flags)
1115                         flags |= mgmt_get_adv_discov_flags(hdev);
1116
1117                 /* If flags would still be empty, then there is no need to
1118                  * include the "Flags" AD field".
1119                  */
1120                 if (flags) {
1121                         ptr[0] = 0x02;
1122                         ptr[1] = EIR_FLAGS;
1123                         ptr[2] = flags;
1124
1125                         ad_len += 3;
1126                         ptr += 3;
1127                 }
1128         }
1129
1130         if (adv_instance) {
1131                 memcpy(ptr, adv_instance->adv_data,
1132                        adv_instance->adv_data_len);
1133                 ad_len += adv_instance->adv_data_len;
1134                 ptr += adv_instance->adv_data_len;
1135         }
1136
1137         /* Provide Tx Power only if we can provide a valid value for it */
1138         if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1139             (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1140                 ptr[0] = 0x02;
1141                 ptr[1] = EIR_TX_POWER;
1142                 ptr[2] = (u8)hdev->adv_tx_power;
1143
1144                 ad_len += 3;
1145                 ptr += 3;
1146         }
1147
1148         return ad_len;
1149 }
1150
1151 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1152 {
1153         struct hci_dev *hdev = req->hdev;
1154         struct hci_cp_le_set_adv_data cp;
1155         u8 len;
1156
1157         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1158                 return;
1159
1160         memset(&cp, 0, sizeof(cp));
1161
1162         len = create_instance_adv_data(hdev, instance, cp.data);
1163
1164         /* There's nothing to do if the data hasn't changed */
1165         if (hdev->adv_data_len == len &&
1166             memcmp(cp.data, hdev->adv_data, len) == 0)
1167                 return;
1168
1169         memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1170         hdev->adv_data_len = len;
1171
1172         cp.length = len;
1173
1174         hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1175 }
1176
1177 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1178 {
1179         struct hci_request req;
1180
1181         hci_req_init(&req, hdev);
1182         __hci_req_update_adv_data(&req, instance);
1183
1184         return hci_req_run(&req, NULL);
1185 }
1186
1187 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1188 {
1189         BT_DBG("%s status %u", hdev->name, status);
1190 }
1191
1192 void hci_req_reenable_advertising(struct hci_dev *hdev)
1193 {
1194         struct hci_request req;
1195
1196         if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1197             list_empty(&hdev->adv_instances))
1198                 return;
1199
1200         hci_req_init(&req, hdev);
1201
1202         if (hdev->cur_adv_instance) {
1203                 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1204                                                 true);
1205         } else {
1206                 __hci_req_update_adv_data(&req, 0x00);
1207                 __hci_req_update_scan_rsp_data(&req, 0x00);
1208                 __hci_req_enable_advertising(&req);
1209         }
1210
1211         hci_req_run(&req, adv_enable_complete);
1212 }
1213
1214 static void adv_timeout_expire(struct work_struct *work)
1215 {
1216         struct hci_dev *hdev = container_of(work, struct hci_dev,
1217                                             adv_instance_expire.work);
1218
1219         struct hci_request req;
1220         u8 instance;
1221
1222         BT_DBG("%s", hdev->name);
1223
1224         hci_dev_lock(hdev);
1225
1226         hdev->adv_instance_timeout = 0;
1227
1228         instance = hdev->cur_adv_instance;
1229         if (instance == 0x00)
1230                 goto unlock;
1231
1232         hci_req_init(&req, hdev);
1233
1234         hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1235
1236         if (list_empty(&hdev->adv_instances))
1237                 __hci_req_disable_advertising(&req);
1238
1239         hci_req_run(&req, NULL);
1240
1241 unlock:
1242         hci_dev_unlock(hdev);
1243 }
1244
1245 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1246                                     bool force)
1247 {
1248         struct hci_dev *hdev = req->hdev;
1249         struct adv_info *adv_instance = NULL;
1250         u16 timeout;
1251
1252         if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1253             list_empty(&hdev->adv_instances))
1254                 return -EPERM;
1255
1256         if (hdev->adv_instance_timeout)
1257                 return -EBUSY;
1258
1259         adv_instance = hci_find_adv_instance(hdev, instance);
1260         if (!adv_instance)
1261                 return -ENOENT;
1262
1263         /* A zero timeout means unlimited advertising. As long as there is
1264          * only one instance, duration should be ignored. We still set a timeout
1265          * in case further instances are being added later on.
1266          *
1267          * If the remaining lifetime of the instance is more than the duration
1268          * then the timeout corresponds to the duration, otherwise it will be
1269          * reduced to the remaining instance lifetime.
1270          */
1271         if (adv_instance->timeout == 0 ||
1272             adv_instance->duration <= adv_instance->remaining_time)
1273                 timeout = adv_instance->duration;
1274         else
1275                 timeout = adv_instance->remaining_time;
1276
1277         /* The remaining time is being reduced unless the instance is being
1278          * advertised without time limit.
1279          */
1280         if (adv_instance->timeout)
1281                 adv_instance->remaining_time =
1282                                 adv_instance->remaining_time - timeout;
1283
1284         hdev->adv_instance_timeout = timeout;
1285         queue_delayed_work(hdev->req_workqueue,
1286                            &hdev->adv_instance_expire,
1287                            msecs_to_jiffies(timeout * 1000));
1288
1289         /* If we're just re-scheduling the same instance again then do not
1290          * execute any HCI commands. This happens when a single instance is
1291          * being advertised.
1292          */
1293         if (!force && hdev->cur_adv_instance == instance &&
1294             hci_dev_test_flag(hdev, HCI_LE_ADV))
1295                 return 0;
1296
1297         hdev->cur_adv_instance = instance;
1298         __hci_req_update_adv_data(req, instance);
1299         __hci_req_update_scan_rsp_data(req, instance);
1300         __hci_req_enable_advertising(req);
1301
1302         return 0;
1303 }
1304
1305 static void cancel_adv_timeout(struct hci_dev *hdev)
1306 {
1307         if (hdev->adv_instance_timeout) {
1308                 hdev->adv_instance_timeout = 0;
1309                 cancel_delayed_work(&hdev->adv_instance_expire);
1310         }
1311 }
1312
1313 /* For a single instance:
1314  * - force == true: The instance will be removed even when its remaining
1315  *   lifetime is not zero.
1316  * - force == false: the instance will be deactivated but kept stored unless
1317  *   the remaining lifetime is zero.
1318  *
1319  * For instance == 0x00:
1320  * - force == true: All instances will be removed regardless of their timeout
1321  *   setting.
1322  * - force == false: Only instances that have a timeout will be removed.
1323  */
1324 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1325                                 struct hci_request *req, u8 instance,
1326                                 bool force)
1327 {
1328         struct adv_info *adv_instance, *n, *next_instance = NULL;
1329         int err;
1330         u8 rem_inst;
1331
1332         /* Cancel any timeout concerning the removed instance(s). */
1333         if (!instance || hdev->cur_adv_instance == instance)
1334                 cancel_adv_timeout(hdev);
1335
1336         /* Get the next instance to advertise BEFORE we remove
1337          * the current one. This can be the same instance again
1338          * if there is only one instance.
1339          */
1340         if (instance && hdev->cur_adv_instance == instance)
1341                 next_instance = hci_get_next_instance(hdev, instance);
1342
1343         if (instance == 0x00) {
1344                 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1345                                          list) {
1346                         if (!(force || adv_instance->timeout))
1347                                 continue;
1348
1349                         rem_inst = adv_instance->instance;
1350                         err = hci_remove_adv_instance(hdev, rem_inst);
1351                         if (!err)
1352                                 mgmt_advertising_removed(sk, hdev, rem_inst);
1353                 }
1354         } else {
1355                 adv_instance = hci_find_adv_instance(hdev, instance);
1356
1357                 if (force || (adv_instance && adv_instance->timeout &&
1358                               !adv_instance->remaining_time)) {
1359                         /* Don't advertise a removed instance. */
1360                         if (next_instance &&
1361                             next_instance->instance == instance)
1362                                 next_instance = NULL;
1363
1364                         err = hci_remove_adv_instance(hdev, instance);
1365                         if (!err)
1366                                 mgmt_advertising_removed(sk, hdev, instance);
1367                 }
1368         }
1369
1370         if (!req || !hdev_is_powered(hdev) ||
1371             hci_dev_test_flag(hdev, HCI_ADVERTISING))
1372                 return;
1373
1374         if (next_instance)
1375                 __hci_req_schedule_adv_instance(req, next_instance->instance,
1376                                                 false);
1377 }
1378
1379 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1380 {
1381         struct hci_dev *hdev = req->hdev;
1382
1383         /* If we're advertising or initiating an LE connection we can't
1384          * go ahead and change the random address at this time. This is
1385          * because the eventual initiator address used for the
1386          * subsequently created connection will be undefined (some
1387          * controllers use the new address and others the one we had
1388          * when the operation started).
1389          *
1390          * In this kind of scenario skip the update and let the random
1391          * address be updated at the next cycle.
1392          */
1393         if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1394             hci_lookup_le_connect(hdev)) {
1395                 BT_DBG("Deferring random address update");
1396                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397                 return;
1398         }
1399
1400         hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1401 }
1402
1403 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1404                               bool use_rpa, u8 *own_addr_type)
1405 {
1406         struct hci_dev *hdev = req->hdev;
1407         int err;
1408
1409         /* If privacy is enabled use a resolvable private address. If
1410          * current RPA has expired or there is something else than
1411          * the current RPA in use, then generate a new one.
1412          */
1413         if (use_rpa) {
1414                 int to;
1415
1416                 *own_addr_type = ADDR_LE_DEV_RANDOM;
1417
1418                 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1419                     !bacmp(&hdev->random_addr, &hdev->rpa))
1420                         return 0;
1421
1422                 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1423                 if (err < 0) {
1424                         BT_ERR("%s failed to generate new RPA", hdev->name);
1425                         return err;
1426                 }
1427
1428                 set_random_addr(req, &hdev->rpa);
1429
1430                 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1431                 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1432
1433                 return 0;
1434         }
1435
1436         /* In case of required privacy without resolvable private address,
1437          * use an non-resolvable private address. This is useful for active
1438          * scanning and non-connectable advertising.
1439          */
1440         if (require_privacy) {
1441                 bdaddr_t nrpa;
1442
1443                 while (true) {
1444                         /* The non-resolvable private address is generated
1445                          * from random six bytes with the two most significant
1446                          * bits cleared.
1447                          */
1448                         get_random_bytes(&nrpa, 6);
1449                         nrpa.b[5] &= 0x3f;
1450
1451                         /* The non-resolvable private address shall not be
1452                          * equal to the public address.
1453                          */
1454                         if (bacmp(&hdev->bdaddr, &nrpa))
1455                                 break;
1456                 }
1457
1458                 *own_addr_type = ADDR_LE_DEV_RANDOM;
1459                 set_random_addr(req, &nrpa);
1460                 return 0;
1461         }
1462
1463         /* If forcing static address is in use or there is no public
1464          * address use the static address as random address (but skip
1465          * the HCI command if the current random address is already the
1466          * static one.
1467          *
1468          * In case BR/EDR has been disabled on a dual-mode controller
1469          * and a static address has been configured, then use that
1470          * address instead of the public BR/EDR address.
1471          */
1472         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1473             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1474             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1475              bacmp(&hdev->static_addr, BDADDR_ANY))) {
1476                 *own_addr_type = ADDR_LE_DEV_RANDOM;
1477                 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1478                         hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1479                                     &hdev->static_addr);
1480                 return 0;
1481         }
1482
1483         /* Neither privacy nor static address is being used so use a
1484          * public address.
1485          */
1486         *own_addr_type = ADDR_LE_DEV_PUBLIC;
1487
1488         return 0;
1489 }
1490
1491 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1492 {
1493         struct bdaddr_list *b;
1494
1495         list_for_each_entry(b, &hdev->whitelist, list) {
1496                 struct hci_conn *conn;
1497
1498                 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1499                 if (!conn)
1500                         return true;
1501
1502                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1503                         return true;
1504         }
1505
1506         return false;
1507 }
1508
1509 void __hci_req_update_scan(struct hci_request *req)
1510 {
1511         struct hci_dev *hdev = req->hdev;
1512         u8 scan;
1513
1514         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1515                 return;
1516
1517         if (!hdev_is_powered(hdev))
1518                 return;
1519
1520         if (mgmt_powering_down(hdev))
1521                 return;
1522
1523         if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1524             disconnected_whitelist_entries(hdev))
1525                 scan = SCAN_PAGE;
1526         else
1527                 scan = SCAN_DISABLED;
1528
1529         if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1530                 scan |= SCAN_INQUIRY;
1531
1532         if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1533             test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1534                 return;
1535
1536         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1537 }
1538
1539 static int update_scan(struct hci_request *req, unsigned long opt)
1540 {
1541         hci_dev_lock(req->hdev);
1542         __hci_req_update_scan(req);
1543         hci_dev_unlock(req->hdev);
1544         return 0;
1545 }
1546
1547 static void scan_update_work(struct work_struct *work)
1548 {
1549         struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1550
1551         hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1552 }
1553
1554 static int connectable_update(struct hci_request *req, unsigned long opt)
1555 {
1556         struct hci_dev *hdev = req->hdev;
1557
1558         hci_dev_lock(hdev);
1559
1560         __hci_req_update_scan(req);
1561
1562         /* If BR/EDR is not enabled and we disable advertising as a
1563          * by-product of disabling connectable, we need to update the
1564          * advertising flags.
1565          */
1566         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1567                 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1568
1569         /* Update the advertising parameters if necessary */
1570         if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1571             !list_empty(&hdev->adv_instances))
1572                 __hci_req_enable_advertising(req);
1573
1574         __hci_update_background_scan(req);
1575
1576         hci_dev_unlock(hdev);
1577
1578         return 0;
1579 }
1580
1581 static void connectable_update_work(struct work_struct *work)
1582 {
1583         struct hci_dev *hdev = container_of(work, struct hci_dev,
1584                                             connectable_update);
1585         u8 status;
1586
1587         hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1588         mgmt_set_connectable_complete(hdev, status);
1589 }
1590
1591 static u8 get_service_classes(struct hci_dev *hdev)
1592 {
1593         struct bt_uuid *uuid;
1594         u8 val = 0;
1595
1596         list_for_each_entry(uuid, &hdev->uuids, list)
1597                 val |= uuid->svc_hint;
1598
1599         return val;
1600 }
1601
1602 void __hci_req_update_class(struct hci_request *req)
1603 {
1604         struct hci_dev *hdev = req->hdev;
1605         u8 cod[3];
1606
1607         BT_DBG("%s", hdev->name);
1608
1609         if (!hdev_is_powered(hdev))
1610                 return;
1611
1612         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1613                 return;
1614
1615         if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1616                 return;
1617
1618         cod[0] = hdev->minor_class;
1619         cod[1] = hdev->major_class;
1620         cod[2] = get_service_classes(hdev);
1621
1622         if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1623                 cod[1] |= 0x20;
1624
1625         if (memcmp(cod, hdev->dev_class, 3) == 0)
1626                 return;
1627
1628         hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1629 }
1630
1631 static void write_iac(struct hci_request *req)
1632 {
1633         struct hci_dev *hdev = req->hdev;
1634         struct hci_cp_write_current_iac_lap cp;
1635
1636         if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1637                 return;
1638
1639         if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1640                 /* Limited discoverable mode */
1641                 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1642                 cp.iac_lap[0] = 0x00;   /* LIAC */
1643                 cp.iac_lap[1] = 0x8b;
1644                 cp.iac_lap[2] = 0x9e;
1645                 cp.iac_lap[3] = 0x33;   /* GIAC */
1646                 cp.iac_lap[4] = 0x8b;
1647                 cp.iac_lap[5] = 0x9e;
1648         } else {
1649                 /* General discoverable mode */
1650                 cp.num_iac = 1;
1651                 cp.iac_lap[0] = 0x33;   /* GIAC */
1652                 cp.iac_lap[1] = 0x8b;
1653                 cp.iac_lap[2] = 0x9e;
1654         }
1655
1656         hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1657                     (cp.num_iac * 3) + 1, &cp);
1658 }
1659
1660 static int discoverable_update(struct hci_request *req, unsigned long opt)
1661 {
1662         struct hci_dev *hdev = req->hdev;
1663
1664         hci_dev_lock(hdev);
1665
1666         if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1667                 write_iac(req);
1668                 __hci_req_update_scan(req);
1669                 __hci_req_update_class(req);
1670         }
1671
1672         /* Advertising instances don't use the global discoverable setting, so
1673          * only update AD if advertising was enabled using Set Advertising.
1674          */
1675         if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1676                 __hci_req_update_adv_data(req, 0x00);
1677
1678                 /* Discoverable mode affects the local advertising
1679                  * address in limited privacy mode.
1680                  */
1681                 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1682                         __hci_req_enable_advertising(req);
1683         }
1684
1685         hci_dev_unlock(hdev);
1686
1687         return 0;
1688 }
1689
1690 static void discoverable_update_work(struct work_struct *work)
1691 {
1692         struct hci_dev *hdev = container_of(work, struct hci_dev,
1693                                             discoverable_update);
1694         u8 status;
1695
1696         hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1697         mgmt_set_discoverable_complete(hdev, status);
1698 }
1699
1700 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1701                       u8 reason)
1702 {
1703         switch (conn->state) {
1704         case BT_CONNECTED:
1705         case BT_CONFIG:
1706                 if (conn->type == AMP_LINK) {
1707                         struct hci_cp_disconn_phy_link cp;
1708
1709                         cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1710                         cp.reason = reason;
1711                         hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1712                                     &cp);
1713                 } else {
1714                         struct hci_cp_disconnect dc;
1715
1716                         dc.handle = cpu_to_le16(conn->handle);
1717                         dc.reason = reason;
1718                         hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1719                 }
1720
1721                 conn->state = BT_DISCONN;
1722
1723                 break;
1724         case BT_CONNECT:
1725                 if (conn->type == LE_LINK) {
1726                         if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1727                                 break;
1728                         hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1729                                     0, NULL);
1730                 } else if (conn->type == ACL_LINK) {
1731                         if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1732                                 break;
1733                         hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1734                                     6, &conn->dst);
1735                 }
1736                 break;
1737         case BT_CONNECT2:
1738                 if (conn->type == ACL_LINK) {
1739                         struct hci_cp_reject_conn_req rej;
1740
1741                         bacpy(&rej.bdaddr, &conn->dst);
1742                         rej.reason = reason;
1743
1744                         hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1745                                     sizeof(rej), &rej);
1746                 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1747                         struct hci_cp_reject_sync_conn_req rej;
1748
1749                         bacpy(&rej.bdaddr, &conn->dst);
1750
1751                         /* SCO rejection has its own limited set of
1752                          * allowed error values (0x0D-0x0F) which isn't
1753                          * compatible with most values passed to this
1754                          * function. To be safe hard-code one of the
1755                          * values that's suitable for SCO.
1756                          */
1757                         rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1758
1759                         hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1760                                     sizeof(rej), &rej);
1761                 }
1762                 break;
1763         default:
1764                 conn->state = BT_CLOSED;
1765                 break;
1766         }
1767 }
1768
1769 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1770 {
1771         if (status)
1772                 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1773 }
1774
1775 int hci_abort_conn(struct hci_conn *conn, u8 reason)
1776 {
1777         struct hci_request req;
1778         int err;
1779
1780         hci_req_init(&req, conn->hdev);
1781
1782         __hci_abort_conn(&req, conn, reason);
1783
1784         err = hci_req_run(&req, abort_conn_complete);
1785         if (err && err != -ENODATA) {
1786                 BT_ERR("Failed to run HCI request: err %d", err);
1787                 return err;
1788         }
1789
1790         return 0;
1791 }
1792
1793 static int update_bg_scan(struct hci_request *req, unsigned long opt)
1794 {
1795         hci_dev_lock(req->hdev);
1796         __hci_update_background_scan(req);
1797         hci_dev_unlock(req->hdev);
1798         return 0;
1799 }
1800
1801 static void bg_scan_update(struct work_struct *work)
1802 {
1803         struct hci_dev *hdev = container_of(work, struct hci_dev,
1804                                             bg_scan_update);
1805         struct hci_conn *conn;
1806         u8 status;
1807         int err;
1808
1809         err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1810         if (!err)
1811                 return;
1812
1813         hci_dev_lock(hdev);
1814
1815         conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1816         if (conn)
1817                 hci_le_conn_failed(conn, status);
1818
1819         hci_dev_unlock(hdev);
1820 }
1821
1822 static int le_scan_disable(struct hci_request *req, unsigned long opt)
1823 {
1824         hci_req_add_le_scan_disable(req);
1825         return 0;
1826 }
1827
1828 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1829 {
1830         u8 length = opt;
1831         const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1832         const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1833         struct hci_cp_inquiry cp;
1834
1835         BT_DBG("%s", req->hdev->name);
1836
1837         hci_dev_lock(req->hdev);
1838         hci_inquiry_cache_flush(req->hdev);
1839         hci_dev_unlock(req->hdev);
1840
1841         memset(&cp, 0, sizeof(cp));
1842
1843         if (req->hdev->discovery.limited)
1844                 memcpy(&cp.lap, liac, sizeof(cp.lap));
1845         else
1846                 memcpy(&cp.lap, giac, sizeof(cp.lap));
1847
1848         cp.length = length;
1849
1850         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1851
1852         return 0;
1853 }
1854
1855 static void le_scan_disable_work(struct work_struct *work)
1856 {
1857         struct hci_dev *hdev = container_of(work, struct hci_dev,
1858                                             le_scan_disable.work);
1859         u8 status;
1860
1861         BT_DBG("%s", hdev->name);
1862
1863         if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1864                 return;
1865
1866         cancel_delayed_work(&hdev->le_scan_restart);
1867
1868         hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1869         if (status) {
1870                 BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1871                 return;
1872         }
1873
1874         hdev->discovery.scan_start = 0;
1875
1876         /* If we were running LE only scan, change discovery state. If
1877          * we were running both LE and BR/EDR inquiry simultaneously,
1878          * and BR/EDR inquiry is already finished, stop discovery,
1879          * otherwise BR/EDR inquiry will stop discovery when finished.
1880          * If we will resolve remote device name, do not change
1881          * discovery state.
1882          */
1883
1884         if (hdev->discovery.type == DISCOV_TYPE_LE)
1885                 goto discov_stopped;
1886
1887         if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1888                 return;
1889
1890         if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1891                 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1892                     hdev->discovery.state != DISCOVERY_RESOLVING)
1893                         goto discov_stopped;
1894
1895                 return;
1896         }
1897
1898         hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1899                      HCI_CMD_TIMEOUT, &status);
1900         if (status) {
1901                 BT_ERR("Inquiry failed: status 0x%02x", status);
1902                 goto discov_stopped;
1903         }
1904
1905         return;
1906
1907 discov_stopped:
1908         hci_dev_lock(hdev);
1909         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1910         hci_dev_unlock(hdev);
1911 }
1912
1913 static int le_scan_restart(struct hci_request *req, unsigned long opt)
1914 {
1915         struct hci_dev *hdev = req->hdev;
1916         struct hci_cp_le_set_scan_enable cp;
1917
1918         /* If controller is not scanning we are done. */
1919         if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1920                 return 0;
1921
1922         hci_req_add_le_scan_disable(req);
1923
1924         memset(&cp, 0, sizeof(cp));
1925         cp.enable = LE_SCAN_ENABLE;
1926         cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1927         hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1928
1929         return 0;
1930 }
1931
1932 static void le_scan_restart_work(struct work_struct *work)
1933 {
1934         struct hci_dev *hdev = container_of(work, struct hci_dev,
1935                                             le_scan_restart.work);
1936         unsigned long timeout, duration, scan_start, now;
1937         u8 status;
1938
1939         BT_DBG("%s", hdev->name);
1940
1941         hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1942         if (status) {
1943                 BT_ERR("Failed to restart LE scan: status %d", status);
1944                 return;
1945         }
1946
1947         hci_dev_lock(hdev);
1948
1949         if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1950             !hdev->discovery.scan_start)
1951                 goto unlock;
1952
1953         /* When the scan was started, hdev->le_scan_disable has been queued
1954          * after duration from scan_start. During scan restart this job
1955          * has been canceled, and we need to queue it again after proper
1956          * timeout, to make sure that scan does not run indefinitely.
1957          */
1958         duration = hdev->discovery.scan_duration;
1959         scan_start = hdev->discovery.scan_start;
1960         now = jiffies;
1961         if (now - scan_start <= duration) {
1962                 int elapsed;
1963
1964                 if (now >= scan_start)
1965                         elapsed = now - scan_start;
1966                 else
1967                         elapsed = ULONG_MAX - scan_start + now;
1968
1969                 timeout = duration - elapsed;
1970         } else {
1971                 timeout = 0;
1972         }
1973
1974         queue_delayed_work(hdev->req_workqueue,
1975                            &hdev->le_scan_disable, timeout);
1976
1977 unlock:
1978         hci_dev_unlock(hdev);
1979 }
1980
1981 static void disable_advertising(struct hci_request *req)
1982 {
1983         u8 enable = 0x00;
1984
1985         hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1986 }
1987
1988 static int active_scan(struct hci_request *req, unsigned long opt)
1989 {
1990         uint16_t interval = opt;
1991         struct hci_dev *hdev = req->hdev;
1992         struct hci_cp_le_set_scan_param param_cp;
1993         struct hci_cp_le_set_scan_enable enable_cp;
1994         u8 own_addr_type;
1995         int err;
1996
1997         BT_DBG("%s", hdev->name);
1998
1999         if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2000                 hci_dev_lock(hdev);
2001
2002                 /* Don't let discovery abort an outgoing connection attempt
2003                  * that's using directed advertising.
2004                  */
2005                 if (hci_lookup_le_connect(hdev)) {
2006                         hci_dev_unlock(hdev);
2007                         return -EBUSY;
2008                 }
2009
2010                 cancel_adv_timeout(hdev);
2011                 hci_dev_unlock(hdev);
2012
2013                 disable_advertising(req);
2014         }
2015
2016         /* If controller is scanning, it means the background scanning is
2017          * running. Thus, we should temporarily stop it in order to set the
2018          * discovery scanning parameters.
2019          */
2020         if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2021                 hci_req_add_le_scan_disable(req);
2022
2023         /* All active scans will be done with either a resolvable private
2024          * address (when privacy feature has been enabled) or non-resolvable
2025          * private address.
2026          */
2027         err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2028                                         &own_addr_type);
2029         if (err < 0)
2030                 own_addr_type = ADDR_LE_DEV_PUBLIC;
2031
2032         memset(&param_cp, 0, sizeof(param_cp));
2033         param_cp.type = LE_SCAN_ACTIVE;
2034         param_cp.interval = cpu_to_le16(interval);
2035         param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2036         param_cp.own_address_type = own_addr_type;
2037
2038         hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2039                     &param_cp);
2040
2041         memset(&enable_cp, 0, sizeof(enable_cp));
2042         enable_cp.enable = LE_SCAN_ENABLE;
2043         enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2044
2045         hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2046                     &enable_cp);
2047
2048         return 0;
2049 }
2050
2051 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2052 {
2053         int err;
2054
2055         BT_DBG("%s", req->hdev->name);
2056
2057         err = active_scan(req, opt);
2058         if (err)
2059                 return err;
2060
2061         return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2062 }
2063
2064 static void start_discovery(struct hci_dev *hdev, u8 *status)
2065 {
2066         unsigned long timeout;
2067
2068         BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2069
2070         switch (hdev->discovery.type) {
2071         case DISCOV_TYPE_BREDR:
2072                 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2073                         hci_req_sync(hdev, bredr_inquiry,
2074                                      DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2075                                      status);
2076                 return;
2077         case DISCOV_TYPE_INTERLEAVED:
2078                 /* When running simultaneous discovery, the LE scanning time
2079                  * should occupy the whole discovery time sine BR/EDR inquiry
2080                  * and LE scanning are scheduled by the controller.
2081                  *
2082                  * For interleaving discovery in comparison, BR/EDR inquiry
2083                  * and LE scanning are done sequentially with separate
2084                  * timeouts.
2085                  */
2086                 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2087                              &hdev->quirks)) {
2088                         timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2089                         /* During simultaneous discovery, we double LE scan
2090                          * interval. We must leave some time for the controller
2091                          * to do BR/EDR inquiry.
2092                          */
2093                         hci_req_sync(hdev, interleaved_discov,
2094                                      DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2095                                      status);
2096                         break;
2097                 }
2098
2099                 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2100                 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2101                              HCI_CMD_TIMEOUT, status);
2102                 break;
2103         case DISCOV_TYPE_LE:
2104                 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2105                 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2106                              HCI_CMD_TIMEOUT, status);
2107                 break;
2108         default:
2109                 *status = HCI_ERROR_UNSPECIFIED;
2110                 return;
2111         }
2112
2113         if (*status)
2114                 return;
2115
2116         BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2117
2118         /* When service discovery is used and the controller has a
2119          * strict duplicate filter, it is important to remember the
2120          * start and duration of the scan. This is required for
2121          * restarting scanning during the discovery phase.
2122          */
2123         if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2124                      hdev->discovery.result_filtering) {
2125                 hdev->discovery.scan_start = jiffies;
2126                 hdev->discovery.scan_duration = timeout;
2127         }
2128
2129         queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2130                            timeout);
2131 }
2132
2133 bool hci_req_stop_discovery(struct hci_request *req)
2134 {
2135         struct hci_dev *hdev = req->hdev;
2136         struct discovery_state *d = &hdev->discovery;
2137         struct hci_cp_remote_name_req_cancel cp;
2138         struct inquiry_entry *e;
2139         bool ret = false;
2140
2141         BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2142
2143         if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2144                 if (test_bit(HCI_INQUIRY, &hdev->flags))
2145                         hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2146
2147                 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2148                         cancel_delayed_work(&hdev->le_scan_disable);
2149                         hci_req_add_le_scan_disable(req);
2150                 }
2151
2152                 ret = true;
2153         } else {
2154                 /* Passive scanning */
2155                 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2156                         hci_req_add_le_scan_disable(req);
2157                         ret = true;
2158                 }
2159         }
2160
2161         /* No further actions needed for LE-only discovery */
2162         if (d->type == DISCOV_TYPE_LE)
2163                 return ret;
2164
2165         if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2166                 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2167                                                      NAME_PENDING);
2168                 if (!e)
2169                         return ret;
2170
2171                 bacpy(&cp.bdaddr, &e->data.bdaddr);
2172                 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2173                             &cp);
2174                 ret = true;
2175         }
2176
2177         return ret;
2178 }
2179
2180 static int stop_discovery(struct hci_request *req, unsigned long opt)
2181 {
2182         hci_dev_lock(req->hdev);
2183         hci_req_stop_discovery(req);
2184         hci_dev_unlock(req->hdev);
2185
2186         return 0;
2187 }
2188
2189 static void discov_update(struct work_struct *work)
2190 {
2191         struct hci_dev *hdev = container_of(work, struct hci_dev,
2192                                             discov_update);
2193         u8 status = 0;
2194
2195         switch (hdev->discovery.state) {
2196         case DISCOVERY_STARTING:
2197                 start_discovery(hdev, &status);
2198                 mgmt_start_discovery_complete(hdev, status);
2199                 if (status)
2200                         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2201                 else
2202                         hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2203                 break;
2204         case DISCOVERY_STOPPING:
2205                 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2206                 mgmt_stop_discovery_complete(hdev, status);
2207                 if (!status)
2208                         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2209                 break;
2210         case DISCOVERY_STOPPED:
2211         default:
2212                 return;
2213         }
2214 }
2215
2216 static void discov_off(struct work_struct *work)
2217 {
2218         struct hci_dev *hdev = container_of(work, struct hci_dev,
2219                                             discov_off.work);
2220
2221         BT_DBG("%s", hdev->name);
2222
2223         hci_dev_lock(hdev);
2224
2225         /* When discoverable timeout triggers, then just make sure
2226          * the limited discoverable flag is cleared. Even in the case
2227          * of a timeout triggered from general discoverable, it is
2228          * safe to unconditionally clear the flag.
2229          */
2230         hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2231         hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2232         hdev->discov_timeout = 0;
2233
2234         hci_dev_unlock(hdev);
2235
2236         hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2237         mgmt_new_settings(hdev);
2238 }
2239
2240 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2241 {
2242         struct hci_dev *hdev = req->hdev;
2243         u8 link_sec;
2244
2245         hci_dev_lock(hdev);
2246
2247         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2248             !lmp_host_ssp_capable(hdev)) {
2249                 u8 mode = 0x01;
2250
2251                 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2252
2253                 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2254                         u8 support = 0x01;
2255
2256                         hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2257                                     sizeof(support), &support);
2258                 }
2259         }
2260
2261         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2262             lmp_bredr_capable(hdev)) {
2263                 struct hci_cp_write_le_host_supported cp;
2264
2265                 cp.le = 0x01;
2266                 cp.simul = 0x00;
2267
2268                 /* Check first if we already have the right
2269                  * host state (host features set)
2270                  */
2271                 if (cp.le != lmp_host_le_capable(hdev) ||
2272                     cp.simul != lmp_host_le_br_capable(hdev))
2273                         hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2274                                     sizeof(cp), &cp);
2275         }
2276
2277         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2278                 /* Make sure the controller has a good default for
2279                  * advertising data. This also applies to the case
2280                  * where BR/EDR was toggled during the AUTO_OFF phase.
2281                  */
2282                 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2283                     list_empty(&hdev->adv_instances)) {
2284                         __hci_req_update_adv_data(req, 0x00);
2285                         __hci_req_update_scan_rsp_data(req, 0x00);
2286
2287                         if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2288                                 __hci_req_enable_advertising(req);
2289                 } else if (!list_empty(&hdev->adv_instances)) {
2290                         struct adv_info *adv_instance;
2291
2292                         adv_instance = list_first_entry(&hdev->adv_instances,
2293                                                         struct adv_info, list);
2294                         __hci_req_schedule_adv_instance(req,
2295                                                         adv_instance->instance,
2296                                                         true);
2297                 }
2298         }
2299
2300         link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2301         if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2302                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2303                             sizeof(link_sec), &link_sec);
2304
2305         if (lmp_bredr_capable(hdev)) {
2306                 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2307                         __hci_req_write_fast_connectable(req, true);
2308                 else
2309                         __hci_req_write_fast_connectable(req, false);
2310                 __hci_req_update_scan(req);
2311                 __hci_req_update_class(req);
2312                 __hci_req_update_name(req);
2313                 __hci_req_update_eir(req);
2314         }
2315
2316         hci_dev_unlock(hdev);
2317         return 0;
2318 }
2319
2320 int __hci_req_hci_power_on(struct hci_dev *hdev)
2321 {
2322         /* Register the available SMP channels (BR/EDR and LE) only when
2323          * successfully powering on the controller. This late
2324          * registration is required so that LE SMP can clearly decide if
2325          * the public address or static address is used.
2326          */
2327         smp_register(hdev);
2328
2329         return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2330                               NULL);
2331 }
2332
2333 void hci_request_setup(struct hci_dev *hdev)
2334 {
2335         INIT_WORK(&hdev->discov_update, discov_update);
2336         INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2337         INIT_WORK(&hdev->scan_update, scan_update_work);
2338         INIT_WORK(&hdev->connectable_update, connectable_update_work);
2339         INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2340         INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2341         INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2342         INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2343         INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2344 }
2345
2346 void hci_request_cancel_all(struct hci_dev *hdev)
2347 {
2348         hci_req_sync_cancel(hdev, ENODEV);
2349
2350         cancel_work_sync(&hdev->discov_update);
2351         cancel_work_sync(&hdev->bg_scan_update);
2352         cancel_work_sync(&hdev->scan_update);
2353         cancel_work_sync(&hdev->connectable_update);
2354         cancel_work_sync(&hdev->discoverable_update);
2355         cancel_delayed_work_sync(&hdev->discov_off);
2356         cancel_delayed_work_sync(&hdev->le_scan_disable);
2357         cancel_delayed_work_sync(&hdev->le_scan_restart);
2358
2359         if (hdev->adv_instance_timeout) {
2360                 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2361                 hdev->adv_instance_timeout = 0;
2362         }
2363 }